The algebraic structure of group operator algebras

Matthew Kennedy

University of Waterloo, Waterloo, Canada

July 19, 2020

C*-simplicity and the unique trace property

$$\mathrm{C}^*_r(G) = \mathrm{C}^*(\{\lambda_g : g \in G\}),$$

where $\ell^2(G) = \operatorname{span} \{ \delta_h : h \in G \}$ and

$$\lambda_g \delta_h = \delta_{gh}, \quad g, h \in G.$$

$$\mathrm{C}^*_r(G) = \mathrm{C}^*(\{\lambda_g : g \in G\}),$$

where $\ell^2(G) = \operatorname{span} \{ \delta_h : h \in G \}$ and

$$\lambda_g \delta_h = \delta_{gh}, \quad g, h \in G.$$

There is a "canonical" tracial state τ on $C_r^*(G)$ determined by

$$au(\lambda_g) = egin{cases} 1 & g = e \ 0 & ext{otherwise} \end{cases}$$

$$\mathrm{C}^*_r(G) = \mathrm{C}^*(\{\lambda_g : g \in G\}),$$

where $\ell^2(G) = \operatorname{span} \{ \delta_h : h \in G \}$ and

$$\lambda_g \delta_h = \delta_{gh}, \quad g, h \in G.$$

There is a "canonical" tracial state τ on $C_r^*(G)$ determined by

$$au(\lambda_g) = egin{cases} 1 & g = e \ 0 & ext{otherwise} \end{cases}$$

Basic questions: For which G is $C_r^*(G)$ simple? For which G does it have a unique tracial state?

$$\mathrm{C}^*_r(G) = \mathrm{C}^*(\{\lambda_g : g \in G\}),$$

where $\ell^2(G) = \operatorname{span} \{ \delta_h : h \in G \}$ and

$$\lambda_g \delta_h = \delta_{gh}, \quad g, h \in G.$$

There is a "canonical" tracial state τ on $C_r^*(G)$ determined by

$$au(\lambda_g) = egin{cases} 1 & g = e \ 0 & ext{otherwise} \end{cases}$$

Basic questions: For which G is $C_r^*(G)$ simple? For which G does it have a unique tracial state?

Theorem (Murray-von Neumann 1936)

The von Neumann algebra L(G) is a factor if and only if it has a unique trace if and only if G is ICC (i.e. every non-trivial conjugacy class is infinite).

Let \mathbb{F}_2 denote the free group on two generators.

Theorem (Powers 1975)

The reduced C*-algebra $C_r^*(\mathbb{F}_2)$ is simple and has a unique trace.

Let \mathbb{F}_2 denote the free group on two generators.

Theorem (Powers 1975)

The reduced C*-algebra $C_r^*(\mathbb{F}_2)$ is simple and has a unique trace.

We say that \mathbb{F}_2 is **C*-simple** and has the **unique trace property**.

Let \mathbb{F}_2 denote the free group on two generators.

Theorem (Powers 1975)

The reduced C*-algebra $C_r^*(\mathbb{F}_2)$ is simple and has a unique trace.

We say that \mathbb{F}_2 is **C*-simple** and has the **unique trace property**.

Variants of Powers' proof became the main method for establishing these properties.

Definition

A group G has Powers' averaging property if for every $a \in C^*_r(G)$ and $\epsilon > 0$ there are $g_1, \ldots, g_n \in G$ such that

$$\left\|rac{1}{n}\sum\lambda_{g_i}\mathsf{a}\lambda_{g_i^{-1}}- au(\mathsf{a})\mathbf{1}
ight\|<\epsilon.$$

Definition

A group G has Powers' averaging property if for every $a \in C^*_r(G)$ and $\epsilon > 0$ there are $g_1, \ldots, g_n \in G$ such that

$$\left\|rac{1}{n}\sum\lambda_{g_i}\mathsf{a}\lambda_{g_i^{-1}}- au(\mathsf{a})\mathbf{1}
ight\|<\epsilon.$$

Theorem (Powers 1975)

A group with Powers' averaging property is C*-simple and has the unique trace property.

