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C*-simplicity and the unique trace property



Let G be a discrete group. The reduced C*-algebra C∗r (G ) is the
C*-algebra generated by the left regular representation of G on `2(G ),

C∗r (G ) = C∗({λg : g ∈ G}),

where `2(G ) = span{δh : h ∈ G} and

λgδh = δgh, g , h ∈ G .

There is a “canonical” tracial state τ on C∗r (G ) determined by

τ(λg ) =

{
1 g = e

0 otherwise
.

Basic questions: For which G is C∗r (G ) simple? For which G does it
have a unique tracial state?

Theorem (Murray-von Neumann 1936)

The von Neumann algebra L(G ) is a factor if and only if it has a unique
trace if and only if G is ICC (i.e. every non-trivial conjugacy class is
infinite).
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Let F2 denote the free group on two generators.

Theorem (Powers 1975)

The reduced C*-algebra C∗r (F2) is simple and has a unique trace.

We say that F2 is C*-simple and has the unique trace property.

Variants of Powers’ proof became the main method for establishing these
properties.
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Definition

A group G has Powers’ averaging property if for every a ∈ C∗r (G ) and
ε > 0 there are g1, . . . , gn ∈ G such that∥∥∥∥1

n

∑
λgi aλg−1

i
− τ(a)1

∥∥∥∥ < ε.

Theorem (Powers 1975)

A group with Powers’ averaging property is C*-simple and has the unique
trace property.

Proof.

For C*-simplicity, let I be a non-trivial closed two-sided ideal of C∗r (G ). By
faithfulness there is a ∈ C∗r (G ) with τ(a) = 1. Applying Powers’ averaging
property implies 1 ∈ I . The unique trace property is similarly
straightforward.
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Theorem (Powers 1975)

The free group F2 has Powers’ averaging property. Hence it is C*-simple
and has the unique trace property.



Question

Is there an (intrinsic) group-theoretic characterization of C*-simplicity and
the unique trace property?



A group G is C*-simple iff whenever ρ is a unitary representation of G ,

ρ ≺ λ =⇒ ρ ∼ λ,

i.e. weak containment implies weak equivalence.

In other words, if
λg → ρg , g ∈ G

extends to a bounded *-homomorphism, then it is necessarily an
isomorphism.

Proposition

C*-simple groups have no non-trivial normal amenable subgroups.

Proof.

If N < G is amenable and normal then λG/N � λG .
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Many (40+) years of work shows that the converse almost always holds.

C*-simple and unique trace
equivalent to no non-trivial
normal subgroups

Authors

Free groups Fn for n ≥ 2 Powers (1975)

...
...

Linear groups T. Poznansky (2008)

Groups with non-zero first
`2-Betti number

J. Peterson and A. Thom (2010)

Acylindrically hyperbolic groups F. Dahmani, V. Guirardel, and D.
Osin (2011)

Free Burnside groups B(m, n) for
m ≥ 2 and n odd and large

A.Y. Olshanskii and D.V. Osin
(2014)

All the above results were proved using variants of Powers’ ideas.
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Problem

Are C*-simplicity and the unique trace property always equivalent to
having no non-trivial amenable normal subgroups?



A characterization of C*-simplicity



Definition (Furstenberg 1973)

A compact G -space X is a G -boundary if for every probability measure
µ ∈ P(X ), the weak* closure of the orbit Gµ contains the point masses
{δx | x ∈ X}.

Most “natural” topological group-theoretic boundaries are boundaries in the
above sense (e.g. Gromov boundaries of non-elementary hyperbolic
groups). But any non-amenable group has many boundaries.

Example

The Gromov boundary ∂Fn of the Free group Fn can be identified with the
set of infinite reduced words

∂Fn = {w = w1w2w3 · · · | wi ∈ {1, . . . , n}} .

equipped with the relative product topology.
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Theorem (Kalantar-K 2014)

C*-simplicity is equivalent to the existence of a free (i.e. no fixed points)
action on a boundary.



Theorem (Breuillard-Kalantar-K-Ozawa 2014)

The unique trace property is equivalent to having no non-trivial amenable
normal subgroups. In particular, every C*-simple group has the unique
trace property.
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Specifically, tracial state on C∗r (G ) concentrate on the amenable radical
Ra(G ), i.e. for every tracial state τ on C∗r (G ),

τ(λs) = 0, ∀s ∈ G\Ra(G ).

Corollary

Every C*-simple group has the unique trace property.
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Problem

Is C*-simplicity equivalent to having no non-trivial amenable normal
subgroups, and hence equivalent to the unique trace property?

Answer: No!

Example (Le Boudec 2015)

There are groups with no non-trivial amenable normal subgroups that are
not C*-simple. Examples are constructed by embedding groups into the
automorphism group of their Bass-Serre tree and enlarging.

Further examples constructed by Ivanov-Omland (2017).
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A new characterization of C*-simplicity



Theorem (K 2015)

A group G is C*-simple if and only if the singleton {τ} is the only
G-boundary in the state space S(C∗λ(G )).

Every tracial state gives rise to a (singleton) G -boundary in S(C∗r (G )).
But there may be larger G -boundaries in S(C∗r (G )).

