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Overview

1. Discuss base objects from which we will build C∗-algebras, and relationships between these base objects.

(a) directed graphs, denoted E

(b) {0, 1}-matrices, denoted A

(c) C∗-correspondences, denoted X

2. Define a class of C∗-representations which encode properties of the base objects.

(a) Cuntz-Krieger (CK) E-families

(b) Cuntz-Krieger (CK) A-families

(c) Toeplitz and Toeplitz covariant representations

3. Discuss the universal C∗-algebras of interest for each class of representations, and relations between
them.

(a) graph C∗-algebras, C∗(E)

(b) Cuntz-Krieger algebras, OA
(c) Toeplitz-Pimsner algebras, TX and Cuntz-Pimsner algebras OX

1 Base objects

The C∗-algebras we’ll discuss in this talk are constructed from base objects including directed graphs, {0, 1}-
matrices, and modules. From each base object, one can associate different representations in a C∗-algebra.
Then, one can ask questions like: is there a universal C∗-algebra for these families?

1.1 Directed graphs

Let E = (E0, E1, r, s) be a directed graph, where

• E0 is the vertex set

• E1 is the edge set

• r : E1 → E0 is the range map

• s : E1 → E0 is the source map

In this talk, we assume E is row-finite, which means that for each vertex v ∈ E0, we have finitely many
edges coming out: |s−1(v)| <∞.

Definition 1.1. Given a row-finite graph E, the line graph of E, denoted Ê, is given by

• Ê0 := E1
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• Ê1 := {ef : e, f ∈ E1, r(e) = s(f)}

• s(ef) = f for all ef ∈ Ê1

• r(ef) = e for all ef ∈ Ê1,

where ef denotes a path of length 2 composed of edges e, f ∈ E1 such that s(e) = r(f).

1.2 {0, 1}-matrices

We will be interested in {0, 1}-matrices that are related to the structure of a finite graph E. Given a finite
graph E, we can naturally define two square matrices:

• the vertex matrix (aka, adjacency matrix) for E is A = (Avw)v,w∈E0 where

Avw =

{
1 v is adjacent to w

0 else

• the edge matrix (aka, line graph’s adjacency matrix) for E is Â = (Âef )e,f∈E1 where

Âef =

{
1 s(e) = r(f)

0 else

Given {0, 1}-matrix B, one can construct a graph E such that B is the vertex matrix for E, but it may
not be possible to find a graph for which B is edge matrix.

Remark 1.2. Markov shift spaces are intrinsically linked to {0, 1}-matrices like A.

2 Graph C∗-algebras

Definition 2.1. A Cuntz-Krieger E-family is a collection of mutually orthogonal projections P := {Pv : v ∈
E0} and partial isometries S := {Se : e ∈ E1} acting on a Hilbert space H which satisfy

1. (CK1) ∀e ∈ E1: Pr(e) = S∗eSe

2. (CK2) ∀v ∈ s(E1): Pv =
∑

{e:s(e)=v}
SeS

∗
e

Remark 2.2. Condition (CK2) makes apparent why we require that E is row-finite. Also, some authors
(like Raeburn in his book Graph Algebras) flip the range and source maps in their definition of (CK1) and
(CK2). It’s a matter of convention.

Given a Cuntz-Krieger E-family {S, P}, we can generate a graph C∗-algebra C∗(S, P ). You might be
asking, “Is this always an interesting object?” Well, no, not if you allow trivialities in your choice of Cuntz-
Krieger E-family citation. “For a fixed graph E, do different Cuntz-Krieger E-families produce different
C∗-algebras?” They certainly can citation. “So which Cuntz-Krieger E-family is the *best* one to look at?”
Funny you should ask! It turns out that the *right* one is constructed in a purely algebraic setting, and we
use {s, p} to denote this universal Cuntz-Krieger E-family citation.

Definition 2.3. The universal graph C∗-algebra for E, or simply the graph C∗-algebra for E, is the C∗-
algebra generated by {s, p}, and is typically denoted by C∗(E).

