

 $Def'_n:$ Let $\phi: A \rightarrow B$ be linear. Define $\phi_n : M_n(A) \to M_n(B)$ by $\varphi_n((a_{ij})) = (\varphi(a_{ij}))$ or φ
entry wi entrywise ϕ_n is called the "nth amplification" of ϕ Notation: ϕ_n "=" $\phi_{(n)}$ "=" $\phi^{(n)}$ - different authors use different notation \cdots use context Remark: Ct-1gs carry (as Failsen says) paggage of norms & order on Its amplifications $m_n(A_+) \neq m_n(A)_+$ $\Delta \mapsto A$ linear map $\phi : A \rightarrow B$ is positive if $\phi(a) \geq 0$ $\forall a \in A_{+}$ positive care of positive
elts in A $\textcircled{2}_{\Omega}$ is positive if $\oint_n : \mathcal{M}_n(\mathcal{A}) \to \mathcal{M}_n(\mathcal{B})$ is positive G completely positive (cp) f ϕ is n-positive \forall ne IN 'Memark: completely contractive (cc)/bounded (cb) are defined similarly \bullet cc $-$ all amplifications of ϕ are contractive \cdot cb $- \|\phi\|_{cb}$ sup $\|\phi_n\| < \infty$

$$
\begin{array}{ll}\n\text{(3) Fix } x \in A. \\
\phi: A \rightarrow A \text{ by} \\
\phi(a) = x^* a x & -\text{conj by fixed elt} \\
\text{is } c \rho \\
\frac{\rho f}{\rho} \text{let } (\mathbf{b}_{ij})^*(\mathbf{b}_{ij}) = (a_{ij}) \ge 0 \text{ in } \mathbb{M}_n(A) \\
\phi_n((a_{ij})) = (\stackrel{*}{x} a_{ij} x) \\
\qquad = (\stackrel{*}{\phi} \circ \stackrel{*}{x})(a_{ij})(\stackrel{*}{\phi} \circ \stackrel{\circ}{x}) \\
\qquad = ((\mathbf{b}_{ij})(\stackrel{*}{\phi} \circ \stackrel{\circ}{x}))^*(\mathbf{b}_{ij})(\stackrel{*}{\phi} \circ \stackrel{\circ}{x})) \ge 0 \\
\text{or } \mathbf{b} \neq \pi : A \rightarrow B \text{ be a } * \neg h' \text{ is m} \\
\qquad \qquad + \text{fix } b \in B. \\
\text{is } c \rho \text{ by comparison of } c \rho \text{ are cop} \\
\text{Soul} every cp m \text{ on } s \text{ has this form } \xrightarrow{\text{ish}} \\
\end{array}
$$

$$
\begin{aligned}\n\textcircled{1} &\text{A non-example} \\
\phi: m_{2} \rightarrow m_{2} \text{ by } \phi(\mathbf{a}) = \mathbf{a}^{T} \\
&\cdot \phi \text{ is positive} \\
\text{Consider} \\
\alpha = \left[\frac{1}{1} + \frac{1}{1} \right] \in M_{2}(M_{2}) \text{ but } \phi_{2}(\mathbf{x}) = \left[\frac{1}{1} + \frac{1}{1} \right] \text{ has } \\
&\propto (\mathbf{x}) = \sum_{0} 2 \cdot \frac{2}{3} \text{ so } \mathbf{x} \ge 0 \\
&\text{Spectrum} \ge -1, 1.3 \\
&\vdots \\
\text{So } \phi_{2} \text{ is not } 2-\text{positive} \\
\Rightarrow \phi = (-)^{T} \text{ is } \underline{\text{NOT}} \text{ cp}\n\end{aligned}
$$

Lemma: IF A, B are units 1 C*-slgls and
\n
$$
\phi : A \rightarrow B
$$
 is positive, then
\n $||\phi|| = ||\phi(1_1)||$
\n
\n**Remark:** Still true if A, B not necessarily units! but
\n $A \propto B$ is commutative
\nproof of (B=C case)

$$
||\phi|| = \sup_{||d||=1} |\phi(a)| \ge \underbrace{\phi(1)}_{\text{since } \phi \text{ is positive}}
$$

UTS: ||
$$
\phi
$$
|| $\leq \phi$ (1)

\nLet $a \in A$ s.t. $||a|| = 1$.

\nChoose Θ s.t. $5\sigma r \lambda := e^{i\Theta}$

\n $|\phi(a)| = \lambda \phi(a) = \phi(\lambda a)$

\nThen

\n
$$
0 \leq |\phi(a)| = \phi(\lambda a)
$$
\n
$$
= \phi(\text{ReLU}(a)) + i \text{UTr}(\lambda a)
$$
\n
$$
\Rightarrow \phi(\text{Tr}(\lambda a)) = 0
$$
\nSince $\phi * \text{-preserving}$

\n
$$
\Rightarrow \phi(\text{Tr}(\lambda a)) = 0
$$
\nSince $\text{ReLU}(a) \neq 0$

\nSince $\phi * \text{-preserving}$

\n
$$
\Rightarrow \phi(\text{Tr}(\lambda a)) = 0
$$
\n
$$
\Rightarrow \text{Var} \text{ReLU}(a) = \phi(\text{ReLU}(a))
$$
\n
$$
\leq ||\text{ReLU}(a)|| + \phi(\text{ReLU}(a))|| + ||\text{TV}(a)|| + ||\text{TV}(a)||
$$
\n
$$
= ||\text{ReLU}(a)|| + ||\text{TV}(a)|| + ||\text{TV}(a)||
$$
\n
$$
= ||\text{KL}(a)|| + ||\text{TV}(a)|| + ||\text{
$$

Min Every
\n**Then**
$$
1
$$
 (Stinespring Dialron Thm '55)

\nLet A be (units) + φ : A → B(H) cp.

