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1. A first look at C∗-algebras

Preview of Lecture: To help guide your reading, we indicate here which of the following material we will
address in lecture and which we will assume familiarity with:

The main goal in this lecture is proving the Gelfand-Naimark theorem for commutative C∗-algebras
(Theorem 2.1) and introducing the Functional Calculus (Corollary 2.18).

To that end, we will use without proof all of the results in Section 1. We will introduce the unitization
from Section 1, but with more focus on the intuition in Remark 1.16.

From Section 3, we use without proof the correspondence between maximal ideals and characters estab-
lished in Definition 2.2 - Corollary 2.6. We will also use without proof the fact (Proposition 2.7) that the
character space (i.e. spectrum) of a C∗-algebra is a weak∗-compact subset of the unit ball of the dual of the
C∗-algebra.

We will prove Lemma 2.12 and assume its corollary, Lemma 2.13, to complete the proof of Theorem 2.1.
However, the proof in the lecture will look a little different from the notes. In particular, we will consider
the theory in the unital setting first and then explain how to get to the non-unital setting at the end.

Proposition 2.16 and Corollary 2.17 establish the important fact that the spectrum of an element in a
C∗-algebra is independent of the ambient unital C∗-algebra. However, we will bypass this argument in lecture
and go straight for a description of the correspondence in the Functional Calculus (Corollary 2.18).

In a Banach space, there is often additional algebraic structure, in particular multiplication.

Definition 1.1. A Banach ∗-algebra A is a multiplicative involutive Banach space whose norm satisfies the
following:

‖ab‖ ≤ ‖a‖‖b‖
for all a, b ∈ A.

Ideally, we’d like involution to also be isometric. This and other magical results follow from the additional
assumption that the norm ‖ · ‖ on A satisfies the C∗-identity:

‖a∗a‖ = ‖a‖2

for all a ∈ A. It follows from this that

‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖,

and hence that ‖a‖ ≤ ‖a∗‖ ≤ ‖a∗∗‖ = ‖a‖.

Definition 1.2. A C∗-algebra is a Banach ∗-algebra whose norm satisfies the C∗-identity.

Remark. Calling these C∗-algebras is already highly suggestive. In fact, when they were first introduced,
they were called B∗-algebras, and the notion of C∗-algebra was reserved for norm closed ∗-subalgebras of
B(H) (hence the “C-∗”). In the coming days, we shall justify calling these C∗-algebras, but for the sake of
not encouraging archaic terminology, we take the privilege before we earn it.

Recall from Exercise 7.32 in the Day 1 lectures that the norm on B(H) satisfies the C∗-identity, meaning
any closed self-adjoint subspace of B(H) is a C∗-algebra. These are known as concrete C∗-algebras.

Example 1.3. Recall the unilaterial shift S ∈ B(`2(N)) from Example 7.19 in the Prerequisite Notes. The
norm closure of the ∗-algebra generated by S in B(`2(N)) is a C∗-algebra often called the Toeplitz algebra.

Exercise 1.4. Let X be a locally compact Hausdorff topological space. We denote by C0(X) the space
of all continuous functions on X vanishing at infinity. Show this is a C∗-algebra with involution given by
complex conjugation and norm given by the sup norm.

Example 1.5. Consider the C∗-algebra C(T) consisting of all continuous functions on the compact Hausdorff
space T = {λ ∈ C : |λ| = 1} (sometimes denoted S1). (Why don’t we say C0(T)?) It follows from the
Stone-Weierstraß approximation theorem ([4, I.5,6]) that Laurent polynomials, i.e. polynomials of the form∑n
k=−n αnz

n, are dense in C(T). So, C(R) is actually the C∗-algebra generated by the function f ∈ C(R)
given by f(z) = z.
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As is often the case, C∗-algebras are a little more friendly to work with when they have an identity element
(also called a unit). If 1 ∈ A is the identity, then

(1) 1∗ = 1∗1 = 11∗ = 1, and
(2) ‖1‖ = 1.

Analogously with elements in B(H) (in fact, we will see soon that it is more than an analogy), we call an
element a in a C∗-algebra A

• Normal if a∗a = aa∗,
• Self-Adjoint if a = a∗,
• a Projection if a = a∗ = a2,
• a Unitary if a∗a = aa∗ = 1,
• an Isometry if a∗a = 1,
• a partial isometry if a = aa∗a.

Note (Check) that for any element a in a C∗-algebra is the sum of two self-adjoint operators, its real and
imaginary parts:

Re(a) =
1

2
(a+ a∗) Im(a) =

1

2i
(a− a∗). (1.1)

This useful decomposition lets us reduce many questions to the case of self-adjoint operators.

Proposition 1.6. A linear map between C∗-algebras is ∗-preserving iff it maps self adjoint elements to self
adjoint elements.

Proof. Let φ : A → B be a linear map and a ∈ A, and write a = Re(a) + iIm(a) and a∗ = Re(a) − iIm(a).
By linearity,

φ(a) = φ(Re(a)) + iφ(Im(a))

φ(a∗) = φ(Re(a))− iφ(Im(a)).

Since Re(a) and Im(a) are self-adjoint, φ(Re(a)) and φ(Im(a)) are self adjoint by assumption. So the above
computation shows that

φ(a∗) = φ(Re(a) + iIm(a))∗.

�

1.1. Unitizations and Spectra. Let us briefly recap and expand on some facts about the spectrum of an
operator in a Banach algebra– now with C∗-algebras.

An element a in a unital algebra is invertible when there exitst another element b in the algebra that acts
as a left and right inverse, i.e. ab = ba = 1. Sometimes, when you have a left inverse, it is automatically a
right inverse. In particular, this is the case for matrix algebras. In fact, a matrix T ∈ Mn(C) is invertible
if and only if it is injective, i.e. if and only if ker(T ) = {0}. In infinite dimensions, this is certainly still a
necessary condition, but it is no longer sufficient alone.

Exercise 1.7. Give an example of an operator on B(`2(N)) that is injective but not invertible.

Fortunately, the Open Mapping Theorem gives us some guidance on what needs to be satisfied:

Corollary 1.8 (to OMT/Inverse Function Theorem). For a Hilbert space H, T ∈ B(H) is invertible iff T
is bijective.

Example 1.9. Unitary operators are important classes of invertible operators. In fact, the group of unitaries
in a C∗-algebra A forms a subgroup U(A) of the group of invertible elements, GL(A).

With the notion of invertibility, we can define the spectrum of a given element a in a unital C∗-algebra A.

σ(a) := {λ ∈ C : λ1− a /∈ GL(A)}

Remark 1.10. Unlike when A = Mn(C), these are not all eigenvalues.
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Example 1.11. If A is a unital C∗-algebra and u ∈ A is a unitary, then σ(u) ⊂ T.
Indeed, first note that for any invertible operator a ∈ A, the spectrum of the inverse is the inverse of the

spectrum. To see this, fix an invertible a, so that λ = 0 is not in σ(a). For λ 6= 0, if λ− a is invertible, then
so is λ−1a−1(λ− a) = a−1 − λ−1 and vice versa.

Then for any λ ∈ σ(u), we have that λ−1 ∈ σ(u−1) = σ(u∗). Since u∗ is also a unitary, we know
‖u‖ = ‖u∗‖ = 1, which means |λ| ≤ 1 and |λ−1| ≤ 1, which means |λ| = 1.

Exercise 1.12. Recall (Example 3.12 in Prerequisite Material) that continuous function f on a X locally
compact and Hausdorff space X is invertible if 1/f is continuous on X. What is the spectrum of f(z) = z
in C(T)?

But not all C∗-algebras have units. One important example is K(H), and another important class of
examples comes from spaces of continuous functions.

Exercise 1.13. For a locally compact topological Hausdorff space X, when is the C∗-algebra C0(X) unital?
What is the unit? Can you think of interesting classes of non-unital algebras? For the C∗-algebra C(T),
what type of operator is the generator f(z) = z?

So, how can we make sense of a spectrum in this setting? We just add a unit! Well, technically, we embed
A into a unital C∗-algebra.

The “smallest” unital C∗-algebra containing A is called its unitization, Ã. We define Ã as follows:

Ã := A⊕ C
with algebraic operations given by

(a, α)(b, β) = (ab+ αb+ βa, αβ)

(a, α)∗ = (a∗, λ̄)

‖(a, α)‖ = sup
b∈A,b≤1

‖ab+ αb‖

This definition does not feel intuitive the first time around. To get an idea of where this came from,
consider the following examples.

Example 1.14. ,

(1) If A ⊂ B(H) is a C∗-subalgebra of B(H) that does not contain a unit, you can “unitize” it by just
taking the C∗-algbra generated by A and 1H.

C∗(A, 1H) = {a+ λ1H : λ ∈ C, a ∈ A}.
What would multiplication/ scalar addition look like here? For the norm, it will turn out that
‖(a, α)‖ = ‖a+ α1H‖, but the argument is faster after a little more theory.

(2) Identify
C0((0, 1]) := {f ∈ C([0, 1]) : f(0) = 0}.

By taking the closure of the algebra generated by C0((0, 1]) and the constant function 1, we get its
unitization C([0, 1]). For f ∈ C0((0, 1]) and a ∈ C, what is the norm of f + a in the sup norm for
C([0, 1])?

Because of the example from B(H), even in an abstract setting, elements of Ã are often written as a+λ1Ã
as opposed to (a, λ).

Proposition 1.15. Any C∗-algebra A embeds into the unital C∗-algebra Ã as an ideal of codimension 1, i.e.
no other proper ideal of Ã contains A and Ã/A = C.

Proof. That Ã is a unital ∗-algebra is readily verified. To see that the norm is a Banach algebra norm, notice
that it is exactly the norm induced from B(A) where we identify a ∈ A with the left multiplication operator

La ∈ B(A) given by La(b) = ab, and we identify (a, α) with La + αidA. In other words, the norm on Ã is
the norm induced from B(A) on the ∗-subalgebra of operators {La + αida : a ∈ A,α ∈ C}. Moreover, note
that the identification a 7→ La is isometric. Indeed, using the C∗-identity, we have for any nonzero a ∈ A,

‖a‖ = ‖a
(
a∗

‖a‖

)
‖ ≤ sup

‖b‖≤1

‖ab‖ ≤ ‖a‖.
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So, ‖(a, 0)‖ = ‖a‖, and the embedding of A into Ã is isometric. Since A is complete, {La+αidA : a ∈ A,α ∈
C} is complete, and so Ã is a Banach algebra. By design, A is an ideal of codimension 1.

It remains to show that the given norm satisfies the C∗-identity. To that end, we compute for a ∈ A and
α ∈ C

‖(a, α)‖2 = sup
‖b‖≤1

‖ab+ αb‖2

= sup
‖b‖≤1

‖b∗(a∗ab+ αa∗b+ ᾱab+ |α|2b)‖

≤ sup
‖b‖≤1

‖a∗ab+ αa∗b+ ᾱab+ |α|2b‖

= ‖(a, α)∗(a, α)‖ ≤ ‖(a, α)∗‖‖(a, α)‖.

So ‖(a, α)‖ ≤ ‖(a, α)∗‖, and a symmetric argument yields ‖(a, α)∗‖ = ‖(a, α)‖. Then the above inequality
gives

‖(a, α)‖2 ≤ ‖(a, α)∗(a, α)‖ ≤ ‖(a, α)‖2.
�

Therefore, if a is an element of a non-unital C∗-algebra A, then we define its spectrum to be the spectrum
of a as an element of Ã.