Given any other Cuntz-Krieger E-family {S, P}, there exists a ∗-homomorphism from C∗(E) that surjects
onto C∗(S, P ) which sends generators to generators (Proposition 1.21, Raeburn). Moreover, C∗(E) is the
unique C∗-algebra (up to isomorphism) which has this property (Corollary 1.22, Raeburn).

Example 2.4. Consider the graph E with a single vertex and two loops:
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• E0 = {v}

• E1 = {e, o},

• r(e) = s(e) = r(f) = s(f) = v.

Given x = (x1, x2, ...) ∈ `2(N), define two maps Se, So : `2(N)→ `2(N) by

• Se(x1, x2, x3, ...) := (0, x1, 0, x2, 0, x3, ...)

• So(x1, x2, x3, ...) := (x1, 0, x2, 0, x3, 0, ...)

Note that (this is a fun exercise)

• S∗e (x1, x2, x3, ...) := (x2, x4, x6, ...)

• S∗o (x1, x2, x3, ...) := (x1, x3, x5, ...).

Both Se and So are isometries with range projections SeS
∗
e = Pe and SoS

∗
o = Po. Thus, SeS

∗
e + SoS

∗
o = I,

so C∗(S, P ) = O2.

For the above graph, what is C∗(E)? Did we already find (a faithful representation) of it? If you want
to know if you’ve already found it via a concrete choice of Cuntz-Krieger E-family {S, P}, there are two
primary litmus tests.

Theorem 2.5 (Gauge Invariant Uniqueness Theorem). Suppose {S, P} is a Cuntz-Krieger E-family in a
C∗-algebra B with Pv 6= 0 for all v ∈ E0. If there is a continuosu action β : T → Aut(B) such that
βz(Se) = zSe and βz(Pv) = Pv for all e ∈ E1, v ∈ E0, then C∗(E) ∼= C∗(S, P ).

Like Raeburn says, the above tool is useful when you have concrete information about the C∗-algebra
C∗(S, P ). There are no conditions about the graph that you need to check.

Theorem 2.6 (Cuntz-Krieger Uniqueness Theorem). Suppose every cycle of E has an entry (aka, satisfies
condition (L)), and {S, P} is a Cuntz-Krieger E-family in a C∗-algebra B with Pv 6= 0 for all v ∈ E0. Then
C∗(E) ∼= C∗(S, P ).

Although the punch line is the same, what’s neat about the second theorem is that you don’t actually
need to know much about C∗(S, P ) (just non-triviality of the generators themselves)–the graph holds all the
hypothesis data.

Exercise 2.7. Let E be as in Example 2.4. Prove that C∗(E) is O2.

Exercise 2.8 (Proof of Corollary 2.6, Raeburn). Let E be a finite directed graph.

1. Let {s, p} be the universal Cuntz-Krieger E-family. Show that Tef := sfses
∗
e is a partial isometry for

all ef ∈ Ê1.

2. Let Qe := ses
∗
e for all e ∈ E1. Verify that {T,Q} to be a Cuntz-Krieger Ê-family.

3. Use the Gauge Invariant Uniqueness Theorem to prove C∗(T,Q) ∼= C∗(Ê).

4. Prove C∗(E) ∼= C∗(Ê).

3 Cuntz-Krieger algebras

Related to graph C∗-algebras are these doo-dads called Cuntz-Krieger algebras. These actually came first,
and then graph C∗-algebras were defined by Enomoto and Watani (1980) and studied as more general
objects.
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3.1 Definition

Throughout, B is an n× n {0, 1}-matrix with no identically 0 rows.

Definition 3.1. A Cuntz-Krieger B-family is a collection of partial isometries {Si : 1 ≤ i ≤ n} which satisfy

• for all 1 ≤ i, j ≤ n : (SiS
∗
i ) ⊥ (SjS

∗
j ) unless i = j

• for all 1 ≤ i ≤ n: S∗i Si =
∑
j AijSjS

∗
j

We require B to have no identically 0 rows so that the second condition is valid for all 1 ≤ i ≤ n.

