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Overview
1. Discuss base objects from which we will build C*-algebras, and relationships between these base objects.

(a) directed graphs, denoted F
(b) {0,1}-matrices, denoted A

(¢) C*-correspondences, denoted X

2. Define a class of C*-representations which encode properties of the base objects.
(a) Cuntz-Krieger (CK) E-families
(b) Cuntz-Krieger (CK) A-families

(¢) Toeplitz and Toeplitz covariant representations

3. Discuss the universal C*-algebras of interest for each class of representations, and relations between
them.

(a) graph C*-algebras, C*(E)
(b) Cuntz-Krieger algebras, O 4

(c¢) Toeplitz-Pimsner algebras, Tx and Cuntz-Pimsner algebras Ox

1 Base objects

The C*-algebras we’ll discuss in this talk are constructed from base objects including directed graphs, {0, 1}-
matrices, and modules. From each base object, one can associate different representations in a C*-algebra.
Then, one can ask questions like: is there a universal C*-algebra for these families?

1.1 Directed graphs
Let E = (EY, E',r,s) be a directed graph, where
e EY is the vertex set
e E!is the edge set
o r: B! — EC is the range map
e s: E' — E° is the source map

In this talk, we assume F is row-finite, which means that for each vertex v € E°, we have finitely many
edges coming out: |s71(v)| < co.

Definition 1.1. Given a row-finite graph FE, the line graph of E, denoted E7 is given by

o 0 .= F!



o E':={ef:e feE'r(e)=s(f)}
o s(ef)=fforallefeE!
o r(ef)=eforall ef € ',

where ef denotes a path of length 2 composed of edges e, f € E! such that s(e) = r(f).

1.2 {0,1}-matrices

We will be interested in {0, 1}-matrices that are related to the structure of a finite graph E. Given a finite
graph E, we can naturally define two square matrices:

e the vertex matriz (aka, adjacency matriz) for E is A = (Ayw)v,wero Where

1 v is adjacent to w
Avw =
0 else

e the edge matriz (aka, line graph’s adjacency matrix) for E is A= (Aef)e,feEl where

A, - {1 s(e) = ()

0 else

Given {0, 1}-matrix B, one can construct a graph E such that B is the vertex matrix for E, but it may
not be possible to find a graph for which B is edge matrix.

Remark 1.2. Markov shift spaces are intrinsically linked to {0, 1}-matrices like A.

2 Graph (C*-algebras

Definition 2.1. A Cuntz-Krieger E-family is a collection of mutually orthogonal projections P := {P, : v €
E°} and partial isometries S := {S. : ¢ € E'} acting on a Hilbert space H which satisfy

1. (CKI) Ve € B PT(E) = SZSe

2. (CK2) WYoves(EY): P,= Y S5
{e:s(e)=v}

Remark 2.2. Condition (CK2) makes apparent why we require that E is row-finite. Also, some authors
(like Raeburn in his book Graph Algebras) flip the range and source maps in their definition of (CK1) and
(CK2). It’s a matter of convention.

Given a Cuntz-Krieger FE-family {S, P}, we can generate a graph C*-algebra C*(S, P). You might be
asking, “Is this always an interesting object?” Well, no, not if you allow trivialities in your choice of Cuntz-
Krieger E-family citation. “For a fixed graph F, do different Cuntz-Krieger E-families produce different
C*-algebras?” They certainly can citation. “So which Cuntz-Krieger E-family is the *best™ one to look at?”
Funny you should ask! It turns out that the *right* one is constructed in a purely algebraic setting, and we
use {s,p} to denote this universal Cuntz-Krieger E-family citation.

Definition 2.3. The universal graph C*-algebra for E, or simply the graph C*-algebra for E, is the C*-
algebra generated by {s,p}, and is typically denoted by C*(E).

Given any other Cuntz-Krieger E-family {5, P}, there exists a *-homomorphism from C*(F) that surjects
onto C*(S, P) which sends generators to generators (Proposition 1.21, Raeburn). Moreover, C*(E) is the
unique C*-algebra (up to isomorphism) which has this property (Corollary 1.22, Raeburn).

Example 2.4. Consider the graph E with a single vertex and two loops:



o 0= {v}
o E' = {e, o0},
o 1(e) = s(e) = r(f) = 5(f) = v.
Given z = (1, 72, ...) € £*(N), define two maps S, S, : £*(N) — ¢?(N) by
o S.(z1,x2,23,...) := (0,21,0,22,0, 23, ...)
o S,(x1,x2,23,...) := (21,0, 22,0, 23,0, ...)
Note that (this is a fun exercise)
o SH(x1,x0,23,...) := (T2, T4, Tg, ...)
o Si(x1,x9,23,...) := (x1, 23,5, ...).