Definition

A group G has Powers' averaging property if for every $a \in C^*_r(G)$ and $\epsilon > 0$ there are $g_1, \ldots, g_n \in G$ such that

$$\left\|rac{1}{n}\sum\lambda_{g_i}\mathsf{a}\lambda_{g_i^{-1}}- au(\mathsf{a})\mathbf{1}
ight\|<\epsilon.$$

Theorem (Powers 1975)

A group with Powers' averaging property is C*-simple and has the unique trace property.

Proof.

For C*-simplicity, let I be a non-trivial closed two-sided ideal of $C_r^*(G)$. By faithfulness there is $a \in C_r^*(G)$ with $\tau(a) = 1$. Applying Powers' averaging property implies $1 \in I$. The unique trace property is similarly straightforward.

Theorem (Powers 1975)

The free group \mathbb{F}_2 has Powers' averaging property. Hence it is C*-simple and has the unique trace property.

Question

Is there an (intrinsic) group-theoretic characterization of C*-simplicity and the unique trace property?

$$\rho \prec \lambda \Longrightarrow \rho \sim \lambda,$$

i.e. weak containment implies weak equivalence.

$$\rho \prec \lambda \Longrightarrow \rho \sim \lambda,$$

i.e. weak containment implies weak equivalence.

In other words, if

$$\lambda_{g}
ightarrow
ho_{g}, \quad g \in G$$

extends to a bounded *-homomorphism, then it is necessarily an isomorphism.

$$\rho \prec \lambda \Longrightarrow \rho \sim \lambda,$$

i.e. weak containment implies weak equivalence.

In other words, if

$$\lambda_{g} \rightarrow \rho_{g}, \quad g \in G$$

extends to a bounded *-homomorphism, then it is necessarily an isomorphism.

Proposition

C*-simple groups have no non-trivial normal amenable subgroups.

$$\rho \prec \lambda \Longrightarrow \rho \sim \lambda,$$

i.e. weak containment implies weak equivalence.

In other words, if

$$\lambda_{g} \rightarrow \rho_{g}, \quad g \in G$$

extends to a bounded *-homomorphism, then it is necessarily an isomorphism.

Proposition

C*-simple groups have no non-trivial normal amenable subgroups.

Proof.

If N < G is amenable and normal then $\lambda_{G/N} \precsim \lambda_G$.

Many (40+) years of work shows that the converse almost always holds.

Many (40+) years of work shows that the converse almost always holds.

C*-simple and unique trace equivalent to no non-trivial normal subgroups	Authors
Free groups \mathbb{F}_n for $n \geq 2$	Powers (1975)
÷	÷
Linear groups	T. Poznansky (2008)
Groups with non-zero first ℓ^2 -Betti number	J. Peterson and A. Thom (2010)
Acylindrically hyperbolic groups	F. Dahmani, V. Guirardel, and D. Osin (2011)
Free Burnside groups $B(m, n)$ for $m \ge 2$ and n odd and large	A.Y. Olshanskii and D.V. Osin (2014)

Many (40+) years of work shows that the converse almost always holds.

C*-simple and unique trace equivalent to no non-trivial normal subgroups	Authors
Free groups \mathbb{F}_n for $n \geq 2$	Powers (1975)
÷	÷
Linear groups	T. Poznansky (2008)
Groups with non-zero first ℓ^2 -Betti number	J. Peterson and A. Thom (2010)
Acylindrically hyperbolic groups	F. Dahmani, V. Guirardel, and D. Osin (2011)
Free Burnside groups $B(m, n)$ for $m \ge 2$ and n odd and large	A.Y. Olshanskii and D.V. Osin (2014)

All the above results were proved using variants of Powers' ideas.

Are C*-simplicity and the unique trace property always equivalent to having no non-trivial amenable normal subgroups?

A characterization of C*-simplicity

Definition (Furstenberg 1973)

A compact *G*-space *X* is a *G*-boundary if for every probability measure $\mu \in \mathcal{P}(X)$, the weak* closure of the orbit $G\mu$ contains the point masses $\{\delta_x \mid x \in X\}$.

Definition (Furstenberg 1973)

A compact *G*-space *X* is a *G*-boundary if for every probability measure $\mu \in \mathcal{P}(X)$, the weak* closure of the orbit $G\mu$ contains the point masses $\{\delta_x \mid x \in X\}$.