This fits well with what we’ve already seen in B(H). If x ∈ B(H), then its spectrum is defined with
respect to the unit in B(H), regardless to what closed ∗-subalgebra x belongs to.

Remark 1.16. Suppose A is a non-unital C∗-subalgebra of a unital C∗-algebra B. Then there is a clear
∗-preserving bijective homomorphism between Ã and C∗(A, 1) given by (a, α) 7→ a+α. By appealing to the
same subspace {La + αidA : a ∈ A,α ∈ C} ⊂ B(A), one can show that this is isometric. That means that,
when a unit is available in an ambient C∗-algebra, the unitization of A is just adjoining that unit. Of course,
there is now the problem that for any a ∈ A, its spectrum in A might be larger than its spectrum in B (an
element has more potential inverses in B). We will see later that this is not the case.

Remark 1.17. There are two conventions you will see in the literature for Ã when A is already unital. The
first is to assume that A = Ã when A is unital, and the second is to have a “forced unitization” where A
is still embedded as a maximal ideal in A ⊕ C, and the unit of A becomes just the projection 1A ⊕ 0. The
choice in a given paper is often due to technical considerations (e.g. when you just want to make sure your
C∗-algebra has a unit vs. when you want to control where a map sends the unit) and is (hopefully) addressed
somewhere in the preliminaries.

One thing that makes unitizations nice to work with is that a ∗-homomorphism always has a unique and
natural extension to the unitization.

Proposition 1.18. Let A,B be C∗-algebras with B unital and A non-unital and π : A→ B a ∗-homomorphism.
Then there is a unique extension of π to a unital ∗-homomorphism π̃ : Ã → B given by π̃(a + λ1Ã) =
π(a) + λ1B.

Note that this works also when we have π : A→ B with B non-unital but identified with its copy inside
B̃.

Proof. We just need to check that this is a ∗-homomorphism. Linearity and ∗-preserving are immediate. For
a, b ∈ A and λ, η ∈ C, we compute

π̃(a+ λ1Ã)π̃(b+ η1Ã) = (π(a) + λ1B)(π(b) + η1B)

= π(ab) + λπ(b) + ηπ(a) + λη1B = π̃(ab+ λb+ ηa+ λη1Ã).

The uniqueness is forced by the fact that we require π̃ to be linear and 1Ã 7→ 1B . Indeed, if ψ : Ã → B is

another unital extension of π, then for each a+ λ1Ã ∈ Ã, we have

ψ(a+ λ1Ã) = ψ(a) + ψ(λ1Ã) = π(a) + λ1B = π̃(a+ λ1Ã).

�



6 KRISTIN COURTNEY AND ELIZABETH GILLASPY

Now that we have a notion of spectra for unital and nonunital C∗-algebras, we are ready to see two
consequences of the C∗-identity that are, quite frankly, magic.

First we recall Theorems 3.16 and 3.20 from the pre-requisite material:

Theorem. For any element a in Banach algebra A, σ(a) is a nonempty compact subset of C. Moreover, the
spectrum of a is contained in the closed ball {x ∈ A : ‖x‖ ≤ ‖a‖}. In particular, this means that r(a) ≤ ‖a‖
where r(a) = supλ∈σ(a) |λ| is the spectral radius of a.

Remark 1.19. This implies the very useful fact that for any element a in a unital Banach algebra with
‖a‖ < 1, the element 1− a is invertible with inverse

∑
n≥0 a

n.

Theorem. For any element a in Banach algebra A,

r(a) = lim
n→∞

‖an‖1/n.

When our Banach algebra A is a C∗-algebra, it turns out the norm of any normal element is its spectral
radius.

Lemma 1.20. For any normal element a in a C∗-algebra A,

‖a‖ = r(a).

Proof. First, we assume that a = a∗. Then repeated use of the C∗-identity for a, i.e. ‖a‖2 = ‖a2‖, tells us
that

r(a) = lim
n
‖a2n‖2

−n
= ‖a‖.

Now, suppose a is normal. Then a∗a is self-adjoint, and so

r(a)2 = ‖a‖2 = ‖a∗a‖ = r(a∗a)

= lim
n
‖(a∗a)n‖1/n = lim

n
‖(an)∗an‖1/n = lim

n
‖an‖2/n

= r(a)2.

�

As a Banach ∗-algebras, we consider C∗-algebras “the same” when they are ∗-isomorphic, i.e. there exists
a ∗-preserving homomorphism between them. Normally, for a Banach space, you’d also request that the
bijective linear map be isometric. For ∗-isomorphisms between C∗-algebras, this will be automatic, thanks
again to the C∗-identity.

Proposition 1.21. A ∗-homomorphism π : A → B between C∗-algebras is contractive (i.e. ‖π‖ ≤ 1) and
hence continuous. A ∗-isomorphism between C∗-algebras is isometric.

Proof. Suppose π : A → B is a ∗-isomorphism. Let a ∈ A. Then a∗a is a normal element in A, which
means ‖a∗a‖ = r(a∗a). Since homomorphisms preserve invertibility, r(π(a∗a)) ≤ r(a∗a). This is where the
C∗-norm comes in:

‖a‖2 = ‖a∗a‖ = r(a∗a) ≥ r(π(a∗a)) = r(π(a)∗π(a)) = ‖π(a)∗π(a)‖ = ‖π(a)‖2.
Now, assume π is injective. If π is a ∗-isomorphism, then the inequality above is an equality. �

So, in C∗-algebras, the algebraic structure determines the norm:

‖x‖ =
√
‖x∗x‖ =

√
r(x∗x)

(Compare with the same fact for matrices.) It follows from this that a C∗-algebra carries a unique norm
making it a C∗-algebra.

Remark 1.22. What this is saying is that if (A, ‖ · ‖) is a C∗-algebra and ‖ · ‖′ is another C∗-norm on A
(without assuming A is complete with respect to ‖ · ‖′), then ‖ · ‖ = ‖ · ‖′.

There’s a subtlety here that can sometimes be a little tricky. If B is just a ∗-algebra, then we can often
define multiple distinct C∗-norms on B so that the completion of B with respect to these norms becomes a
C∗-algebra.

We will be able to say more about ∗-homomorphisms once we have established more on C∗-ideals.
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2. Commutative C∗-algebras

Some of you may have heard of the study of C∗-algebras described as “non-commutative topology” or
“non-commutative continuous functions”. This perspective is really what jump-started the interest in C∗-
algebras in the first place, and it comes from the following theorem, which is the focal point of this section:

Theorem 2.1 (Gelfand Naimark Theorem). Any commutative C∗-algebra A is ∗-isomorphic to the C∗-
algebra C0(X) for some locally compact Hausdorff space X. Moreover, when A is unital, X is compact.

Definition 2.2. A nonzero homomorphism into the base field of an algebra is called a character. The
spectrum of a commutative Banach algebra A, denoted Â, is the set of all nonzero characters from A into C.
Hence Â is often called the character space for Â.

Remark 2.3. We assume for now that these are just homomorphisms. In fact, much of the theory we
develop on our way to the Gelfand Naimark theorem holds in general for Banach algebras. A consequence
of the Gelfand Naimark theorem for commutative C∗-algebras will show that characters on a commutative
C∗-algebra are automatically ∗-preserving.

Notice that the kernel of a character is a closed ideal in A of co-dimension 1, and so it is automatically
a maximal ideal, i.e. it is not contained in any other proper ideal. It turns out there is a one-to-one
correspondence between maximal ideals in A and ideals of co-dimension 1 (and hence characters).

Exercise 2.4. A maximal ideal in a unital C∗-algebra is automatically closed.
(Hint: If J ⊂ A is a proper ideal, consider J ∩B(1A, 1).)

Exercise 2.5 (Gelfand-Mazur). If A is a simple, unital, abelian Banach algebra, then A = C.

Corollary 2.6. If A is a unital abelian Banach algebra, then any maximal ideal in A has co-dimension 1,
i.e. if J ⊂ A is a maximal ideal, then A/J ' C.

Proof. If J ⊂ A is a maximal ideal, then A/J is simple. The rest follows from Gelfand-Mazur. �

From Theorem 3.8 in the Prerequisite notes, we have for each maximal ideal J / A, a continuous homo-
morphism φJ : A→ C.

Proposition 2.7. Let A be a commutative C∗-algebra. Then Â∪{0} is a weak-∗ compact subset of the unit

ball of A∗. When A is unital, Â is weak-∗ compact.
In particular, Â is a locally compact Hausdorff space, which is compact when A is unital.

Proof. Let φ ∈ Â. Suppose ‖φ‖ > 1 and a ∈ A with ‖a‖ < 1 and φ(a) = 1. Since ‖a‖ < 1, its spectrum is
in the unit ball, meaning 1− a is invertible. So, we compute

1 = φ((1− a)(1− a)−1) = (φ(1)− φ(a))φ((1− a)−1) = (0)φ((1− a)−1) = 0,

which is an obvious contradiction.
Now, since Â∪{0} is contained in the unit ball of A∗, by Alaoglu’s theorem (Theorem 2.20 in the Prereqs),

all we need to show is that it is weak-∗ closed. To that end, suppose we have a net (φi)i∈I of characters
(multiplicative linear functionals) that converges weak-∗ to some bounded linear functional φ ∈ A∗. We need
to check that φ is multiplicative, but this follows from the fact that pointwise multiplication is continuous.
Indeed, for any a, b ∈ A, we have

φ(ab) = lim
i
φi(ab) = lim

i
φi(a)φi(b) = lim

i
φi(a) lim

i
φi(b) = φ(a)φ(b).

It follows that Â ∪ {0} is a compact Hausdorff space (with respect to the weak-∗ topology).

Note that if A is unital, then for any φ ∈ Â, we have φ(1) = 1, and so ‖φ‖ ≥ 1. It follows by the preceeding

argument that Â is itself a weak-∗ closed subset of the unit ball in A∗. �

Recall that when A is communtative but not unital, it embeds into Ã as an ideal with co-dimension 1,
which means it’s the kernel of a character φ0 : Ã → Ã/A = C. Notice that when restricted to A, this is

exactly the 0 homomorphism. It turns out there is a one-to-one correspondence between Â and ˆ̃A\{φ0}. In

particular, ˆ̃A is (also) the one-point compactification of Â.



8 KRISTIN COURTNEY AND ELIZABETH GILLASPY

Proposition 2.8. Suppose A is a non-unital commutative C∗-algebra, and let φ0 : Ã → Ã/A = C. Then,

there is a one-to-one correspondence between Â and ˆ̃A\{φ0}.

Proof. Suppose φ̃ ∈ ˆ̃A\{φ0}. Since Ã/ ker(φ̃) = C, ker(φ̃) is a maximal ideal in Ã. Similarly, A is also a

maximal ideal, and so ker(φ̃)∩A ( A. Then ker(φ̃)∩A is an ideal of co-dimension 1 in A, which means the

map φ : A 7→ A/(A ∩ ker(φ̃)) gives a character in Â.

On the other hand, if φ ∈ Â, define φ̃ : Ã → C by φ̃(a, λ) = φ(a) + λ. Then (as per Proposition 1.18)

φ̃ ∈ ˜̂
A is the unique extension of φ to a character on Ã. With that, we have established the desired bijective

correspondence. �

Definition 2.9. For a commutative C∗-algebra A, we define the Gelfand transform Γ : A → C0(Â) by
Γ(a)(φ) = φ(a), i.e. Γ(a) is the point evaluation at a.