Both S, and S, are isometries with range projections S.S¥ = P, and S,S} = P,. Thus, S.5) + S,5) = 1,
so C*(S, P) = Os.

For the above graph, what is C*(E)? Did we already find (a faithful representation) of it? If you want
to know if you've already found it via a concrete choice of Cuntz-Krieger E-family {5, P}, there are two
primary litmus tests.

Theorem 2.5 (Gauge Invariant Uniqueness Theorem). Suppose {S, P} is a Cuntz-Krieger E-family in a
C*-algebra B with P, # 0 for all v € E°. If there is a continuosu action B : T — Aut(B) such that
B:(Se) = 2S. and B.(P,) = P, for alle € E*, v € E°, then C*(E) = C*(S, P).

Like Raeburn says, the above tool is useful when you have concrete information about the C*-algebra
C*(S, P). There are no conditions about the graph that you need to check.

Theorem 2.6 (Cuntz-Krieger Uniqueness Theorem). Suppose every cycle of E has an entry (aka, satisfies
condition (L)), and {S, P} is a Cuntz-Krieger E-family in a C*-algebra B with P, # 0 for allv € E°. Then
C*(E) = C*(S,P).

Although the punch line is the same, what’s neat about the second theorem is that you don’t actually
need to know much about C*(S, P) (just non-triviality of the generators themselves)—the graph holds all the
hypothesis data.

Exercise 2.7. Let E be as in Example 2.4 Prove that C*(E) is O,.
Exercise 2.8 (Proof of Corollary 2.6, Raeburn). Let E be a finite directed graph.

1. Let {s,p} be the universal Cuntz-Krieger E-family. Show that T.; := syses} is a partial isometry for
all ef € E*.

2. Let Qe := ses* for all e € E'. Verify that {T, Q} to be a Cuntz-Krieger E-family.
3. Use the Gauge Invariant Uniqueness Theorem to prove C*(T, Q) = C*(E).
4. Prove C*(E) = C*(E).

3 Cuntz-Krieger algebras

Related to graph C*-algebras are these doo-dads called Cuntz-Krieger algebras. These actually came first,
and then graph C*-algebras were defined by Enomoto and Watani (1980) and studied as more general
objects.



3.1 Definition

Throughout, B is an n x n {0, 1}-matrix with no identically 0 rows.

Definition 3.1. A Cuntz-Krieger B-family is a collection of partial isometries {S; : 1 <1 < n} which satisfy
o forall 1 <4,j <n: (S:5) L (5;5;) unlessi=j
o forall1<i<mn: S57S;=3;4;5;5;

We require B to have no identically 0 rows so that the second condition is valid for all 1 <17 < n.

Just as before, we can generate a C*-algebra C*(.S;) from a Cuntz-Krieger B-family, and similar questions
arise. Do different Cuntz-Krieger B-families give me different C*-algebras? Is there a particular Cuntz-
Krieger B-family that’s the *right* one to look at? For a multitude of reasons, the answers are “usually,
no,” and “once you associate a graph to A in a particular way, a property of the graph gives you uniqueness.”
So long as S; # 0 for all 1 < ¢ < n and a certain condition (I) is satisfiesd (that mimics condition (L) for
graphs), C*(S;) is the Cuntz-Krieger algebra for A, denoted O4.

11
11
partial isometries S7, Se which have orthogonal range projections and

Example 3.2. Consider the 2 x 2 {0,1}-matrix A := ] A Cuntz-Krieger A-family consists of two

SiSy =Y A1;8;S; = 5157 + 5253
J

S58y = A3;S;S; = S157 + 5255
J

Because 5551 =0, S752 =0, 515751 = 51, and 5955952 = Sy, it turns out that 5157 4+ 5255 is a unit for
C*(S1, S2). So, what we’re saying is that S and Sy are not just partial isometries, they are isometries with
orthogonal range projections which sum to the identity.

The C*-algebra in Example belongs to a class of well-studied (and well-liked) C*-algebras.

Definition 3.3. Fix n € N. The Cuntz algebra on n generators, denoted O,,, is the universal C*-algebra
generated by n isometries whose range projections sum to the identity.

e O, is unital by construction.

e O, is universal in the sense that, given any other family {71,...,T;,} of isometries whose range pro-
jections sum to the identity, there is a *-homomorphism ® : O,, — C*(T;) which sends generators to
generators.

O,, is simple, which means that any (non-trivial) representation of O, is O,,.

O,, % Op, if n # m.