Most "natural" topological group-theoretic boundaries are boundaries in the above sense (e.g. Gromov boundaries of non-elementary hyperbolic groups). But any non-amenable group has many boundaries.

Definition (Furstenberg 1973)

A compact *G*-space *X* is a *G*-boundary if for every probability measure $\mu \in \mathcal{P}(X)$, the weak* closure of the orbit $G\mu$ contains the point masses $\{\delta_x \mid x \in X\}$.

Most "natural" topological group-theoretic boundaries are boundaries in the above sense (e.g. Gromov boundaries of non-elementary hyperbolic groups). But any non-amenable group has many boundaries.

Example

The Gromov boundary $\partial \mathbb{F}_n$ of the Free group \mathbb{F}_n can be identified with the set of infinite reduced words

$$\partial \mathbb{F}_n = \{ w = w_1 w_2 w_3 \cdots \mid w_i \in \{1, \ldots, n\} \}.$$

equipped with the relative product topology.

Theorem (Kalantar-K 2014)

 C^* -simplicity is equivalent to the existence of a free (i.e. no fixed points) action on a boundary.

The unique trace property is equivalent to having no non-trivial amenable normal subgroups. In particular, every C*-simple group has the unique trace property.

A characterization of the unique trace property

The unique trace property is equivalent to having no non-trivial amenable normal subgroups.

The unique trace property is equivalent to having no non-trivial amenable normal subgroups.

Specifically, tracial state on $C_r^*(G)$ concentrate on the amenable radical $R_a(G)$, i.e. for every tracial state τ on $C_r^*(G)$,

$$au(\lambda_s) = 0, \quad \forall s \in G \setminus R_a(G).$$

The unique trace property is equivalent to having no non-trivial amenable normal subgroups.

Specifically, tracial state on $C_r^*(G)$ concentrate on the amenable radical $R_a(G)$, i.e. for every tracial state τ on $C_r^*(G)$,

$$au(\lambda_s) = 0, \quad \forall s \in G \setminus R_a(G).$$

Corollary

Every C*-simple group has the unique trace property.

Is C*-simplicity equivalent to having no non-trivial amenable normal subgroups, and hence equivalent to the unique trace property?

Is C*-simplicity equivalent to having no non-trivial amenable normal subgroups, and hence equivalent to the unique trace property?

Answer: No!

Is C*-simplicity equivalent to having no non-trivial amenable normal subgroups, and hence equivalent to the unique trace property?

Answer: No!

Example (Le Boudec 2015)

There are groups with no non-trivial amenable normal subgroups that are not C*-simple. Examples are constructed by embedding groups into the automorphism group of their Bass-Serre tree and enlarging.

Is C*-simplicity equivalent to having no non-trivial amenable normal subgroups, and hence equivalent to the unique trace property?

Answer: No!

Example (Le Boudec 2015)

There are groups with no non-trivial amenable normal subgroups that are not C*-simple. Examples are constructed by embedding groups into the automorphism group of their Bass-Serre tree and enlarging.

Further examples constructed by Ivanov-Omland (2017).
A new characterization of C*-simplicity

A group G is C*-simple if and only if the singleton $\{\tau\}$ is the only G-boundary in the state space $S(C^*_{\lambda}(G))$.

A group G is C*-simple if and only if the singleton $\{\tau\}$ is the only G-boundary in the state space $S(C^*_{\lambda}(G))$.

Every tracial state gives rise to a (singleton) *G*-boundary in $S(C_r^*(G))$. But there may be larger *G*-boundaries in $S(C_r^*(G))$.

A group G is C*-simple if and only if the singleton $\{\tau\}$ is the only G-boundary in the state space $S(C^*_{\lambda}(G))$.

Every tracial state gives rise to a (singleton) *G*-boundary in $S(C_r^*(G))$. But there may be larger *G*-boundaries in $S(C_r^*(G))$.

For groups with the unique trace property that are not C*-simple, e.g. Le Boudec's examples, this necessarily occurs.