Exercise 2.10. Here’s an exercise to build intuition:

(1) Show that all maximal ideals in C([0, 1]) are of the form {f ∈ C([0, 1]) : f(t) = 0} for some t ∈ [0, 1].

(2) For each t ∈ [0, 1], define the map evt : C([0, 1])→ C by evt(f) = f(t). Show that ̂C([0, 1]) = {evt :
t ∈ [0, 1]}.

(3) Recall that for A = C0((0, 1]), its unitization is Ã := C([0, 1]). That means we can identify C0((0, 1])

with a maximal ideal inside C([0, 1]). To which character φ ∈ ˆ̃A does this ideal correspond?

Show that this character agrees with the functional φ0 : Ã → C given by φ0(f + λ1) = λ for all
f ∈ A.

Here is our goal theorem:

Theorem 2.11 (Gelfand-Naimark). For any commutative C∗-algebra A, the Gelfand transform is an iso-

metric ∗-isomorphism1 of A onto C0(Â).

Notice that if A is unital, then C0(Â) = C(Â). If A is not unital, then the one point compactification of

Â is ˆ̃A = Â ∪ {φ0}, which means C0(Â) is exactly the continuous functions on ˆ̃A that vanish at φ0.
Before we prove the Gelfand-Naimark theorem, we will establish a few lemmas, which are interesting in

their own right.

Lemma 2.12. For any commutative C∗-algebra A, the Gelfand transform is a contractive (and hence con-
tinuous) homomorphism. Moreover, if A is unital, then for any a ∈ A,

σ(a) = σ(Γ(a)) = {φ(a) : φ ∈ Â} = ran(Γ(a)),

and Γ is isometric.

Proof. Multiplicativity follows from multiplicativity of characters. Notice that Γ(a) is automatically contin-

uous because the topology on Â is the weak-∗ topology. When A is nonunital, Γ(a)(φ0) = φ0(a) = 0 for each

a ∈ A, which, by the above remarks, means Γ(A) ⊂ C0(Â).

Since each character is contractive and the norm on C0(Â) is the sup norm, it follows that Γ is contractive.

Now, suppose A is unital. First, we show that a ∈ A is invertible iff Γ(a) ∈ C(Â) is invertible. The
forward direction follows immediately from the fact that Γ is a homomorphism. On the other hand, if a ∈ A
is not invertible, then it lives in some maximal ideal, meaning it is in the kernel of some nonzero character
φ ∈ Â. Then Γ(a)(φ) = φ(a) = 0, meaning Γ(a) is not invertible. It follows that σ(a) = σ(Γ(a)) for all
a ∈ A.

Now, suppose λ ∈ σ(a). Then there exists φ ∈ Â such that Γ(λ1− a)(φ) = 0, i.e. Γ(a)(φ) = λ. It follows
that ‖Γ(a)‖∞ = r(a).

Since A is commutative, all elements of A are normal. Hence it follows from Lemma 1.20 that for any
a ∈ A,

‖a‖ = r(a) = ‖Γ(a)‖∞.
So, Γ is isometric.

�

1∗-preserving isomorphism
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Notice that the above argument shows that when A is not unital, its Gelfand transform extends to the
Gelfand transform on its unitization.

Lemma 2.13. Let A be a commutative C∗-algebra. If a ∈ A is self-adjoint, then σ(a) ⊂ R.

Proof. Suppose a ∈ A is self-adjoint, and assume A ⊂ Ã. For each t ∈ R, the power series∑
n≥0

(ita)n

n!

converges to some element exp(ita) in Ã. One checks that

exp(ita)∗ =
∑
n≥0

(−ita)n

n!
= exp(−ita) = exp(ita)−1,

which means exp(ita) is a unitary in Ã. Now, consider the Gelfand map Γ : Ã→ C( ˆ̃A). By the preceeding

lemma, we know σ(a) = ran(Γ(a)) = {φ(a) : φ ∈ Â}. So, it suffices to show that φ(a) ∈ R for each φ ∈ Â.

Fix φ ∈ Â. Since φ is a character (i.e. continuous, linear, multiplicative), it follows that for any t ∈ R,

φ(exp(ita)) = φ(
∑
n≥0

(ita)n

n!
) =

∑
n≥0

(itφ(a))n

n!
= eitφ(a).

Since exp(ita) is a unitary, we know from Example 1.11 that eitφ(a) ∈ T for all t ∈ R. It follows that φ(a) ∈ R
as desired. �

Remark 2.14. We shall see soon that we did not need to assume A was commutative in Lemma 2.13. The
same argument would work by just considering the Gelfand transform on C∗(a, 1). However, we will need to
first establish that the spectrum of a in C∗(a, 1) is the same as its spectrum in A.

Now we are ready to prove the theorem.

Proof of Gelfand Naimark Theorem. First, we assume that A is unital. We know from Lemma 2.12 that Γ
is isometric, which means its image in C(Â) is closed.

For any self-adjoint a ∈ A, we have ran(Γ(a)) ⊂ R, which means Γ(a) = Γ(a) is self-adjoint. So
Proposition 1.6, tells us Γ is ∗-preserving.

So, altogether, Γ(A) is a unital, norm closed self-adjoint subalgebra of C(Â) where Â is compact and

Hausdorff. Then the Stone-Weierstrass Theorem ([Conway, I.5,6]) says that Γ(A) = C(Â) provided that it

separates the points of Â. But if φ and ψ are distinct points in Â, then they have distinct kernels, and so
Γ(A) separates the points of Â.

Now suppose that A is not unital. Then Γ extends to the isometric ∗-isomorphism Γ̃ : A → C(Â).

Since A is an ideal of co-dimension one, Γ̃(A) is a maximal ideal in C(Â) contained in the maximal ideal

{f ∈ C( ˆ̃A) : f(φ0) = 0}. Then Γ̃(A) = {f ∈ C( ˆ̃A) : f(φ0) = 0}, and it follows that Γ(A) = C0(Â) from the
aforementioned identifications. �

Corollary 2.15. Characters on commutative C∗-algebras are ∗-homomorphisms.

Proof. By Proposition 1.6 suffices to prove that they map self-adjoint elements to real numbers. For any
φ ∈ Â, and a ∈ A self-adjoint, we have Γ(a)(φ) = φ(a) ∈ R. �

For any element a in a C∗-algebra A, we write C∗(a) for the C∗-algebra generated by a. When A is unital,
C∗(a, 1) can be identified with the closure of the set of all polynomials on a, a∗, 1 (aka ∗-polynomials on a).

When a is a normal, B := C∗(a) is a commutative C∗-algebra, and so it is ∗-isomorphic to C0(B̂) ⊂ C( ˆ̃B).

Moreover, any character φ ∈ B̂ is determined by where it maps a. So, the map ˆ̃B → C given by φ 7→ φ(a) is

a homeomorphism onto Γ(a)( ˆ̃B), which we know is equal to σ(a). Moreover, the Gelfand map then identifies

a with the identity function z 7→ z on C(σ(a)). When a is not invertible, C0(B̂) corresponds to the ideal
consisting of functions that vanish at 0. If a is invertible, then 0 /∈ σ(a), so either way, we can say

C∗(a) ' C0(σ(a)\{0}).
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Problem: What do we mean by σ(a) here? By design, this must be the set of λ ∈ C such that λ1 − a is
not invertible in (the unitization of) B, i.e. this is σB(a), not σA(a). In general, σA(a) is smaller (there
are more potential inverses for a− λ1 in A ⊇ B), and we have no reason to suspect that these are the same
set. But for C∗-algebras, they are.

For now, we just establish the following.

Proposition 2.16. Let a be a normal element of a C∗-algebra A and B = C∗(a). Then B ' C0(σA(a)\{0})
and σA(a) = σB(a).

Proof. We have already established that B ' C0(σB(a)\{0}).
Suppose λ ∈ σB(a)\{0}. Then for each ε > 0, there exists b ∈ B with ‖Γ(b)‖ = 1 and ‖λΓ(b)−Γ(a)Γ(b)‖ <

ε. That means ‖b‖ = 1 and ‖λb−ab‖ < ε, which means λ1−a is not invertible in Ã. (Indeed, if c(λ1−x) = 1,
then 1 = ‖b‖ = ‖c(λ1− x)b‖ < ‖c‖ε for all ε.) �

This justifies the terminology “spectrum” for the space of characters on a commutative C∗-algebra.
Before moving too far away from Proposition 2.16, we remark that it yields a more general corollary.

Corollary 2.17. If a is a normal element in a unital C∗-algebra A and B is any unital C∗-subalgebra of A
containing a, then σA(a) = σB(a).

Now we come to an incredibly powerful tool, with which we conclude the section: The Functional Calculus.
Let A be a unital C∗-algebra, a ∈ A a normal element, and f ∈ C(σ(a)). We denote by f(a) the inverse image
of f under the Gelfand transform of C∗(a, 1) (the isometric ∗-isomorphism between C∗(a, 1) and C(σ(a))).

Corollary 2.18 (The Functional Calculus). Let a be a normal element of a unital C∗-algebra A and f, g ∈
C(σ(a)). Then

(1) f(σ(a)) = σ(f(a)),
(2) g(f(σ(a)) = (g ◦ f)(a), and
(3) if 0 ∈ σ(a) and f(0) = 0, then f(a) is in the non-unital C∗-algebra, C∗(a).

Proof. Since f(a) ∈ C∗(a, 1), we have

σ(f(a)) = σ(Γ(f(a))) = σ(f) = f(σ(a)).

Since Γ is a homomorphism, the second claim holds immediately when g is a Laurent polynomial (i.e. a
polynomial in z and z). Then the general case follows by approximating g uniformly with Laurent polyno-
mials.

The third claim follows immediately from Proposition 2.16. �

Exercise 2.19. If a ∈ A is a normal element in a unital C∗-algebra and Γ : C∗(a) → C0(σ(a)\{0}) the
Gelfand transform,

(1) What is its image Γ(a) ∈ C0(σ(a)\{0})?
(2) If a is invertible, is a−1 ∈ C∗(a)?

We will see this applied repeatedly in the section on positive elements.

Exercise 2.20. Suppose A and B are commutative unital C∗-algebras and φ : A → B a unital ∗-
homomorphism. Then for any a ∈ A and f ∈ C(σ(a)), we have φ(f(a)) = f(φ(a)).

Exercise 2.21. Let π : A → B be a surjective ∗-homomorphism between C∗-algebras and b ∈ B a self-
adjoint element. Show that b lifts to a self-adjoint element a ∈ A with π(a) = b and ‖a‖ = ‖b‖.

Exercise 2.22. Suppose A = C0(X). Write down an explicit formula for the Gelfand transform Γ : A →
C0(Â) in this case.
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3. Positive elements

Preview of Lecture:

• Exercise 3.3 is a cornerstone of the theory of C∗-algebras; see if you can figure out why it’s true
before lecture!

• In lecture, we will prove Proposition 3.6 and Example 3.9.
• We will not prove Corollary 3.7 in lecture.
• Theorem 3.10 is really important, and the proof uses all of the exercises that precede it in this

section, but it’s otherwise pretty straightforward. We won’t discuss the proof.
• We will discuss the proofs of Proposition 3.12 and Corollary 3.13 in lecture.

The Functional Calculus is an incredibly powerful tool for handling normal elements. Of course, not every
element in a C∗-algebra is normal. Nonetheless, by associating to each element a ∈ A the self-adjoint element
a∗a ∈ A, we have been able to spread the influence of the functional calculus to an entire non-commutative
C∗-algebra. It turns out that elements of the form a∗a take on an even more important structural role in
C∗-algebras, which we will explore now.