O is a thing. It’s purely infinite, but no one who is physically present wants to talk about what that
means.

3.2 Graph (C*-algebras and Cuntz-Krieger algebras
Exercise 3.4 (2.8, Raecburn). In this exercise, we explore the correspondence between Cuntz-Krieger alge-
bras and graph C*-algebras for finite graphs with no sinks and no sources.

1. (matrix ~» graph)

Fix an n x n {0, 1}-matrix B. Define a graph E with B as its vertex matrix. If {S; : 1 <: <n} is a
Cuntz-Krieger B-family, define Q; := 5,57 and T;; := 5;5;57 for all 1 <4,j <n.



e Prove that {Q, T} is a Cuntz-Krieger E-family
e Prove that O = C*(E).
e Use Exercise to deduce that C*(F) = O4. finish
2. (graph ~~ matrix) Let F be a finite directed graph with no sinks and no sources, and let A be the edge
matrix for F.
e Given a Cuntz-Krieger E-family {S, P}, show that {S. : e € E'} is a Cuntz-Krieger A-family.
e Conclude that C*(E) = O4.

In both cases, the Cuntz-Krieger algebra and graph C*-algebra coincide. We conclude that, in the finite
setting, Cuntz-Krieger algebras are graph C*-algebras arising from graphs with no sinks and no sources.

There are a lot of neat theorems that relate the structure of a graph F to the algebraic properties of
C*(E). We won’t get into this, but it’s worth noting that these types of relationships are one of the many
reasons C*-algebraists are so jazzed about these objects. It also has provided a tool for the classification
of Markov shift spaces—given a shift space (,X), one can associate {0,1}-matrix A. It turns out that the
K-theory of O4 is an invariant for the conjugacy class of (o, X).

3.3 Properties of Cuntz-Krieger algebras

Below we compile, without proof, a list of theorems that relate algebraic properties of O4 to hypotheses
about A (or, equivalently, its associated Markov shift space).

e Theorem 2.14 - Cuntz-Krieger (1980). If A is an irreducible matrix, then O4 is simple.

e Theorem 2.13 - Cuntz-Krieger (1980). If A satisfies the infamous condition (I), then O4 is unique.
[Condition (I) is a condition on the Markov shift space which is analogous to condition (L) for graphs]

If A is finite, then O4 is unital. (more general theorems hold when A is not finite but satisfies certain
conditions)

In almost any case, O4 is nuclear.

Let A be possibly infinite-dimensional. Then O4 is purely infinite if and only if A satisfies condition
(IT) (no rows or columns of A are identically 0, and no irreducible block of A is a permutation matrix).

4 Cuntz-Pimsner algebras

Cuntz-Pimsner algebras generalize both Cuntz-Krieger algebras (including Cuntz-Krieger algebras one can
define for countably-infinite {0, 1}-matrices), crossed products by Z, and graph C*-algebras. The base object
is a C*-correspondence.

4.1 ("-correspondences

Definition 4.1. Let A be a C*-algebra. An A-correspondence is a right A-module X equipped with
e a representation ¢ : A — L(X)
e a bilinear map (-,-) : X x X — A that satisfies
(x-a,y)=a"(2,9), (zy-a)=(z.y)a, (v.y)" =(y2)
forall z,y € X,a e A

e X is complete with respect to the induced norm ||z| := ||{z, a:>||}4/2



Example 4.2. Let E = (E°, E', 7, 5) be a row-finite directed graph, and consider C.(E') as a right Co(E°)-
module where for each g € Co(E®) and f € C.(E'), we define f - g € C.(E') by

(f-9)(e) = f(e)g(s(e)) Vee E'.
We can, in fact, build a Cy(E®) correspondence via the following:

e Define ¢ : Cy(E°) — C)(E%) by f+ [#(g)f], where
[6(9)f1(e) = f(r(e))gle) Vee E'

o Define () : Co(E") x Co(E") — Co(E°) by [(g. m)](v) = 3= gle)h(e).

e€s—1(v)

Mod out by {f € C.(EY) : (f, f) = 0}, then complete this quotient with respect to the induced norm to get
a Co(E°)-correspondence, X (E).

Definition 4.3. A Toeplitz representation of a C*-correspondence X over A in a C*-algebra B is a pair of
representations (¢, w), where ¢ : X — B and 7 : A — B which satisfies

o Y(z-a) =1(z)r(a)

o (@) Y(y) = 7((z,))

o Y(a-x)=m(a)p(z)
for all a € A and z € X.