Just as before, we can generate a C∗-algebra C∗(Si) from a Cuntz-Krieger B-family, and similar questions
arise. Do different Cuntz-Krieger B-families give me different C∗-algebras? Is there a particular Cuntz-
Krieger B-family that’s the *right* one to look at? For a multitude of reasons, the answers are “usually,
no,” and “once you associate a graph to A in a particular way, a property of the graph gives you uniqueness.”
So long as Si 6= 0 for all 1 ≤ i ≤ n and a certain condition (I) is satisfiesd (that mimics condition (L) for
graphs), C∗(Si) is the Cuntz-Krieger algebra for A, denoted OA.

Example 3.2. Consider the 2 × 2 {0, 1}-matrix A :=

[
1 1
1 1

]
. A Cuntz-Krieger A-family consists of two

partial isometries S1, S2 which have orthogonal range projections and

S∗1S1 =
∑
j

A1jSjS
∗
j = S1S

∗
1 + S2S

∗
2

S∗2S2 =
∑
j

A2jSjS
∗
j = S1S

∗
1 + S2S

∗
2

Because S∗2S1 = 0, S∗1S2 = 0, S1S
∗
1S1 = S1, and S2S

∗
2S2 = S2, it turns out that S1S

∗
1 + S2S

∗
2 is a unit for

C∗(S1, S2). So, what we’re saying is that S1 and S2 are not just partial isometries, they are isometries with
orthogonal range projections which sum to the identity.

The C∗-algebra in Example 3.2 belongs to a class of well-studied (and well-liked) C∗-algebras.

Definition 3.3. Fix n ∈ N. The Cuntz algebra on n generators, denoted On, is the universal C∗-algebra
generated by n isometries whose range projections sum to the identity.

• On is unital by construction.

• On is universal in the sense that, given any other family {T1, ..., Tn} of isometries whose range pro-
jections sum to the identity, there is a ∗-homomorphism Φ : On → C∗(Ti) which sends generators to
generators.

• On is simple, which means that any (non-trivial) representation of On is On.

• On 6∼= Om if n 6= m.

• O∞ is a thing. It’s purely infinite, but no one who is physically present wants to talk about what that
means.

3.2 Graph C∗-algebras and Cuntz-Krieger algebras

Exercise 3.4 (2.8, Raeburn). In this exercise, we explore the correspondence between Cuntz-Krieger alge-
bras and graph C∗-algebras for finite graphs with no sinks and no sources.

1. (matrix  graph)

Fix an n × n {0, 1}-matrix B. Define a graph E with B as its vertex matrix. If {Si : 1 ≤ i ≤ n} is a
Cuntz-Krieger B-family, define Qi := SiS

∗
i and Tij := SiSjS

∗
j for all 1 ≤ i, j ≤ n.
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• Prove that {Q,T} is a Cuntz-Krieger Ê-family

• Prove that OA ∼= C∗(Ê).

• Use Exercise 2.8 to deduce that C∗(E) ∼= OA. finish

2. (graph matrix) Let E be a finite directed graph with no sinks and no sources, and let Â be the edge
matrix for E.

• Given a Cuntz-Krieger E-family {S, P}, show that {Se : e ∈ E1} is a Cuntz-Krieger Â-family.

• Conclude that C∗(E) ∼= OA.

In both cases, the Cuntz-Krieger algebra and graph C∗-algebra coincide. We conclude that, in the finite
setting, Cuntz-Krieger algebras are graph C∗-algebras arising from graphs with no sinks and no sources.

There are a lot of neat theorems that relate the structure of a graph E to the algebraic properties of
C∗(E). We won’t get into this, but it’s worth noting that these types of relationships are one of the many
reasons C∗-algebraists are so jazzed about these objects. It also has provided a tool for the classification
of Markov shift spaces–given a shift space (,Σ), one can associate {0, 1}-matrix A. It turns out that the
K-theory of OA is an invariant for the conjugacy class of (σ,Σ).

3.3 Properties of Cuntz-Krieger algebras

Below we compile, without proof, a list of theorems that relate algebraic properties of OA to hypotheses
about A (or, equivalently, its associated Markov shift space).

• Theorem 2.14 - Cuntz-Krieger (1980). If A is an irreducible matrix, then OA is simple.