Definition 3.1. A self-adjoint element a in a C∗-algebra A is positive if σ(a) ⊂ [0,∞). We denote this by
a ≥ 0.

This allows us to define a partial ordering on the self-adjoint elements of A: for a and b self-adjoint, we
say a ≤ b if b− a ≥ 0.

Example 3.2. The positive elements in C0((0, 1]) are exactly the ones whose range (i.e. spectrum) lies in
[0,∞).

Let’s start with a few observations using the functional calculus:

Exercise 3.3. Each positive element in a C∗-algebra has a unique positive square root.

Exercise 3.4. If a ∈ A is a self-adjoint element, then there exist positive elements a+ and a− such that
a = a+ − a− and a+a− = a−a+ = 0.

Exercise 3.5. Let a ∈ A be self-adjoint, a+ and a− its positive and negative parts as in Exercise 3.4, and√
a+ and

√
a− their respective unique positive square roots. Show that a+

√
a− = 0 and

√
a+
√
a− = 0.

The following proposition is mostly technically useful.

Proposition 3.6. Let a be a self-adjoint element in a unital C∗-algebra A. Then the following are equivalent.

(1) a ≥ 0;
(2) a = b2 for some self-adjoint b ∈ A;
(3) ‖α1− a‖ ≤ α for all α ≥ ‖a‖;
(4) ‖α1− a‖ ≤ α for some α ≥ ‖a‖.

Proof. We assume A is unital or pass to its unitization.
That (1)⇒ (2) follows from the functional calculus, and that (3)⇒ (4) is clear.
Assume (2). Let f ∈ C(σ(b)) be given by f(z) = z2. Then

‖f‖sup = ‖b2‖ = ‖a‖,
and so (since σ(b) ⊆ R by Lemma 2.13) 0 ≤ f ≤ ‖a‖. Then 0 ≤ α − f ≤ α for any α ≥ ‖a‖. Then
(identifying α with the constant function on σ(b) when appropriate), we compute

‖α1− a‖ = ‖α(b)− f(b)‖ = ‖(α− f)(b)‖ = ‖α− f‖sup ≤ α.
It remains to show (4) ⇒ (1). Suppose α ≥ ‖a‖ is such that ‖α1 − a‖ ≤ α. Let h(z) = z denote the

identity function on σ(a). Then we have

α ≥ ‖α1− a‖ = ‖(α− h)(a)‖ = ‖α− h‖sup = sup
λ∈σ(a)

|α− λ|.

It follows that σ(a) ⊂ [0,∞). Since a was assumed to be self-adjoint, this means a ≥ 0. �
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Some concluding notation: The collection of positive elements in a C∗-algebra A is denoted by A+, and
the self-adjoints are often denoted by As.a.

Corollary 3.7. For a C∗-algebra A, the sets As.a. and A+ are both closed.

Proof. Suppose xn is a sequence in As.a. converging to x ∈ A. Then

‖x∗n − x∗‖ = ‖xn − x‖ → 0,

and so xn = x∗n → x∗. Hence x∗ = x. Now, suppose (an) ∈ A+ converges to a ∈ A. Then we know a = a∗

and ‖an‖ → ‖a‖. Assume A is unital or unitize. Let α = supn ‖an‖ ≥ ‖a‖. Then α1 − an → α1 − a, and
‖α1 − an‖ ≤ α for all n by Proposition 3.6. It follows that ‖α1 − a‖ ≤ α, which again by Proposition 3.6
implies that a is positive. �

Exercise 3.8. If a, b ∈ A are positive, then so is a+ b. (Note that we are not assuming they commute – use
the previous exercise.) If a and b moreover commute, then ab ≥ 0. Can you think of two positive elements
in a C∗-algebra whose product is not positive? (Hint: For the first part, you can assume A is unital or work

in Ã (why?). Then use Proposition 3.6. For the second part consider operators in M2(C).)

Example 3.9. The positive operators in B(H) are exactly the positive semi-definite operators.
Suppose T ∈ B(H). By the preceeding proposition, if T ≥ 0, then there exists a self-adjoint S ∈ B(H)

such that T = S2 = S∗S. Then for any x ∈ H, we have

〈Tx, x〉 = 〈S∗Sx, x〉 = 〈Sx, Sx〉 = ‖Sx‖2 ≥ 0.

Now, suppose 〈Tx, x〉 ≥ 0 for all x ∈ H. By Exercise 7.42 from Day 1 lecture notes, T = T ∗ and so
σ(T ) ⊂ R. So, given λ < 0 we want to show that T − λI is invertible. If λ < 0, then for every nonzero
x ∈ H,

‖(T − λI)x‖2 = |〈(T − λI)x, (T − λI)x〉|
= |‖Tx‖2 + 2|λ|〈Tx, x〉+ |λ|2‖x‖2|
= ‖Tx‖2 + 2|λ|〈Tx, x〉+ |λ|2‖x‖2

≥ |λ|2‖x‖2.
That means that for every x ∈ H, ‖(T − λI)x‖ ≥ |λ|‖x‖. In other words, the operator T − λI is bounded
below, which means it is injective (Exercise 7.46 from Day 1 lecture notes). So, by the Open Mapping
Theorem, to show that T − λI is invertible, it remains to show that it is surjective.

For any operator S ∈ B(H), ker(S) = (S∗(H))⊥ (Exercise 7.44 from Day 1 lecture notes). Since (T−λI) =
(T−λI)∗, the above argument shows that ker(T−λI) = 0 = ((T−λI)(H))⊥, which means T−λ is surjective
and thus invertible.

Theorem 3.10. For any a ∈ A, the element a∗a is positive.

Proof. Suppose b = a∗a ∈ A. Then b is self-adjoint, and hence by Exercise 3.4, we can write it as b = b+−b−
for some b+, b− ≥ 0 with b+b− = 0. We want to show that b− = 0. Since it is self-adjoint, we know
‖b−‖ = r(σ(b−)), and so it suffices to show that σ(b−) = {0}. Now, for notational ease, we write c = a

√
b−,

where
√
b− is its unique positive square root. By Exercise 3.5, we have that

√
b−b+ = 0, and so we compute

−c∗c = −
√
b−a

∗a
√
b− = −

√
b−b
√
b− = −

√
b−(b+ − b−)

√
b− = b2−.

Then −c∗c = b2− ≥ 0, which means σ(−c∗c) ⊂ [0,∞).
Write c = Re(c) + iIm(c) as in (1.1). Then we compute

cc∗ = [c∗c+ cc∗]− c∗c
= [(Re(c) + iIm(c))∗(Re(c) + iIm(c)) + (Re(c) + iIm(c))(Re(c) + iIm(c))∗]− c∗c
= 2(Re(c)2 + Im(c)2) + b2−.

Then cc∗ is the sum of positive elements, and hence is positive. Since2 σ(cc∗)∪{0} = σ(cc∗)∪{0}, it follows
that both cc∗ and c∗c have non-negative spectra, which means both are positive. But then we’ve shown that

2This is a more general ring theoretic fact that σ(xy) ∪ {0} = σ(yx) ∪ {0} for any x, y in a complex unital ring. Indeed, if
0 6= λ /∈ σ(xy), then there exists z such that z(λ − xy) = 1 = (λ − xy)z. Then λ−1(λ + yzx) is the inverse of λ − yx. Check

this if you haven’t seen it before!
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±c∗c are both positive. It follows that σ(c∗c) = {0}. Since c∗c is self-adjoint, its norm is its spectral radius,
and so

0 = ‖c∗c‖ = ‖ − c∗c‖ = ‖b2−‖ = ‖b−‖2,
and we are done. �

Exercise 3.11. Let A be a C∗-algebra. Show the following:

(1) If a, b ∈ A are self-adjoint with a ≤ b and c ∈ A, then c∗ac ≤ c∗bc. (Hint: Take a square root and
use the previous theorem.)

(2) Assuming A is a unital C∗-algebra and a ∈ A positive, show that a ≤ ‖a‖1. Moreover, ‖a‖ ≤ 1 iff
a ≤ 1. In this case we also have 1− a ≤ 1 and ‖1− a‖ ≤ 1.

(3) If A is unital and a ∈ A is invertible, then so is a∗, a∗a, and
√
a∗a. Moreover, the inverses are in

C∗(a).

3.1. Polar decomposition. For each a ∈ A, we define the positive operator |a| to be the unique positive
square root of a∗a, i.e.

|a| =
√
a∗a.

Proposition 3.12. For each operator T ∈ B(H), there is a unique partial isometry U ∈ B(H) with ker(U) =
ker(T ) and U |T | = T . Moreover |T | ∈ C∗(T ) and U ∈ C∗(T )′′. If T is invertible, then U is a unitary.

The description T = U |T | is called the polar decomposition of T , in analogy with the fact that every
complex number z can be written as a norm-1 element eit, times a non-negative real number r. U is
sometimes called the polar part of T and |T | is the positive part.

Proof. Note that for all ξ ∈ H, we have

‖Tξ‖2 = 〈Tξ, Tξ〉 = 〈T ∗Tξ, ξ〉 = 〈|T |2ξ, ξ〉 = 〈|T |ξ, |T |ξ〉 = ‖|T |ξ‖2. (3.1)

It follows that the linear map U0 : |T |H → TH given by |T |x 7→ Tx is isometric, and hence extends to an

isometry |T |H → TH (also denoted U0). We define U ∈ B(H) to be U0 on |T |H and 0 on (|T |H)⊥. It
follows from Exercise 7.39 from the Day 1 Lecture Notes that U is a partial isometry with U∗|TH = U−1

0

and ker(U∗) = (TH)⊥, and by definition U |T | = T . Moreover, we have from (3.1) and Exercise 7.44 from
the Day 1 Lecture Notes that ker(U) = |T |(H)⊥ = ker(|T |) = ker(T ). For uniqueness, suppose V ∈ B(H)
is another partial isometry with ker(V ) = ker(T ) and V |T | = T . Since V ||T |H = U ||T |H, it follows from

continuity that they also agree on |T |H. As ker(V ) = ker(T ) = ker(U) = (|T |(H))⊥ by construction, the

fact that H = |T |H ⊕ (|T |H)⊥ implies that V ξ = Uξ for any ξ ∈ H.
It follows from the functional calculus that |T | ∈ C∗(T ). Now, suppose S ∈ C∗(T )′. If ξ ∈ ker(T ) =

ker(U), then TSξ = STξ = 0 and so Sξ ∈ ker(T ) = ker(U). Then USξ = 0 = SUξ for every ξ ∈ ker(T ) =
(|T |H)⊥. For ξ = |T |η ∈ |T |H, we have

USξ = US|T |η = U |T |Sη = TSη = STη = SU |T |η = SUξ.

Since |T |H is dense in |T |H, it follows that US = SU on |T |H and on (|T |H)⊥. Then it follows by a linearity
argument as above that S and U commute. Hence U ∈ C∗(T )′′.

Finally, if T is invertible, then so is
√
T ∗T . Then we have

U = T (T ∗T )−1/2,

and one checks that U∗U = UU∗ = I. �

As the range space of U is TH, and U is a partial isometry, it follows that UU∗ = projTH. Similarly, the
source projection of U is U∗U = proj|T |H.

Corollary 3.13. Let T ∈ B(H) with polar decomposition T = U |T |. Then |T ∗| = U |T |U∗ and T ∗ = U∗|T ∗|.