Theorem (Haagerup 2015, K 2015)

A group G is C*-simple if and only if it has Powers' averaging property, i.e. if and only if for every $a \in C_r^*(G)$ and $\epsilon > 0$ there are $g_1, \ldots, g_n \in G$ such that

$$\left\|\frac{1}{n}\sum \lambda_{g_i} a \lambda_{g_i^{-1}} - \tau(a) \mathbf{1}\right\| < \epsilon.$$

An (intrinsic) algebraic characterization of C*-simplicity

Let S(G) denote the space of subgroups of G, equipped with the Chabauty topology (i.e. the product topology on $\{0,1\}^G$).

Let S(G) denote the space of subgroups of G, equipped with the Chabauty topology (i.e. the product topology on $\{0,1\}^G$).

Then S(G) is a compact G-space with respect to conjugation,

$$g \cdot H = gHg^{-1}, \quad g \in G, \ H \in S(G).$$

Let S(G) denote the space of subgroups of G, equipped with the Chabauty topology (i.e. the product topology on $\{0,1\}^G$).

Then S(G) is a compact G-space with respect to conjugation,

$$g \cdot H = gHg^{-1}, \quad g \in G, \ H \in S(G).$$

Definition (Glasner-Weiss 2015)

A uniformly recurrent subgroup of G is a minimal (i.e. every orbit is dense) G-subspace of S(G). It is amenable if it is a subset of the (closed) set of amenable subgroups of G.

A group G is C^* -simple if and only if it has non-trivial amenable uniformly recurrent subgroups.

A group G is C^* -simple if and only if it has non-trivial amenable uniformly recurrent subgroups.

Key idea is that amenable uniformly recurrent subgroups correspond to boundaries in the state space of $C_r^*(G)$.

Unwinding the definition of a uniformly recurrent subgroup gives a more intrinsic characterization of C*-simplicity.

Unwinding the definition of a uniformly recurrent subgroup gives a more intrinsic characterization of C^* -simplicity.

Definition

A subgroup H < G is **residually normal** if there is a finite subset $F \subseteq G \setminus \{e\}$ such that

$$F \cap gHg^{-1} \neq \emptyset \quad \forall g \in G.$$

Unwinding the definition of a uniformly recurrent subgroup gives a more intrinsic characterization of C*-simplicity.

Definition

A subgroup H < G is **residually normal** if there is a finite subset $F \subseteq G \setminus \{e\}$ such that

$$F \cap gHg^{-1} \neq \emptyset \quad \forall g \in G.$$

Note: non-trivial normal subgroups are residually normal.

Unwinding the definition of a uniformly recurrent subgroup gives a more intrinsic characterization of C^* -simplicity.

Definition

A subgroup H < G is **residually normal** if there is a finite subset $F \subseteq G \setminus \{e\}$ such that

$$F \cap gHg^{-1} \neq \emptyset \quad \forall g \in G.$$

Note: non-trivial normal subgroups are residually normal.

Theorem (K 2015)

A group G is C^* -simple if and only if it has no amenable residually normal subgroups.

Example: The Thompson groups

Thompson (1965) introduced three groups F < T < V.

Thompson (1965) introduced three groups F < T < V.

The group F can be identified with the group of piecewise linear homeomorphisms of [0, 1] that are differentiable, except at finitely many dyadic rationals, with derivative a power of 2 when it exists.

Thompson (1965) introduced three groups F < T < V.

The group F can be identified with the group of piecewise linear homeomorphisms of [0,1] that are differentiable, except at finitely many dyadic rationals, with derivative a power of 2 when it exists.

Big Open Question

Is F amenable?

Big Open Question

Is F amenable?

At a recent conference devoted to the group a poll was taken. *Is F amenable*? Twelve participants voted "yes" and twelve voted "no".

Theorem (Le Boudec-Bon 2016)

- 1. Every non-trivial residually normal subgroup of T contains an isomorphic copy of F.
- 2. Every non-trivial residually normal subgroup of V is non-amenable.

Theorem (Le Boudec-Bon 2016)

- 1. Every non-trivial residually normal subgroup of T contains an isomorphic copy of F.
- 2. Every non-trivial residually normal subgroup of V is non-amenable.

Corollary

Thompson's group V is C^* -simple.

Theorem (Le Boudec-Bon 2016)

- 1. Every non-trivial residually normal subgroup of T contains an isomorphic copy of F.
- 2. Every non-trivial residually normal subgroup of V is non-amenable.

Corollary

Thompson's group V is C^* -simple.