• Theorem 2.13 - Cuntz-Krieger (1980). If A satisfies the infamous condition (I), then OA is unique.
[Condition (I) is a condition on the Markov shift space which is analogous to condition (L) for graphs]

• If A is finite, then OA is unital. (more general theorems hold when A is not finite but satisfies certain
conditions)

• In almost any case, OA is nuclear.

• Let A be possibly infinite-dimensional. Then OA is purely infinite if and only if A satisfies condition
(II) (no rows or columns of A are identically 0, and no irreducible block of A is a permutation matrix).

4 Cuntz-Pimsner algebras

Cuntz-Pimsner algebras generalize both Cuntz-Krieger algebras (including Cuntz-Krieger algebras one can
define for countably-infinite {0, 1}-matrices), crossed products by Z, and graph C∗-algebras. The base object
is a C∗-correspondence.

4.1 C∗-correspondences

Definition 4.1. Let A be a C∗-algebra. An A-correspondence is a right A-module X equipped with

• a representation φ : A → L(X)

• a bilinear map 〈·, ·〉 : X ×X → A that satisfies

〈x · a, y〉 = a∗ 〈x, y〉 , 〈x, y · a〉 = 〈x, y〉 a, 〈x, y〉∗ = 〈y, x〉

for all x, y ∈ X, a ∈ A

• X is complete with respect to the induced norm ‖x‖ := ‖〈x, x〉‖1/2A
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Example 4.2. Let E = (E0, E1, r, s) be a row-finite directed graph, and consider Cc(E
1) as a right C0(E0)-

module where for each g ∈ C0(E0) and f ∈ Cc(E1), we define f · g ∈ Cc(E1) by

(f · g)(e) = f(e)g(s(e)) ∀e ∈ E1.

We can, in fact, build a C0(E0) correspondence via the following:

• Define φ : C0(E0)→ Cc(E∞) by f 7→ [φ(g)f ], where

[φ(g)f ](e) = f(r(e))g(e) ∀e ∈ E1

• Define 〈·, ·〉 : Cc(E
1)× Cc(E1)→ C0(E0) by [〈g, h〉](v) =

∑
e∈s−1(v)

g(e)h(e).

Mod out by {f ∈ Cc(E1) : 〈f, f〉 = 0}, then complete this quotient with respect to the induced norm to get
a C0(E0)-correspondence, X(E).

Definition 4.3. A Toeplitz representation of a C∗-correspondence X over A in a C∗-algebra B is a pair of
representations (ψ, π), where ψ : X → B and π : A → B which satisfies

• ψ(x · a) = ψ(x)π(a)

• ψ(x)∗ψ(y) = π(〈x, y〉)

• ψ(a · x) = π(a)ψ(x)

for all a ∈ A and x ∈ X.

You might want to construct a C∗-algebra which is universal with respect to these conditions. We call
this algebra the Toeplitz algebra, TX , and while it is a universal object, there is a concrete representation
for it. It turns out that TX is precisely the C∗-algebra generated by the creation operators {Tx : x ∈ X} on
the Fock space F(X).

4.2 Fock space

Given a Hilbert space H, define the Fock space for H by

F(H) :=

∞⊕
n=0

H⊗n,

where H0 is C. Note that F(H) is a Hilbert space:

• For each n ∈ N, let Hn := H⊗n with inner product 〈·, ·〉n. Then

〈x1 ⊗ ...⊗ xn, y1 ⊗ ...⊗ yn〉n = 〈x1, y1〉 ... 〈xn, yn〉 .

• To form a Hilbert space out of a direct sum of Hilbert spaces, one considers only the subset of vectors

X :=

{
(hn)∞n=0 ∈

∞⊕
n=0

Hn :

∞∑
n=0

‖hn‖2n <∞

}

• The inner product on X is defined to be 〈(xn), (yn)〉 =
∑∞
n=0 〈xn, yn〉n .