Proof. Observe that U |T |U∗ is positive, and since U∗U = proj|T |H and T ∗ = (U |T |)∗ = |T |U∗,

(U |T |U∗)(U |T |U∗) = U |T |2U∗ = TT ∗.

By the uniqueness of the square root, we have U |T |U∗ = (TT ∗)1/2 = |T ∗|. From this we further deduce

U∗|T ∗| = U∗U |T |U∗ = |T |U∗ = (U |T |)∗ = T ∗. �
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Exercise 3.14. Where possible, give geometric as well as algebraic explanations for the following statements
about the polar decomposition:

(1) U∗U |T | = |T |,
(2) U∗T = |T |, and
(3) UU∗T = T .

Exercise 3.15. Show that T is compact iff |T | is compact.

In general, for T ∈ B(H), the partial isometry U in the polar decomposition T = U |T | is not in C∗(T ).
However, it turns out that if you take any continuous function f ∈ C(σ(|T |)\{0}), the operator Uf(|T |) is
in C∗(T ).

Proposition 3.16. Let T ∈ B(H) with polar decomposition T = U |T |, and f ∈ C0(σ(|T |)\{0}). Then
Uf(|T |) ∈ C∗(T ). Moreover, U∗US = S for all S ∈ C∗(T ).

Proof. By Stone-Weierstraß, any f ∈ C(σ(|T |)) is the norm limit of polynomials. Moreover, if f(0) = 0, then
we can assume the same for an approximating sequence of polynomials. (In other words f ∈ C(σ(|T |)\{0})
can be approximated by polynomials in C(σ(|T |)\{0}). Note that these are polynomials with zero constant
term, i.e. p(0) = 0.) So, if the claim holds for all polynomials p with p(0) = 0, it holds for any f ∈
C(σ(|T |)\{0}). Let p(z) =

∑n
k=1 λkz

k. Then

Up(|T |) =

n∑
k=1

λkU |T |k =

n∑
k=1

λkT |T |k−1 ∈ C∗(T ).

�

Exercise 3.17. Describe the projections in C0(X) where X is

(1) (0, 1],
(2) [0, 1],
(3) [0, 1/3] ∪ [1/3, 1].

Exercise 3.18. Let π : A→ B be a surjective ∗-homomorphism between C∗-algebras and b ∈ B a positive
element. Show that b lifts to a positive element a ∈ A – that is, there is a ∈ A with π(a) = b – such that
‖a‖ = ‖b‖.

4. Ideals, Approximate Units, and ∗-homomorphisms

Preview of Lecture: To help guide your reading, we indicate here which of the following material we will
address in lecture and which we will assume familiarity with:

The lecture for this section will focus on Theorem 4.11. The techniques in the proofs of Lemma 4.6 and
Theorem 4.9 do not translate well to lecture, but that does not detract from their importance. In fact,
they showcase a powerful yet technical tool: an approximate unit (a.k.a. approximate identity). Many C∗-
algebraists (guilty!) are intimidated by these at first. But the first time you use them in your own research,
you’ll love them for life.

Definition 4.1. An approximate identity in a C∗-algebra A is an increasing net (eλ)λ∈Λ of positive contrac-
tive elements (i.e. 0 ≤ eγ ≤ eλ and ‖eλ‖ ≤ 1 for all λ, γ ∈ Λ with λ ≥ γ) such that

lim
λ
‖eλa− a‖ = lim

λ
‖aeλ − a‖ = lim

λ
‖eλaeλ − a‖ = 0.

Theorem 4.2. Every C∗-algebra has an approximate identity. Moreover, if the C∗-algebra is separable, the
identity can be chosen to be countable.

The proof relies heavily on the functional calculus. We will not give it here, though it is not too sophisti-
cated. Instead, we point to the proofs given in [5, Theorem 1.4.8] or [7, Theorem 3.1.1].
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Remark 4.3. A C∗-algebra with a countable approximate identity is called σ-unital. Any separable C∗-
algebra is σ-unital, but there exist non-separable σ-unital C∗-algebras. A silly example is B(`2) since it’s
actually unital; a non-silly example is C0(X) where X is a locally compact but not σ-compact Hausdorff
space. Many results that hold in the separable setting can be generalized to the σ-unital setting.

There are a few interesting characterizations of a σ-unital C∗-algebra, such as containing a strictly positive
element, which is an element h ∈ A such that φ(h) > 0 for every nonzero positive φ ∈ A∗. For more on this,
see [11, Section 3.10].

Example 4.4. In K(`2), the projections

Pn : (ξn)n 7→ (ξ1, ..., ξn, 0, 0, ...),

form an approximate identity.
For a general Hilbert space, we form the approximate identity for the compact operators by nets of

projections with finite rank where the order is given by the natural order on the projections, i.e. p ≤ q iff
pq = qp = p.

Exercise 4.5. Determine an approximate identity for C0((0, 1]). (A sketch will do.)

Here is a quick application of approximate units.

Lemma 4.6. Every closed two-sided ideal in a C∗-algebra is self-adjoint.

Proof. Let J be a closed two-sided ideal in A. Then B = J∩J∗ is a C∗-subalgebra of A such that x∗x, xx∗ ∈ B
for all x ∈ J . Let (eλ) be an approximate identity for B. Then for any x ∈ J , we have x∗x− xx∗eλ ∈ J and
hence

lim
λ
‖x∗ − x∗eλ‖2 = lim

λ
‖(x− eλx)(x∗ − x∗eλ)‖

= lim
λ
‖(xx∗ − xx∗eλ)− eλ(xx∗ − xx∗eλ)‖ = 0.

Since x∗eλ ∈ J, it follows that x∗ ∈ J and so J = J∗. �

This means that every ideal in a C∗-algebra is a C∗-subalgebra, which means that each ideal has an
approximate unit. In fact, more is true. We say a net (aλ) in a C∗-algebra A is quasi-central if limλ ‖aλb−
baλ‖ = 0 for every b ∈ A. We have the following extension of the above theorem ([5, Theorem I.9.16]).

Theorem 4.7. Every ideal of a C∗-algebra has a quasi-central approximate unit.

Exercise 4.8. Suppose A is a C∗-algebra with closed two-sided ideal J / A and C∗-subalgebra I ⊂ A such
that I / J . Show that I / A.

An approximate identity will also enable us to prove that the quotient of any C∗-algebra by a closed
two-sided ideal is again a C∗-algebra.

Theorem 4.9. Let A be a C∗-algebra and J / A. Then A/J is a C∗-algebra.

Proof. Since J ⊂ A is a Banach subalgebra, a basic result from functional analysis (cf. [4, Theorems III.4.2
and VII.2.6]) implies that A/J is a Banach algebra under the norm ‖a + J‖ = infx∈J ‖a + x‖. (Exercise:
Prove it!) Moreover, from the fact that ‖b‖ = ‖b∗‖ for all b ∈ A, a two-line calculation shows that ‖a+J‖ =
‖a∗ + J‖ for all a ∈ A. So, we just check the C∗-identity for ‖a+ J‖ = infx∈J ‖a+ x‖. Let a ∈ A and (eλ)
an approximate identity for J . First, we claim that ‖a + J‖ = limλ ‖a − aeλ‖. Since aeλ ∈ J for each λ,
the ≤ inequality is clear. For the other direction, let ε > 0 and x ∈ J such that ‖a+ J‖+ ε > ‖a− x‖. By

possibly passing to Ã, we assume A is unital. Then by Exercise 3.11, ‖1− eλ‖ ≤ 1, and

lim
λ
‖a− aeλ‖ ≤ lim

λ
‖(a− x)(1− eλ)‖+ ‖x− xeλ‖

≤ lim
λ
‖a− x‖+ ‖x− xeλ‖

≤ ‖a− x‖ < ‖a+ J‖+ ε.
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Now, we can check the C∗-norm:

‖(a+ J)∗(a+ J)‖ = ‖a∗a+ J‖ = lim
λ
‖a∗a(1− eλ)‖ ≥ lim

λ
‖1− eλ‖‖a∗a(1− eλ)‖

≥ lim
λ
‖(1− eλ)aa∗(1− eλ)‖ = lim

λ
‖a(1− eλ)‖2 = ‖a+ J‖2

= ‖a∗ + J‖‖a+ J‖ ≥ ‖(a+ J)∗(a+ J)‖.
�

Exercise 4.10. Let π : A → B be a ∗-homomorphism between C∗-algebras. Check that ker(π) is a closed
two-sided ideal in A and the quotient map q : A→ A/ ker(π) is a ∗-homomorphism.

Now, we are ready to build on Proposition 1.21 to get a very powerful theorem for ∗-homomorphisms.

Theorem 4.11. An injective ∗-homomorphism between C∗-algebras is isometric. The image of any ∗-
homomorphism between C∗-algebras is a C∗-algebra (in particular, the range of any ∗-homomorphism between
C∗-algebras is closed.

Proof. Recall from Proposition 1.21 that a ∗-homomorphism φ : A→ B between C∗-algebras is contractive
and for any a ∈ A, φ(σ(a)) ⊂ σ(a). We give the proof under the assumption that our C∗-algebras and our
maps are all unital and leave the adaption to the non-unital setting as an exercise.

Let φ : A → B be an injective ∗-homomorphism. Note that for any a ∈ A, ‖a‖2 = ‖a∗a‖ and ‖φ(a)‖2 =
‖φ(a)∗φ(a)‖2, so by Theorem 3.10, it suffices to prove that ‖φ(a)‖ = ‖a‖ for a ∈ A positive. Suppose
‖φ(a)‖ < ‖a‖ for some positive a ∈ A. Note that φ(a) ≥ 0 since a = b∗b for some b ∈ A, and so
φ(a) = φ(b)∗φ(b). So, the assumption that ‖φ(a)‖ < ‖a‖ is equivalent to the assumption that r(a) := α >
β := r(φ(a)). Using the continuous functional calculus, we identify C∗(a) = C0(σ(a)\{0}) ⊂ C0((0, α]) and
C∗(φ(a)) = C0(σ(φ(a))\{0}) ⊂ C((0, β]). Now, define f ∈ C((0, α]) so that f |(0,β] = 0, f(α) = 1, and f is
affine on [β, α].

Then

‖f(a)‖ = sup
λ∈σ(a)

|f(λ)| = 1,

but

‖f(φ(a))‖ = sup
λ∈σ(φ(a))

|f(λ)| = 0.

In particular, f(a) 6= 0 and f(a) ∈ kerφ, contradicting φ being injective.
Now, suppose π : A → B is a ∗-homomorphism with kernel J = ker(π). Then A/J is a C∗-algebra by

Theorem 4.9. Let q : A → A/J be the quotient map. Then q is a ∗-homomorphism and π factors through
the quotient A/J , i.e. there exists a bijective ∗-homomorphism ρ : A/J → π(A) given by ρ(q(a)) = π(a).
(Indeed, this is just the first isomorphism theorem for algebras. The map ρ is ∗-preserving because q and π
are: ρ(q(a)∗) = ρ(q(a∗)) = π(a∗) = π(a)∗ = ρ(q(a))∗.)