For groups with the unique trace property that are not C*-simple, e.g. Le
Boudec’s examples, this necessarily occurs.
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Theorem (Haagerup 2015, K 2015)

A group G is C*-simple if and only if it has Powers’ averaging property, i.e.
if and only if for every a ∈ C∗r (G ) and ε > 0 there are g1, . . . , gn ∈ G such
that ∥∥∥∥1
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∑
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i
− τ(a)1

∥∥∥∥ < ε.



An (intrinsic) algebraic characterization of
C*-simplicity



Let S(G ) denote the space of subgroups of G , equipped with the
Chabauty topology (i.e. the product topology on {0, 1}G ).

Then S(G ) is a compact G -space with respect to conjugation,

g · H = gHg−1, g ∈ G , H ∈ S(G ).

Definition (Glasner-Weiss 2015)

A uniformly recurrent subgroup of G is a minimal (i.e. every orbit is dense)
G -subspace of S(G ). It is amenable if it is a subset of the (closed) set of
amenable subgroups of G .
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boundaries in the state space of C∗r (G ).
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Unwinding the definition of a uniformly recurrent subgroup gives a more
intrinsic characterization of C*-simplicity.

Definition

A subgroup H < G is residually normal if there is a finite subset
F ⊆ G \ {e} such that

F ∩ gHg−1 6= ∅ ∀g ∈ G .

Note: non-trivial normal subgroups are residually normal.

Theorem (K 2015)

A group G is C*-simple if and only if it has no amenable residually normal
subgroups.
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Example: The Thompson groups



Thompson (1965) introduced three groups F < T < V .

The group F can be identified with the group of piecewise linear
homeomorphisms of [0, 1] that are differentiable, except at finitely many
dyadic rationals, with derivative a power of 2 when it exists.
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Le Boudec and Bon completely classified the residually normal subgroups
of F ,T ,V .

Theorem (Le Boudec-Bon 2016)

1. Every non-trivial residually normal subgroup of T contains an
isomorphic copy of F .

2. Every non-trivial residually normal subgroup of V is non-amenable.

Corollary

Thompson’s group V is C*-simple.

Corollary (Haagerup-Olesen 2014, Le Boudec-Bon
2016)

Thompson’s group F is non-amenable if and only if T is C*-simple.

Proof.

(⇐) It is easy to check that F is a residually normal subgroup of T . If T
is C*-simple, then it has no amenable residually normal subgroups. Hence
F is necessarily non-amenable.
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Some recent results



Crossed Products: A C*-dynamical system (A,G ) is said to have the
ideal separation property if every ideal of A×r G is of the form I ×r G
for a G -invariant ideal I of A.

Theorem (Kawabe 2017)

Characterization of ideal intersection property for commutative
C*-dynamical systems (C (X ),G ) in terms of amenable uniformly recurrent

“generalized” subgroups.

Corollary

If (C (X ),G ) is minimal then C (X )×r G is simple if and only if there are
no non-trivial amenable uniformly recurrent “generalized” subgroups.

Theorem (K-Schafhauser 2019)

Characterization of ideal intersection property for noncommutative
C*-dynamical systems (A,G ) with “vanishing obstruction” in terms of
amenable uniformly recurrent “generalized” subgroups.
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Measurable dynamics: Hartman-Kalantar discovered new and important
connection with measurable dynamics.

Let (A,G ) be a C*-dynamical system and µ ∈ Prob(G ) a probability
measure. A state α on A is stationary if µ = µ ∗ α =

∑
g∈G µ(g)(gα).

Theorem (Hartman-Kalantar 2018)

A countable group G is C*-simple if there is µ ∈ Prob(G ) such that the
corresponding Poisson boundary has a uniquely stationary compact model.

Boutonnet-Houdayer utilized these ideas to obtain a far-reaching operator
algebraic superrigidity theorem, among other important results.

Theorem (Boutonnet-Houdayer 2019)

Let G be a connected simple Lie group with finite center and real rank at
least 2 and Γ < G a lattice (e.g. G = SLn(R) and Γ = SLn(Z) for n ≥ 3).
Let π : Γ→ U(M) be a unitary representation into a finite factor such that
π(Γ)′′ = M. Then either M is finite dimensional or π extends to a normal
unital *-isomorphism π̂ : L(G )→ M.
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Let (A,G ) be a C*-dynamical system and µ ∈ Prob(G ) a probability
measure. A state α on A is stationary if µ = µ ∗ α =

∑
g∈G µ(g)(gα).

Theorem (Hartman-Kalantar 2018)

A countable group G is C*-simple if there is µ ∈ Prob(G ) such that the
corresponding Poisson boundary has a uniquely stationary compact model.

Boutonnet-Houdayer utilized these ideas to obtain a far-reaching operator
algebraic superrigidity theorem, among other important results.
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A few problems



Question: When are non-discrete groups C*-simple? Some examples
known due to Raum (2015) and Suzuki (2016).

Question: When are groupoids C*-simple? What about C*-algebras
arising in other ways? Some results known, e.g.
Brown-Clark-Farthing-Sims (2012), Crytser-Nagy (2018) and
Clark-Exel-Pardo-Sims-Starling (2018).

Question: Suppose G is not C*-simple. What can we say about the ideal
structure of C∗λ(G )?
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Thanks!