Fix n ∈ N. For each h ∈ H, define Th : H⊗n → H⊗n+1 by Th(x1 ⊗ ... ⊗ xn) = h ⊗ x1 ⊗ ... ⊗ xn. The
operator Th ∈ B(F(H)) is called a creation operator. The adjoint of Th is called an annihilation operator
because T ∗h (x1 ⊗ ...⊗ xn) = 〈h, x1〉x2 ⊗ ...⊗ xn for all x ∈ H⊗n.

We can actually build Fock spaces for C∗-correspondences. It’s done in an analogous way, but care must
be taken in defining the Hilbert A-module structure of X⊗n, as well as the encompassing structure F(X).
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Example 4.4. Let’s build the Fock space F(X(E)) for the C0(E0)-correspondence defined above, but let’s
do it in the specific case where E is the graph with one vertex, v, and two loops, e1 and e2.

• C0(E0) ∼= C

• Cc(E
1) ∼= C2

• the left and right actions of C on C2 are the natural ones: λ(µ, ν) = (λµ, λν) and (µ, ν)λ = (µλ, νλ).

• the C-valued inner product on C2 is just the (right-linear) dot product.

• X(E) = C2 (no need to mod out or complete the space)

For each n ∈ N, (C2)⊗n ∼= C2n, so

F(C2) =

∞⊕
n=0

C2n

Neat! Now, note that C = span {(1, 0), (0, 1)}, and T(1,0)(µ1 ⊗ ... ⊗ µn) = (1, 0) ⊗ µ1 ⊗ ... ⊗ µn and
T(0,1)(µ1⊗...⊗µn) = (0, 1)⊗µ1⊗...⊗µn. Let T1 := T(1,0) and T2 := T(0,1), so C

∗({Tµ : µ ∈ C2}) = C∗(T1, T2).

• Check that T1 and T2 are isometries in B(F(X(E))).

• Show that T1T
∗
1 + T2T

∗
2 = 1.

We may conclude that TX ∼= C ∗ (T1, T2) is O2.

4.3 Cuntz-Pimsner algebra

These are sort of yucky to define in the concrete way, although it is super nice that there is a concrete way to
get to them. The algebra we constructed from X(E) in the previous example could be generally described as
the C∗-algebra of creation operators on F(X(E)), denoted TX(E) and called the Toeplitz algebra for X(E).
The Cuntz-Pimsner algebra for X(E), denoted OX(E), is a quotient of T(X(E) by the Katsura ideal. This
is the most concrete approach to getting at TX(E) and thus OX(E), although one may also define TX(E)

as a universal C∗-algebra subject to Toeplitz covariant representations of the C∗-correspondence X(E),
effectively encoding the behavior of X(E) as a Hilbert C0(E0)-module. Similarly, OX is universal with
respect to covariant Toeplitz representations that do “an extra nice thing.”

• The last two decades have included the development of successful gauge invariant and Cuntz-Krieger
uniqueness theorems for Cuntz-Pimsner algebras

• Given an arbitrary C∗-correspondence X over A, the structure of TX is very graph C∗-algebra-like. In
particular, if you take words in {Tx, T ∗y : x, y ∈ X}, you end up with a structure theorem that says TX
is generated by elements of the form TµT

∗
ν , where µ, ν are tuples with entries from X, just like graph

C∗-algebras.

4.4 Cuntz-Pimsner algebras, Cuntz-Krieger algebras, and Cuntz algebras

Cuntz-Pimsner algebras are valuable because they generalize the C∗-algebra constructions discussed in this
talk.

Proposition 4.5. When X = H is just a finite-dimensional Hilbert space with dimension n, OX ∼= On.

Proposition 4.6. When A is a finite-dimensional commutative C∗-algebra, so A = C(Σ), the finitely-
generated C∗-correspondences over A are in one-to-one correspondence with |Σ|×|Σ|-matrices A = (Aij)i,j∈Σ

with nonnegative integer entries. If X is one such C∗-correspondence over A that has only {0, 1}-entries,
then OX ∼= OA.

Proposition 4.7. If E is a row-finite directed graph, then OX(E)
∼= C∗(E). In the case of Example 4.4, the

Katsura ideal is {0}, so TX(E)
∼= OX(E)

∼= O2.
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