So, it follows that ρ : A/J → B is an injective ∗-homomorphism between C∗-algebras, which by the first
part of this theorem, means that it is isometric. It follows from this that its image π(A) is closed in B. �

Exercise 4.12. Extend this to the general case where the assumptions that A, B, and φ are not unital.
Here’s an idea of what to check. If A is not unital, then we can extend φ to Ã as we did in Proposition 1.18
to map 1 ∈ Ã to 1 ∈ B or 1 ∈ B̃ depending on whether or not B is unital. If A is unital, then check that
φ(1) is the unit in the C∗-subalgebra C∗(φ(A)) ⊂ B, and we can just replace B with this C∗-subalgebra in
the proof.

Remark 4.13. There is a class of C∗-subalgebras called hereditary subalgebras, which generalizes the notion
of ideal. A C∗-subalgebra A ⊂ B is hereditary if for any positive elements a ∈ A and b ∈ B, if b ≤ a, then
b ∈ A. It turns out that ideals are always hereditary ([5, Theorem 1.5.3]).

Definition 4.14. A representation of a C∗-algebra A is a ∗-homomorphism π : A→ B(H) for some Hilbert
space H. We say a representation π is nondegenerate if π(A)H is dense in H.

A paradigm example of a degenerate representation is where H decomposes as a nontrivial direct sum
H1 ⊕ H2 and π(A) can be realized as a ∗-subalgebra of operators on B(H1) identified with the operators
whose kernels contain H2.
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Remark 4.15. Non-degeneracy is a regular assumption, which avoids some obnoxious pitfalls. Many times
theorems which are phrased for nondegenerate representations still hold without this assumption. The trick
usually amounts to taking a degenerate representation π : A → B(H) and to define its restriction to the
closure of π(A)H. Though some delicacy may be required after this, depending on what statement you are
trying to prove. We will point out an example later. (Theorem 11.17)

Exercise 4.16. We say a family of representations {πi : A → B(Hi)}i∈I for a C∗-algebra A is separating
if for any a, b ∈ A, there exists i ∈ I such that πi(a) 6= πi(b). Define π : A → B(⊕iHi) by π(a) = ⊕iπi(a).
Show that π is a faithful representation, i.e. an isometric representation, if the family {πi}i∈I is separating.

Now, suppose {aj}j∈J is a dense subset of A. We cannot conclude from knowing that {πi}i∈I is separating
for {ai}i∈I that π is faithful (why?). However, if we know that for each j ∈ J , there exists i ∈ I such that
‖πi(aj)‖ = ‖aj‖, then we can conclude that π is faithful (why?).

Exercise 4.17. Suppose A is a commutative C∗-algebra and X a locally compact Hausdorff space so that
A ' C0(X). If A is separable, what does that say about X? (Yes, X is actually Â, but we call it X to
remove all the extra distracting information.)
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5. Group C∗-algebras

Preview of Lecture: Today’s C∗-lectures will discuss 3 classes of examples of C∗-algebras: group C∗-
algebras, AF algebras, and Cuntz–Krieger algebras. There’s a quick preview at the beginning of each
section.

For the group C∗-algebras, in lecture, we’ll discuss Proposition 5.7 and Example 5.9. We’ll save Proposition
5.10 for Wednesday.

Most of the steps of the proof of Proposition 5.17 are relatively straightforward; the one which re-

quires the most creativity is the fact that h(ω) ∈ Ĉ∗r(G) for all ω ∈ Ĝ so we’ll discuss that in lecture.

A useful source of examples and motivation for C∗-theory are the group C∗-algebras. Indeed, one can view
a group C∗-algebra as encoding the (infinite-dimensional) representations of the group. (See Exercise 5.12.)
Understanding these representations better was a main motivation for a lot of the early work on C∗-algebras,
and group C∗-algebras are still a fundamental source of examples and inspiration for research today.

Definition 5.1. Let G be a discrete group. The complex group algebra CG is the algebra generated by
{ug : g ∈ G}, where uguh = ugh.

By definition, then, CG consists of all finite products of finite linear combinations of {ug : g ∈ G}.
Observe that CG is always unital (what’s the unit?). Moreover, we have a natural involution on CG:

(agug)
∗ := agug−1 .

(Check for yourself that this formula indeed gives an involution.)
Given two finite linear combinations of generators

∑
g∈G agug,

∑
g∈G bgug ∈ CG, then the formula for the

multiplication of the generators {ug}g∈G implies that∑
g∈G

agug

∑
g∈G

bgug

 =
∑
h∈G

(∑
k∈G

akbk−1h

)
uh.

This multiplication may look familiar if you’ve seen convolution multiplication or the Fourier transform
before. For functions φ, ψ on a discrete group G, their convolution product is

φ ∗ ψ(g) :=
∑
h∈G

φ(h)ψ(h−1g).

That is, if we think of the coefficients (ag)g∈G of an element
∑
g∈G agug ∈ CG as a function from G to C,

then the function associated to the product (
∑
g∈G agug)(

∑
g∈G bgug) is precisely the convolution product

of the functions (ag)g∈G and (bg)g∈G.
If we want to complete the ∗-algebra CG into a C∗-algebra, we first need a norm. In our case this will

come from a representation.

Definition 5.2. A representation of a ∗-algebra A is a ∗-preserving homomorphism π : A→ B(H) for some
Hilbert space H. If A is unital, we will assume π is unital in that it takes the unit of A to the unit of B(H).
If π is injective we say that it is faithful.

Note that if π is a representation of CG and a ∈ CG, then the fact that B(H) is a C∗-algebra implies that

‖π(a∗a)‖ = ‖π(a)∗π(a)‖ = ‖π(a)‖2.

In particular, the norm on A induced by π, ‖a‖π := ‖π(a)‖, satisfies the C∗-identity. Therefore,

C∗π(G) := π(CG)

is a C∗-algebra.

Exercise 5.3. If π is a representation of CG, what sort of operator will π(ug) be? Can you say anything
about ‖π(ug)‖?
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There is a natural representation of CG on `2(G) = span{δg : g ∈ G}, called the left regular representation
and often denoted by λ: On the generators, we define

λ(ug)(δh) = δgh,

and extend λ to CG by requiring it to be a linear multiplicative map.

Exercise 5.4. What is the adjoint of λ(ug)? Is λ ∗-preserving?

Observe (check!) that λ is injective. So, we can think of CG as a subalgebra of B(`2(G)). The reduced
group C∗-algebra C∗r(G) is defined to be

C∗r(G) := λ(CG).

So that we don’t always have to choose a specific representation (and for abstract-nonsense reasons) we
often want to work with the universal group C∗-algebra C∗(G), which is defined to be the completion of CG
in the universal norm

‖a‖u := sup{‖π(a)‖ : π a representation of CG}. (5.1)

A reader who is familiar with set theory might notice that we have made no assertion about whether the
collection of all representations of CG is a set. How, then, do we know that we can take the supremum in
(5.1)? Recall that, for any a ∈ CG and any representation π of CG, the quantity ‖π(a)‖ is a real number,
being the norm of an operator on some Hilbert space. So the collection in (5.1) is a subclass of the set of
all real numbers, and basic results from set theory guarantee that a subclass of a set is still a set. It follows
that the universal norm is well defined.

In fact, the universal norm is bounded above by the `1 norm:

Proposition 5.5. If π is a representation of CG, then for any a =
∑
g∈F agug ∈ CG we have ‖π(a)‖ ≤∑

g∈F |ag|.

Proof. Since π(ug) is a unitary for all g, and hence has norm 1, the triangle inequality tells us that

‖π(a)‖ ≤
∑
g∈F
‖agug‖ =

∑
g∈F
|ag|. �

It follows that if a net in CG is Cauchy in the `1 norm, then that net is also Cauchy in C∗(G) (and
C∗r(G)). In other words, we could alternatively think of C∗(G) and C∗r(G) as completions in a C∗-norm of
`1(G). This will come in handy sometimes, for example in Section 5.1.

Proposition 5.6. CG is dense in both C∗r(G) and C∗(G).

Proof. The fact that CG is dense in C∗r(G) follows from the injectivity of λ. Similarly, to see that CG is
dense in C∗(G), it will suffice to show that if a ∈ CG is nonzero, then ‖a‖u 6= 0. Since ‖a‖u ≥ ‖λ(a)‖ by the
definition of the universal norm, it follows that ‖a‖u = 0 implies a = 0. �

The reason we call C∗(G) the “universal group C∗-algebra” is the following proposition. While the argu-
ment used in the proof is straightforward, it’s a very powerful technique for constructing ∗-homomorphisms
out of many examples of C∗-algebras, not just group C∗-algebras.

Proposition 5.7. For any representation π of CG, there is an associated surjective ∗-homomorphism π̂ :
C∗(G)→ C∗π(G).

Proof. We define π̂ first for a ∈ CG ⊆ C∗(G):

π̂(a) := π(a) ∈ C∗π(G).

As π is a representation of CG, in order to extend π̂ to a ∗-homomorphism on all of C∗(G), I claim that it
suffices to check that π̂ is norm-decreasing on CG ⊆ C∗(G). Why? Well, once we know that ‖π̂(a)‖ ≤ ‖a‖u
for all a ∈ CG, then if x ∈ C∗(G) is a norm limit of elements in CG, x = limi ai, then in particular,
given any ε > 0, we can find I such that ‖ai − aj‖u < ε whenever i, j ≥ I. If π̂ is norm-decreasing on
CG ⊆ C∗(G), then it follows that (π̂(ai))i is Cauchy in C∗π(G). As C∗π(G) is complete, limi(π̂(ai))i has a
limit, call it y. Defining π̂(x) := y, one can check that π̂(x) is independent of the approximating Cauchy
sequence (ai)i ⊆ CG ⊆ C∗(G), and that this definition makes π̂ into a ∗-homomorphism.
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Thus, it (essentially) suffices to check that ‖π̂(a)‖ ≤ ‖a‖u for all a ∈ CG ⊆ C∗(G). However, the definition
of the universal norm makes this immediate:

‖π̂(a)‖ = ‖π(a)‖ ≤ ‖a‖u. �

Exercise 5.8. Fill in the gaps in the proof of Proposition 5.7. (This includes checking that π̂ is surjective.)

Example 5.9. Let G = Z (under addition). Observe that if u ∈ B(H) is a unitary, then we obtain a
representation π : CZ → B(H) given by defining π(u1) = u. (where u1 corresponds to the cyclic generator
of Z). Conversely, any representation π of CZ arises in this way.

It follows that, for any u ∈ B(H), there is a surjective ∗-homomorphism π̂ : C∗(Z) → C∗({u}). In other
words, C∗(Z) is the universal C∗-algebra generated by a unitary.

Now, consider C∗r(Z). The Fourier transform F gives us a unitary isomorphism F : `2(Z)→ L2(T),

F(ξ)(z) =
∑
n∈Z

ξnz
n,

which takes convolution multiplication to pointwise multiplication. That is, if we define, for f ∈ C(T), the
operator Mf ∈ B(L2(T)) by

Mfξ(z) = f(z)ξ(z),

then the Fourier transform implements an isomorphism

C∗r(Z) ∼= {Mf : f ∈ C(T)} ⊆ B(L2(T)).

However, one easily checks that the ∗-algebra structure on {Mf : f ∈ C(T)} agrees with the ∗-algebra
structure on C(T), and ‖Mf‖ = ‖f‖∞, so {Mf : f ∈ C(T)} ∼= C(T) as C∗-algebras.

Finally, consider the C∗-algebra C(T). The Stone-Weierstrass Theorem (cf. [4, Theorem I.5.6]) tells us
that C(T) is generated, as a C∗-algebra, by the function

f(z) = z.

It turns out that C(T) can also be described as the universal C∗-algebra generated by a unitary. That is,

C∗(Z) ∼= C∗r(Z) ∼= C(T).