Corollary (Haagerup-Olesen 2014, Le Boudec-Bon 2016)

Thompson's group F is non-amenable if and only if T is C^* -simple.

Proof.

(\Leftarrow) It is easy to check that *F* is a residually normal subgroup of *T*. If *T* is C*-simple, then it has no amenable residually normal subgroups. Hence *F* is necessarily non-amenable.

Some recent results

Theorem (Kawabe 2017)

Characterization of ideal intersection property for commutative C^* -dynamical systems (C(X), G) in terms of amenable uniformly recurrent "generalized" subgroups.

Theorem (Kawabe 2017)

Characterization of ideal intersection property for commutative C^* -dynamical systems (C(X), G) in terms of amenable uniformly recurrent "generalized" subgroups.

Corollary

If (C(X), G) is minimal then $C(X) \times_r G$ is simple if and only if there are no non-trivial amenable uniformly recurrent "generalized" subgroups.

Theorem (Kawabe 2017)

Characterization of ideal intersection property for commutative C^* -dynamical systems (C(X), G) in terms of amenable uniformly recurrent "generalized" subgroups.

Corollary

If (C(X), G) is minimal then $C(X) \times_r G$ is simple if and only if there are no non-trivial amenable uniformly recurrent "generalized" subgroups.

Theorem (K-Schafhauser 2019)

Characterization of ideal intersection property for noncommutative C^* -dynamical systems (A, G) with "vanishing obstruction" in terms of amenable uniformly recurrent "generalized" subgroups.

Let (A, G) be a C*-dynamical system and $\mu \in \text{Prob}(G)$ a probability measure. A state α on A is **stationary** if $\mu = \mu * \alpha = \sum_{g \in G} \mu(g)(g\alpha)$.

Let (A, G) be a C*-dynamical system and $\mu \in \text{Prob}(G)$ a probability measure. A state α on A is **stationary** if $\mu = \mu * \alpha = \sum_{g \in G} \mu(g)(g\alpha)$.

Theorem (Hartman-Kalantar 2018)

A countable group G is C*-simple if there is $\mu \in Prob(G)$ such that the corresponding Poisson boundary has a uniquely stationary compact model.

Let (A, G) be a C*-dynamical system and $\mu \in \text{Prob}(G)$ a probability measure. A state α on A is **stationary** if $\mu = \mu * \alpha = \sum_{g \in G} \mu(g)(g\alpha)$.

Theorem (Hartman-Kalantar 2018)

A countable group G is C*-simple if there is $\mu \in Prob(G)$ such that the corresponding Poisson boundary has a uniquely stationary compact model.

Boutonnet-Houdayer utilized these ideas to obtain a far-reaching operator algebraic superrigidity theorem, among other important results.

Theorem (Boutonnet-Houdayer 2019)

Let G be a connected simple Lie group with finite center and real rank at least 2 and $\Gamma < G$ a lattice (e.g. $G = SL_n(\mathbb{R})$ and $\Gamma = SL_n(\mathbb{Z})$ for $n \ge 3$). Let $\pi : \Gamma \to U(M)$ be a unitary representation into a finite factor such that $\pi(\Gamma)'' = M$. Then either M is finite dimensional or π extends to a normal unital *-isomorphism $\hat{\pi} : L(G) \to M$.

A few problems

Question: When are non-discrete groups C*-simple? Some examples known due to Raum (2015) and Suzuki (2016).
Question: When are non-discrete groups C*-simple? Some examples known due to Raum (2015) and Suzuki (2016).

Question: When are groupoids C*-simple? What about C*-algebras arising in other ways? Some results known, e.g. Brown-Clark-Farthing-Sims (2012), Crytser-Nagy (2018) and Clark-Exel-Pardo-Sims-Starling (2018).

Question: When are non-discrete groups C*-simple? Some examples known due to Raum (2015) and Suzuki (2016).

Question: When are groupoids C*-simple? What about C*-algebras arising in other ways? Some results known, e.g. Brown-Clark-Farthing-Sims (2012), Crytser-Nagy (2018) and Clark-Exel-Pardo-Sims-Starling (2018).

Question: Suppose G is not C*-simple. What can we say about the ideal structure of $C^*_{\lambda}(G)$?

Thanks!