\nThen 1 ∪ o (hit 1) * -h' (sem $π$: A → B(H)

\n③ ∨ (unit 1) * -h' (sem $π$: A → B(H)

\n③ ∨ be B(H, K) ∞/ $||v||^2 = ||\phi|| = ||\phi||$.)

\nSubstituting $|\phi| = \sqrt{\pi}$ (a) V

\nRemarks:

\n① Stinespring's Division Thm says cp maps are "almost * -h' isms" in the following sense:

\nIP $\phi(1_A) = |g_{(H)}$, then V is an isometry

\nso $H \cong VH \cong K$ as Hilbert spaces.

\nTdenifying $H \circ I \vee H$, uz write

\n $\phi(α) = \sqrt{\pi} \pi(a) V = \frac{1}{\pi} \pi(a) I_{\text{max}}$

\nHint

\n $\pi(a) = \frac{1}{\pi} \frac{\phi(a)}{r} + \frac{1}{\pi} \frac{1}{$

The triple (π, V, K) is called a $String$ dilation of ϕ

 T (π , V , K) is minimal if $K = \widetilde{span}(\pi(A) V H)$ (this dilation is unique up to unitary equiv.)

proof of Stinespring

Motivation: Mimic the GNS construction

steps \bigcirc Build a positive, sesquilinear form $[\cdot, \cdot]$: AOH $\rightarrow \mathbb{C}$ (e) Quotient to get an inner product, then complete to get K \bigcirc Hep A as multipliers on A OH that factors through quotient and yields a representation of A on K Build ^V by embedding H into K Verify $\varphi(\alpha) = \sqrt{\pi} \pi(\alpha)$ and φ $\|\forall \|\vec{\alpha}\| = \|\phi\|$ proof O Define L , $I: A \odot H \rightarrow \mathbb{C}$ by $[a \circ h, b \circ h'] = \langle \phi(h \star_{a}) h, h' \rangle_{h}$

- \bullet [...] is positive since ϕ is $c\phi$ Sketch: $\sum_{c} a_c \circ h_c$, $\sum_{c} a_r \circ h_r = \sum_{c,c} \langle \phi(a_r^* a_c) h_c, h_r \rangle_H$ $= <\phi_{n}((a_{\Gamma}^{*}a_{c})_{r,c=1}^{n})_{r}^{h_{r}}\left(\begin{matrix}b_{1}\\ b_{2}\end{matrix}\right)\right)_{r}^{h_{r}}$ $(a_n*a_c) = \begin{bmatrix} a_1 & a_0 \\ 0 & a_1 \\ 0 & 0 \end{bmatrix} * \begin{bmatrix} a_1 & a_0 \\ 0 & a_1 \\ 0 & 0 \end{bmatrix} \ge 0$ in $M_0(A)$ Dr.= { x 6 AOH : [x, x] = 0 } is a subspace
- Build quotient space $A^{\odot H}/N$ and define $\langle x+N, y+N \rangle_{\text{ACH}} = [x,y]_{\text{AOH}}$ <-,.> is a positive definite sesquilinear form K := Completion of (note K is separable)

$$
\begin{array}{ll}\n\text{B} & \text{Fix a e A.} \\
\text{Define } & \pi_a: A \odot H \rightarrow A \odot H \quad \text{by} \\
\pi_a := L_a \odot id_H\n\end{array}
$$

of AO7

 $i.e., \pi_{\alpha}(\text{boh}) = \text{aboh}$ $\mathcal{F} \subset \mathbb{T}_{\mathfrak{a}}(X) \subseteq \mathcal{N}$

Sketch	Suppose	$\sum_{i=1}^{n} a_i \odot h_i \in$
$[\pi_a(\sum a_i \odot h_i), \pi_a(\sum a_i \odot h_i)]$	$= \sum_{r,c} \langle \phi((aa_r)^*aa_c)h_c, h_r \rangle_h$	
$= \langle \phi_n([a_i^*a^*aa_c]_{r,c_i}) \binom{h_i}{h_n}, h_r \rangle_h$		
$= \langle \phi_n([a_i^*a^*aa_c]_{r,c_i}) \binom{h_i}{h_n}, h_r \rangle_h$		
$\text{Exercise: show } [a_i^*a^*aa_c] \text{ and use } a^*a \leq a^*a [a_i^*ac]_{r,c_i}$		
in M_n(A)		
Hint: Farbo: $[a_i^*a^*aa_c]$ and use $a^*a \leq a 1_A + b$		
Show $[a^*a]_{r,c_i} \leq a^*a [1_A]_{r,c_i} \mod p$		
So		
$[\pi_n(\sum_{a_i \odot h_i}), \pi_n(\sum_{a_i \odot h_i})] \leq \langle \phi_n([a^*a]_{[a_i^*a_i],h_i}] \rangle_h \rangle_h$		
$= a ^2 [\sum_{c} a_c \odot h_c, \sum_{r} a_r \odot h_r] \rightarrow \infty$		
This implies $\pi_a(X) \subseteq N$ so		
π_a : A $\circ \gamma_{x}$		
On π_a : A $\circ \gamma_{x}$		
On π_a : A $\circ \gamma_{x}$		
On π_a : A $\circ \gamma_{x}$		
On π_a : A $\circ \gamma_{x}$		