Proposition 5.10. If G ≤ H then C∗(G) is a norm-closed subalgebra of C∗(H). The same is true for the
reduced C∗-algebras.

Proof. Let ι : CG → CH denote the canonical inclusion. We first claim that if we view CG (respectively
CH) as a subalgebra of C∗(G) (resp. C∗(H)), then ι is norm-decreasing. It then follows (using the same
argument as in Proposition 5.7) that ι induces an ∗-homomorphism ι̃ : C∗(G)→ C∗(H).

To see that ι is norm-decreasing, observe that every representation of CH restricts to a representation of
CG. Thus, the set used in (5.1) to compute the universal norm for G contains the set

{‖π(a)‖ : π a representation of CG which extends to a representation of CH}.
It follows that ‖ι(a)‖u,H ≤ ‖a‖u,G for all a ∈ CG.

The proof that ι̃ is injective will be relatively straightforward once we’ve proved the Gelfand-Naimark-
Segal Theorem, so we’ll come back to it. �

Here are two more structural results about C∗(G).

Proposition 5.11. ,

(1) C∗(G) is never simple unless G = {e} is trivial.
(2) If |G| = n and G is abelian, then C∗(G) ∼= Cn.

Proof. (1) For any group G, there is a representation π of CG on C, given by

π(ug) = 1, ∀ g ∈ G.
Observe that π is onto. If G 6= {e}, then we can choose g 6= h ∈ G, and

ug − uh ∈ kerπ.

Thus, kerπ is a nontrivial ideal in C∗(G).
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(2) As a vector space, CG = C|G|, which is already complete, so CG ∼= C∗(G) is a finite dimensional
vector space. Notice also (Exercise 5.14) that if G is abelian, so is CG and hence C∗(G). Since every finite
dimensional C∗-algebra is a direct sum of matrix algebras by Proposition 6.1 and any nontrivial matrix
algebra is nonabelian, the result follows. �

Exercise 5.12. Recall that the set U(H) of unitaries in B(H) is a group under multiplication. A unitary
representation of a group G is a group homomorphism ρ : G→ U(H). Show that representations of CG are
in bijection with unitary representations of G.

Remark 5.13. In this section we’ve focused on discrete groups and their C∗-algebras. However, one can also
define the group C∗-algebra for any group G which has a locally compact Hausdorff topology with respect to
which multiplication and inversion are continuous (for short, these are called locally compact groups). While
a lot of the theory of (discrete) group C∗-algebras goes through smoothly in the locally compact setting,
Proposition 5.10 is a major exception: it is not true for locally compact groups. For example, consider R
under addition. It turns out that C∗(R) = C0(R), and Z is a subgroup of R, but C∗(Z) ∼= C(T) is not
a subalgebra of C0(R). This example highlights the other major exception: Proposition 5.6. Notice that
C0(R) is not unital. In particular, it contains no units, let alone a copy of R– that’s right, C∗(R) does not
contain R.

5.1. Abelian group C∗-algebras. If G is abelian, then uguh = uhug for all g, h ∈ G, and so CG is also
abelian.

Exercise 5.14. Show that any C∗-completion of CG is an abelian C∗-algebra.

By Exercise 5.14 and the Gelfand-Naimark Theorem (Theorem 2.11), it follows that C∗r(G) = C0(Ĝ) for

some locally compact Hausdorff space Ĝ. In fact, Ĝ must be compact since CG (hence C∗r(G)) is unital. So

what is this space Ĝ exactly?

From the Gelfand-Naimark Theorem, we know we have Ĝ = Ĉ∗r(G), the spectrum of C∗r(G). However,

I’ve used the new symbol Ĝ deliberately.

Definition 5.15. For an abelian group G, Ĝ denotes the Pontryagin dual of G:

Ĝ = {ω : G→ T group homomorphism}. (5.2)

Exercise 5.16. Show that Ĝ is also a group, under pointwise multiplication. Do you need to assume G is
abelian?

Our next main goal is to prove Proposition 5.17, which shows that Ĝ and Ĉ∗r(G) are homeomorphic. In

order to do that, we need to identify the topology on Ĝ.

The topology on Ĝ (when G is discrete) is the point-norm topology: a net (ωi)i∈Λ ⊆ Ĝ is Cauchy iff, for

all g ∈ G, the nets (ωi(g))i∈Λ ⊆ T are Cauchy.3 Equivalently, a basis for the topology on Ĝ consists of the
sets

Bε,F (ω) := {η ∈ Ĝ : |η(g)− ω(g)| < ε ∀ g ∈ F finite}.

Proposition 5.17. The map h : Ĝ→ Ĉ∗r(G) given by, for ω ∈ Ĝ and a =
∑
g∈F agug ∈ CG,

h(ω)(a) =
∑
g∈G

agω(g), (5.3)

is a homeomorphism of topological spaces.

Proof. We first need to show that the formula for h(ω) given in Equation (5.3) does indeed define an element

of Ĉ∗r(G). We begin by showing that h(ω) is a ∗-algebra homomorphism. If b =
∑
g∈G bgug is another element

of CG,

h(ω)(ab) =
∑
g∈G

(∑
h∈G

ahbh−1g

)
ω(g),

3If G abelian but not discrete, its Pontryagin dual still exists, but the topology is that of uniform convergence on compact

sets. For discrete groups, these are the same.
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whereas the fact that ω is a group homomorphism implies that

h(ω)(a) · h(ω)(b) =

∑
g∈G

agω(g)

(∑
h∈G

bhω(h)

)
=
∑
k∈G

(∑
h∈G

akh−1bh

)
ω(k).

Making the change of variable h 7→ h−1k, we see that h(ω)(ab) = h(ω)(a) · h(ω)(b) as claimed. Similarly,

since ω(g−1) = ω(g)−1 = ω(g),

h(ω)(a∗) =
∑
g∈G

agω(g−1) =
∑
g∈G

agω(g) = (h(ω)(a))∗.

To see that our formula for h(ω) extends to a bounded linear functional on C∗r(G), we need to show that

|h(ω)a| ≤ ‖a‖r for all a ∈ CG. To that end, we first observe that for any χ ∈ Ĉ∗r(G), if we define

ã =
∑
g∈G

agω(g)χ(ug)ug,

then h(ω)(a) = χ(ã). Since the Gelfand transform is isometric, it follows that

‖ã‖r = sup{|η(ã)| : η ∈ Ĉ∗r(G)} ≥ |χ(ã)| = |h(ω)(a)|.
We will therefore show that ‖ã‖r = ‖a‖r. To that end, given ξ ∈ `2(G), define ξ̃ by

ξ̃h = χ(u−1
h )ω(h)ξh.

Since uh is a unitary for each h ∈ G, and χ is a ∗-homomorphism, it follows that ‖ξ̃‖22 = ‖ξ‖22. Moreover,

λ(ã)ξ̃(g) =
∑
k∈G

akω(k)χ(uk)ξ̃k−1g =
∑
k

akω(k)χ(uk)χ(ug−1k)ω(k−1g)ξk−1g,

and since both χ and ω are multiplicative, we see that

λ(ã)ξ̃(g) = ω(g)χ(u−1
g )

∑
k

akξk−1g = ω(g)χ(u−1
g )(λ(a)ξ)(g).

As |ω(g)| = |χ(u−1
g )| = 1, we have ‖λ(ã)ξ̃‖22 = ‖λ(a)ξ‖22. It follows that

‖ã‖r ≤ sup{‖λ(ã)ξ̃‖2 : ‖ξ‖2 = 1} = sup{‖λ(a)ξ‖2 : ‖ξ‖2 = 1} = ‖a‖r.
(A symmetric argument shows the other inequality, so that ‖ã‖r = ‖a‖r.) In other words,

|h(ω)a| ≤ ‖ã‖r = ‖a‖r,

so our formula for h(ω) determines an element of Ĉ∗r(G) as claimed.
The fact that h is continuous is a fairly straightforward argument using the definition of the weak-∗

topology. Suppose (ωi)i∈Λ ⊆ Ĝ is Cauchy. We need to see that (h(ωi))i∈Λ is Cauchy, i.e. we need to show
that for any a ∈ C∗(G) the net (h(ωi)(a))i∈Λ ⊆ C is Cauchy. If a ∈ CG, so that a =

∑
g∈G agug and ag = 0

for all but finitely many g, choose

ε <
1

|{g : ag 6= 0}|
min{ 1

|ag|
: ag 6= 0}.

Since (ωi)i∈Λ is Cauchy, and ag 6= 0 for only finitely many g, we can choose I such that if i, j ≥ I then

|ωi(g)− ωj(g)| < ε wheneverag 6= 0.

For i, j ≥ I, we have |h(ωi)(a)− h(ωj)(a)| < ε.
If a ∈ C∗(G) is the limit of a sequence (an)n∈N ⊆ CG, then an ε/3 argument and the fact that each h(ωi)

is norm-decreasing will tell us that again, (h(ωi)(a))i∈Λ is Cauchy. It follows that (h(ωi))i∈Λ is Cauchy, as
desired.

Checking that h is bijective is also straightforward. Given φ ∈ Ĉ∗r(G), define ωφ : G→ C by

ωφ(g) := φ(ug).

Observe first that since φ is a ∗-homomorphism, φ(ug) ∈ T for all g, so in order to show that ω ∈ Ĝ we only
need to show that ω is multiplicative. But this follows immediately from the fact that φ is a ∗-homomorphism:

ωφ(g)ωφ(h) = φ(ug)φ(uh) = φ(uguh) = φ(ugh) = ωφ(gh).
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It is similarly immediate to check that for a fixed ω ∈ Ĝ, ωh(ω) = ω, and that h(ωφ) = φ. It follows that
ω 7→ h(ω) is a bijection.

Finally, we conclude the proof by showing that the inverse function h−1 : Ĉ∗r(G)→ Ĝ, given by h−1(φ) =

ωφ, is continuous. Suppose that (φi)i ⊆ Ĉ∗r(G) is Cauchy – that is, for any a ∈ C∗r(G) the net (φi(a))i ⊆ C
is Cauchy. In particular, the net

(φi(ug))i = (ωφi(g))i ⊆ T
is Cauchy for each g ∈ G. By definition, then, h−1 is continuous. �

6. AF algebras

Preview of Lecture: By definition, AF algebras are inductive limits. So, before reading this section, it
would probably be a very good idea to review the section about inductive limits from the Prerequisite Notes.

The first page of this section will be touched on very lightly in lecture – which is to say, you should work
through this material for yourself, and ask questions in office hours or lecture about any points where you
get stuck.

We will talk about Bratteli diagrams in lecture, probably via Example 6.9.
The last three paragraphs of this section are meant to provide inspiration for future reading or research;

no need to read them now (unless you’re bored) and we won’t discuss them in lecture.

Proposition 6.1. If A is a C∗-algebra which is finite dimensional as a vector space, then

A ∼=
j⊕
s=1

Mn(s)(C)

is a finite direct sum of matrix algebras.

This proof is surprisingly intricate, and relies on the Gelfand-Naimark-Segal Theorem, which we’ll see on
Wednesday. So we’ll postpone the proof for now.

Definition 6.2. A C∗-algebra A is an AF algebra or approximately finite dimensional C∗-algebra if A is the
inductive limit of a sequence of finite-dimensional C∗-algebras.

The following Proposition was mentioned in the Prerequisite Notes, but not proved there.