You might want to construct a C*-algebra which is universal with respect to these conditions. We call
this algebra the Toeplitz algebra, Tx, and while it is a universal object, there is a concrete representation
for it. It turns out that Tx is precisely the C*-algebra generated by the creation operators {T : © € X} on
the Fock space F(X).

4.2 Fock space
Given a Hilbert space H, define the Fock space for ‘H by

F(H) := é%m,
n=0

where H? is C. Note that F(H) is a Hilbert space:

e For each n € N, let H,, := H®™ with inner product (-,-),. Then
(1 ® . @ T, Y1 @ ooe @ Yn),, = (1, 91) o Ty Yn) -

e To form a Hilbert space out of a direct sum of Hilbert spaces, one considers only the subset of vectors

X = {(hn)gf_o e@PHa: D lIhall2 < oo}
n=0 n=0

e The inner product on X is defined to be ((z), (yn)) = D peo (TnsYn),, -

Fix n € N. For each h € H, define Tj, : H®" — HE" ! by Th(11 ® .. Q@ 2,) =h @11 @ ... @ T,,. The
operator Ty, € B(F(H)) is called a creation operator. The adjoint of T}, is called an annihilation operator
because Ty (21 ® ... @ T,) = (h, 1) 22 @ ... @ x,, for all @ € HE™.

We can actually build Fock spaces for C*-correspondences. It’s done in an analogous way, but care must
be taken in defining the Hilbert A-module structure of X®", as well as the encompassing structure F(X).



Example 4.4. Let’s build the Fock space F(X(E)) for the Co(E®)-correspondence defined above, but let’s
do it in the specific case where F is the graph with one vertex, v, and two loops, e; and es.

o Co(E%)=C

o C.(E') ~C?

e the left and right actions of C on C? are the natural ones: A(u,v) = (A, A\v) and (u, V)X = (uA, V).
e the C-valued inner product on C? is just the (right-linear) dot product.

e X(E)=C? (no need to mod out or complete the space)

For each n € N, (C%)®" = C?"| so

oo

F(c) =
n=0
Neat! Now, note that C = span{(1,0),(0,1)}, and T(1,0)(pt1 ® ... ® pn) = (1,0) @ py @ ... @ pu, and
T(0,1)(11®...0py) = (0, 1)@ ®...Qpy. Let Ty := T{19y and Ty := T(g 1), s0 C*({T}, : p € C?*}) = C*(Ty, Tz).

e Check that T3 and T» are isometries in B(F(X(E))).
e Show that ThT7 + 1275 = 1.
We may conclude that Tx = C x (T1,T2) is Os.

4.3 Cuntz-Pimsner algebra

These are sort of yucky to define in the concrete way, although it is super nice that there is a concrete way to
get to them. The algebra we constructed from X (FE) in the previous example could be generally described as
the C*-algebra of creation operators on F(X(FE)), denoted Tx gy and called the Toeplitz algebra for X(E).
The Cuntz-Pimsner algebra for X (F), denoted Ox (g, is a quotient of T(x(g) by the Katsura ideal. This
is the most concrete approach to getting at Tx(g) and thus Ox(g), although one may also define Tx (g
as a universal C*-algebra subject to Toeplitz covariant representations of the C*-correspondence X (FE),
effectively encoding the behavior of X(E) as a Hilbert Co(E®)-module. Similarly, Ox is universal with
respect to covariant Toeplitz representations that do “an extra nice thing.”

e The last two decades have included the development of successful gauge invariant and Cuntz-Krieger
uniqueness theorems for Cuntz-Pimsner algebras

e Given an arbitrary C*-correspondence X over A, the structure of Ty is very graph C*-algebra-like. In
particular, if you take words in {7,,T, : x,y € X'}, you end up with a structure theorem that says 7Tx
is generated by elements of the form 7,7, where p, v are tuples with entries from X, just like graph
C*-algebras.

4.4 Cuntz-Pimsner algebras, Cuntz-Krieger algebras, and Cuntz algebras

Cuntz-Pimsner algebras are valuable because they generalize the C*-algebra constructions discussed in this
talk.

Proposition 4.5. When X = H is just a finite-dimensional Hilbert space with dimension n, Ox = O,,.

Proposition 4.6. When A is a finite-dimensional commutative C*-algebra, so A = C(X), the finitely-
generated C*-correspondences over A are in one-to-one correspondence with |X| x |E|-matrices A = (A;j)i jex

with nonnegative integer entries. If X is one such C*-correspondence over A that has only {0,1}-entries,
then OX = OA.

Proposition 4.7. If E is a row-finite directed graph, then Ox gy = C*(E). In the case of Example the
Katsura ideal is {0}, so Txp) = Oxg) = Oa.
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