1
$$
Non - C^*
$$
 Substructures of OC^* Alg^s

\n**2** $Annital C^*$ alg

\n**3** $limzer$

\n**4** AB $limzer$

\n**5** $UMat$ Q^* alg

\n**6** $BA \rightarrow BC$ $limzer$

\n**7** $Subat$ $Stractive$ on A did we actually need for most of our results for positive (op maps?)

\n**8** $AB^* \in A$ $limers$ Q^* alg

\n**9** $AA^* \in A$ $limers$ Q^* alg

\n**1** CA sup $diag$ g

\n**1** CA sup $diag$ g

\n**2** HeA sup $diag$ g

\n**3** $1 \in A$ sup $diag$ g

\n**4** $limers$ Q $limers$

\n**5** $limers$ Q $limers$ g

\n**6** 2×2 $limers$

\n**7** $limers$ g

\n**8** $limers$ $limers$ $limers$

\n**9** $limers$ $limers$

\n**10** $limers$ $limers$ $limers$ $limers$

\n**11** $limers$ $limers$ $limers$

\n**12**

Let
$$
1_{\epsilon} \in S^{opp} \subseteq C^{x \text{old}}
$$
.
\n
$$
\overline{I} \cap \overline{f} \neq S \rightarrow \overline{C}
$$
 is positive, \exists a positive
\nmap $\tilde{\varphi}: C \rightarrow C$ s.t. $\tilde{\varphi}|_{S} = \varphi$ and $||\tilde{\varphi}|| = ||\varphi||$.
\n
$$
\overline{C} : \text{(What if this is a larger C+ - alg?}
$$
\n
$$
\underline{E}_{X}:
$$
\n
$$
S = span \{1, z, \overline{z} \} \subseteq C(T) \text{ (ex 2 above)}
$$
\n
$$
\overline{D} \in \text{int } \varphi: S \rightarrow M_{2}(C)
$$
\n
$$
a + bz + c\overline{z} \mapsto \begin{bmatrix} a & 2b \\ 2c & a \end{bmatrix}
$$
\n
$$
\text{One can show that } \varphi \text{ is positive.}
$$
\n
$$
Suppose \exists \tilde{\varphi}: C(T) \rightarrow M_{2}(C) positive
$$
\n
$$
s.t. \quad \tilde{\varphi}'|_{S} = \varphi \text{ and } ||\tilde{\varphi}|| = ||\varphi||.
$$
\nThen
$$
||\tilde{\varphi}|| = ||\tilde{\varphi}(1_{C(T)})|| = ||\varphi(1_{C(T)})|| = 1
$$
\n
$$
||\varphi|| = sup_{||\tilde{\varphi}(1_{C(T)})} ||\varphi(z)|| = ||\varphi(2_{C(T)})|| = 2
$$

Thm (Arveson's Extension Thm '69)

If
$$
\phi: S \rightarrow B(A)
$$
 is cp , \exists a cp

\n $\widetilde{\phi}: C \rightarrow C$ s.t. $\widetilde{\phi}|_{s} = \phi$ and $\|\widetilde{\phi}\| = \|\phi\|$.

\n**Remark:** This says $B(H)$ is **injective** in the

\n**category of operator systems (w) c_{p} maps)**

\n $\begin{array}{c}\n C \rightarrow \widetilde{\phi} \\
 \hline\n S\n \end{array}$

\n $\begin{array}{c}\n \zeta \rightarrow B(H) \\
 S\n \end{array}$

Q: How are these related to Ct-algebras? me Switch focus to operator algebras... Def'n A (unital) operator algebra A is a norm closed subalgebra of 2 C^+ alg C \mathcal{L}_e e A Ex ^ts: O T_2 = upper 2x2 triangular $=\frac{2}{3}\left[\begin{array}{c}a&b\\0&c\end{array}\right]:a,b,c\in\mathbb{C}\left\{\begin{array}{c}c\leq M_{2}(\mathbb{C})\end{array}\right\}$ is a <u>non-selt-adjoint</u> operator algebra $\text{Lip}(\mathcal{E}) = \frac{1}{2} \mathcal{E} \in \text{C}(\mathcal{E}) : \text{Lip}$ is analytic \mathcal{E} $= \widehat{\mathbb{C}[z]}^{w} \cong \mathbb{C}(\overline{D})$

is a non-self-adjoint operator algebra called the "disc algebra"

 Def^r A C^* -cover for a (unital) operator alg $A \in \mathbb{C}^{c \star \text{-} \mathfrak{sl}_4}$ is a pair (Θ, j) s.t. $G \ni \delta^{n} \circ A \rightarrow \mathbb{R}^{n} \circ A \circ \mathbb{R}^{n}$ UCIS (nnital, completely isometric) alg D'ism $D = C^*(A)$

 $Ex's$ $O^{(n_2(\Omega))}$ incl) is a C^* -cover for T_2 $G(C(\overline{D}), \text{ind})$ is a C^* -cover for $A(D)$ \bigodot $(C(T), (\cdot)|_{T})$ is a C^t cover for A (D)

Theorem (Arveson '69, Hamana '79, Britschell-McCullough '05,
Arveson '08, Davidson-Kernedy '13) There exists a minimal C^* -cover $C^*_{env}(A) \equiv (C^*_{env}(A), i_{min})$ for A called the O^* -envelope for A . <u>Minimality:</u> for any C^* -cover (D, j) for $A,$ \exists *-hlism \oint that makes the following diagramcommute $A \xrightarrow{\bigcirc} C_{env}^{\ast} (A)$

Ex is

\n
$$
\begin{array}{ll}\n\text{C.} & \text{C.} & \text{C.} \\
\text{C.} & \text{C.} & \text{C.} \\
\text{D.} & \text{C.} & \text{C.} \\
\text{E.} & \text{D.} & \text{C.} \\
\text{E.} & \text{D.} & \text{D.} \\
\text{E.} & \text{E.} & \text{E.} \\
\text{E.} & \
$$