Let
$$1_{e} \in S^{op \times VS} \subseteq C^{(x-s \log)}$$
.
Thm (Krein '37)
IF $\phi: S \rightarrow C$ is positive, $\exists e$ positive
 $m^{ap} \quad \phi: C \rightarrow C \quad s.t. \quad \phi|_{s} = \phi \text{ and } \|\phi\|\| = \|\phi\|\|.$
Q: What if this is a larger Ct-alg?
Ex:
 $S = \text{span}\{1, \exists, \exists e \in C(T) \text{ (ex 2 above)}\}$
Define $\phi: S \rightarrow M_{2}(C)$
 $a + b \exists + c \exists \mapsto \begin{bmatrix} a & 2b \\ 2c & a \end{bmatrix}$
One can show that ϕ is positive.
Suppose $\exists \phi: C(T) \rightarrow M_{2}(C)$ positive
 $s.t. \quad \phi \mid_{s} = \phi \quad \text{and } \|\phi\|\| = \|\phi\|.$
Then $\|\phi\| = \|\phi(1_{\alpha(T)})\| = 1$
 $\|\phi\| = \sup_{\|F\|=1} \|\phi(f)\| \ge \|\phi(z)\| = \|\int_{0}^{0} \frac{z}{2}\|\| = 2$

Thm (Arveson's Extension Thm '69)

If
$$\phi: S \rightarrow B(H)$$
 is cp , $\exists a cp$
 $map \quad \widetilde{\phi}: \mathbb{C} \rightarrow \mathbb{C}$ s.t. $\widetilde{\phi}|_{s} = \phi$ and $\|\widetilde{\phi}\| = \|\phi\|$.
Remark: This says $B(H)$ is injective in the
category of operator systems ($\omega/ep maps$)
 $C \xrightarrow{\phi} B(H)$
 $S \xrightarrow{\phi} B(H)$

Q: How are these related to CF-algebras? ~~ Switch focus to operator algebras ... Def'n A (unital) operator algebra A is a norm closed subalgebra of a C*-alg C (w/ 1e e A). Exis: \bigcirc $T_2 = upper 2 \times 2$ triangular matrices $= \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, b, c \in \mathbb{C} \right\} \subseteq M_2(\mathbb{C})$ is a <u>non-self-adjoint</u> operator algebra not * - closed (D) = ¿fe CCD): flp is analytic § $= \widetilde{\mathbb{Q}[z]}^{\mathbb{Z}} \subseteq \widetilde{\mathbb{Q}[D]}$

is a <u>non-self-adjoint</u> operator algebra called the "disc algebra" Defin A C*-cover for 2 (unital) operator alg $A \in \mathbb{C}^{e^{*-2ly}}$ is a pair (D, j) s.t. $\bigcirc j: A \rightarrow D^{C^{*-2lg}}$ is a ucis (unital, completely isometric) alg hism $\textcircled{D} = \mathbb{C}^{*}(j(A))$

 $\frac{E\times S}{O}$ (M₂(C), incl) is a C*-cover for T₂ (C(TD), incl) is a C*-cover for A(D) $(C(T), (\cdot)|_{T}) is a C*-cover for A(D)$

Theorem (Arveson '69, Homono '79, Dritschell-McCullough '05, Arveson '08, Davidson-Kennedy '13) There exists a minimal C*-cover C*env(A) = (C*env(A), imin) for A called the <u>O*-envelope For A</u>. <u>Minimality</u>: for any C*-cover (D, j) for A, $\exists *-h'ism \ 9$ that makes the following diagram commute: $A \xrightarrow{inim} C*env(A)$

Exis
(D)
$$C_{env}(T_2) = M_2(C)$$

(E) $C_{env}(A(D)) = C(T)$
Topological Dynamics
Defin: (X, τ) is $2(topological) dynamical system
if (D) X is 2 compact, Hausdorff space
(E) $T: X \rightarrow X$ is 2 homeomorphism
This induces an action of Z on $C(X)$...
Thm(Anveson-Josephson (49, Revers (84, Holdon-Hover V8, Rover (92, Doubleon-Kohaulis (82))
(X₁, T₁) and (X₂, T₂) are conjugate (I home 4: X₁ \rightarrow X₂ s.t.)
if and only if
 $C(X_1) \approx_{T_1} Z^+ \cong C(X_2) \approx_{T_2} Z^+$
non-setf-adjoint
services (ed products)
FACTS:
(D) $C_{env}^* (C(X_1) \approx_{T_1} Z^+) \cong C(X_1) \approx_{T_1} Z$ (*- crossed
product
(*) This theorem closes NDT hold for CF- crossed products$