Proposition 6.3. If A =
⋃
nAn is the norm closure of an increasing union of subalgebras An ⊆ An+1 ⊆

· · · ⊆ A, then A is the inductive limit of the directed system (An, ιmn) where ιmn : An → Am is the inclusion
map.

Proof. It suffices to check that A satisfies the universal property of the inductive limit. So, suppose that B
is a C∗-algebra and that we have ∗-homomorphisms ψn : An → B such that ψm ◦ ιmn = ψn whenever n ≤ m.
Given a ∈ A, write a = limn→∞ an where an ∈ An. The fact that our connecting maps are inclusions means
that if m ≥ n, an = ιmn(an) ∈ Am. Thus, if N is large enough that ‖am − an‖ < ε if m ≥ n ≥ N, then

‖ψm(ιmnan)− ψm(am)‖ = ‖ψm(an − am)‖ < ε.

As ψm ◦ ιmn = ψn, it follows that (ψn(an))n is Cauchy in B. We define ψ : A → B by ψ(a) = limn ψn(an)
if a = limn an with an ∈ An. �

Exercise 6.4. Complete the proof of Proposition 6.3 by showing that ψ is well-defined (independent of the
choice of sequence (an)n); ∗-preserving; and multiplicative.

Example 6.5 (cf. Example 6.2 from the Prerequisite Notes). K(`2) is an AF algebra. To see this, write

Pn for the projection onto span{e1, . . . , en} and observe that Mn
∼= PnK(`2)Pn. Since

⋃
n PnK(`2)Pn =

FR(`2) = K(`2), the result follows by applying the previous Proposition.

Remark 6.6. In the above example, we were discussing the compact operators on a fixed H = `2. However,
(cf. Exercise 7.54 from Day 1) if two Hilbert spaces H,K have the same dimension, with orthonormal bases
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{ξn}n, {ηn}n respectively, then the map U : H → K given by U(ξn) = ηn is a unitary. In particular (this is
another exercise) the map Ad(U) : B(H)→ B(K) given by

Ad(U)(T ) = UTU∗

is a C∗-algebra isomorphism. In particular, it takes FR(H) to FR(K) and K(H) to K(K).
So, if H is any Hilbert space with a countable orthonormal basis, then K(H) is isomorphic to K(`2) (and

in particular is an AF algebra). Because of this, and the fact that algebras of compact operators are (as
we’ll see) both ubiquitous and indispensable, we often talk about “the compact operators” as shorthand for
K(`2), or K(H) for any separable Hilbert space H. In the literature, the Hilbert space is often dropped
altogether, and the compact operators are denoted K (not to be confused with the Hilbert space K that we
have occasionally used in these notes).

By construction, Example 6.3 of the Prerequisite Notes describes an AF algebra. Here it is again.

Example. Let An = M2n(C) be the algebra of 2n × 2n matrices with maps φn,n+1 : M2n(C) → M2n+1(C)
defined by

x 7→
(
x 0
0 x

)
.

Letting φn,m := φm,m−1 ◦ · · · ◦ φn,n+1 whenever m > n, we see that by construction this forms a directed
system. Since these are inclusions, one can identify the inductive limit with

⋃
n∈NAn. �

This is a particularly important one, known as M2∞ or the CAR algebra. In fact, it’s an example of a
UHF algebra.

Definition 6.7. An AF algebra A is a UHF or uniformly hyperfinite algebra if A is the inductive limit of a
sequence of full matrix algebras, where the connecting maps are unital embeddings.

Exercise 6.8. Is K(`2) a UHF algebra?

Example 6.9. [5, Example III.3.7] One can obtain quite different C∗-algebras from the same sequence of
finite-dimensional C∗-algebras (An), if one uses different connecting maps.

For example, let An = C2n . On the one hand, let X denote the standard middle-third Cantor set, so that
X =

⋂
n Cn, where Cn ⊆ [0, 1] is the collection of 2n intervals that remain after step n in the construction

of X. We can construct C(X) as an inductive limit of the algebras An, by identifying An with the set of
functions on Cn that are locally constant.

In this case, since Cn ⊇ Cn+1, the connecting maps ιn : An → An+1, and the structure maps φn : An →
C(X), are given by restriction. It follows that the connecting maps are injective, so lim−→(An, ιn) =

⋃
nAn by

Proposition 6.3. And a straightforward ε−δ proof will show you that the set of functions which are constant
on some Cn is dense in C(X) – that is, C(X) =

⋃
nAn = lim−→(An, ιn).

On the other hand, consider the space Y = {0}∪{1/n : n ∈ Z>0}. Write Bn ⊆ C(Y ) for the set of functions
which are constant on [0, 2−n]. Then Bn ∼= C({1/k : 1 ≤ k ≤ 2n}) ∼= C2n ∼= An. Again, the connecting maps
n : Bn → Bn+1 are given by inclusion, and

⋃
nBn is dense in C(Y ), so C(Y ) = lim−→(Bn, n). But clearly

C(Y ) 6∼= C(X).

What do the connecting maps ιn, n look like when we identify both An and Bn with C2n? We have

ιn(f)(z1, . . . , z2n+1) = f(z1, z3, . . . , z2n+1−1), and n(f)(z1, . . . , z2n+1) = f(z1, . . . , z2n).

In other words, ιn(z1, z2, . . . , z2n) = (z1, z1, z2, z2, . . . , z2n , z2n) and n(z1, . . . , z2n) = (z1, z2, . . . , z2n , z2n , . . . , z2n).
One sees the difference even more clearly via the Bratteli diagram of the AF algebras. If A = lim−→(An, φn),

with An =
⊕k(n)

j=1 Mr(j), and the connecting maps φn : An → An+1 are inclusions, the Bratteli diagram

consists of N levels, with k(n) nodes at each level, and an edge from a node v at level n to a node w at level
n + 1 if φn maps the vth matrix algebra into the wth matrix algebra. For example, below are the Bratteli
diagrams for lim−→(An, ιn) and lim−→(Bn, n).
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Exercise 6.10. Show that any AF algebra has an approximate identity which consists of an increasing
sequence of projections.

Exercise 6.11. Show that any AF algebra is isomorphic to a direct limit of finite-dimensional C∗-algebras
with injective connecting maps.

Exercise 6.12. Show that if A = lim−→(An, φn)n and we set Bn := An+k for a fixed k ≥ 0, then we also have

A = lim−→(Bn, φn+k)n.

Because AF algebras are quite tractable, it’s natural to ask which C∗-algebras are subalgebras of AF
algebras. That is, given a C∗-algebra A, when can we find an injective ∗-homomorphism φ : A → B for
some AF algebra B? This simple-seeming question was only answered recently [Schafhauser 2018], under
mild assumptions on A.

Exercise 6.13. ,

(1) Prove that C([0, 1]) is not an AF algebra.
(2) If X is the Cantor set, show that C(X) is AF.
(3) Show that a subalgebra of an AF algebra needn’t be AF, by constructing an embedding of C([0, 1])

into C(X).

However, despite the intricacy of the structure of the subalgebras of AF algebras, the lattice of ideals of
an AF algebra is easy to describe: [5, Theorem III.4.2] the ideals of an AF algebra are in bijection with
directed hereditary subsets of its Bratteli diagram.

One can have two different directed systems that give rise to the same C∗-algebra. An example is the
UHF algebra M2∞3∞ = lim−→(An, ιn) = lim−→(Bn, ιn), where

An =

{
M2n/23n/2 , n even

M2(n+1)/23(n−1)/2 , n odd;
Bn =

{
M2n/23n/2 , n even

M2(n−1)/23(n+1)/2 , n odd.

The nodes at odd levels in the Bratteli diagrams of lim−→(An, ιn) and lim−→(Bn, ιn) are not isomorphic, nor is
the number of edges between levels.

Fortunately, there is a complete invariant for AF algebras – a way to tell whether or not two AF algebras
are isomorphic. G. Elliott proved in 1978 that the ordered K-theory (K0(A),K0(A)+, [1]) of an AF algebra is
a classifying invariant for A, in that given two AF algebras A,B, their K-theory groups are order isomorphic
– (K0(A),K0(A)+, [1A]) ∼= (K0(B),K0(B)+, [1B ]) – if and only if A ∼= B. You’ll hear about K-theory from
Mark Tomforde next week, and [5, Chapter IV] has a proof of Elliott’s classification theorem for AF algebras.

7. Cuntz–Krieger Algebras

Preview of Lecture: This section is a quick introduction to a class of (I think) fascinating C∗-algebras.
Unfortunately, a lot of what makes them so fascinating is beyond the scope of GOALS, but if you want to
learn more, I’d recommend picking up Raeburn’s book [12] on graph algebras.

For today, try to get a feel for the algebraic consequences of the relations (7.1) defining a Cuntz–Krieger
algebra; you may want to pick a (small-ish) matrix B and think about what the associated C∗-algebra might
look like. Infinite and purely infinite C∗-algebras show up in a lot of places, so it’s also a good idea to build
an understanding of these by playing with some examples and non-examples (cf. Exercise 7.4.)
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Again, the last five paragraphs of this section are in there to inspire you to dig deeper into these Cuntz–
Krieger algebras in the future;4 don’t worry too much about them now.

In this section, B will denote an n × n matrix with entries from {0, 1}. The Cuntz–Krieger algebra OB
[Cuntz-Krieger 1981] associated to B is the universal C∗-algebra generated by n partial isometries s1, . . . , sn
such that, for each 1 ≤ i ≤ n, we have

s∗i si =

n∑
j=1

Bijsjs
∗
j and s∗i sj = 0 if i 6= j. (7.1)

What do I mean by the “universal C∗-algebra”? As with the group C∗-algebra, OB is the “largest”
C∗-algebra generated by n partial isometries which satisfy (7.1). That is, if S1, . . . , Sn are partial isometries
in a C∗-algebra A which satisfy Equation (7.1), then there is a surjective ∗-homomorphism πS : OB →
C∗({S1, . . . , Sn}) such that πS(si) = Si. One can prove (cf. [12, Proposition 1.21] or [2, II.8.3]) that this
universal object exists.

Proposition 7.1. If B is a finite matrix, the Cuntz–Krieger algebra OB is unital.

Proof. Let S =
∑n
i=1 sis

∗
i . Observe that, for any i,

Ssi = si +
∑
j 6=i

sjs
∗
jsi = si, siS = sis

∗
i siS = si

 n∑
j=1

Bijsjs
∗
j

( n∑
k=1

sks
∗
k

)
= si

 n∑
j=1

Bijsjs
∗
j

 = si.

The fact that S is a projection (Exercise: check this!) implies that we consequently have, for any word w
in the generators si and their adjoints, Sw = wS. In other words, S is the unit of OB . �

One can define a Cuntz–Krieger algebra for an infinite matrix, too, as long as the matrix is row-finite –
for each i, the entries in row i of B have a finite sum. We need B to be row-finite because otherwise the first
equation in (7.1) would involve an infinite sum of projections, which are mutually orthogonal by the second
condition of (7.1). But an infinite sum of mutually orthogonal projections cannot converge in norm, yet the
first equation in (7.1) requires that.

Example 7.2. If B is the n×n matrix of all 1s, then s∗i si = S for all i. That is, each si is an isometry, not
merely a partial isometry, and

∑n
i=1 sis

∗
i = 1. In this case, OB is the Cuntz algebra On.

The Cuntz algebras were introduced by J. Cuntz in 1977 as the first explicit examples of separable simple
infinite C∗-algebras.

Definition 7.3. A unital C∗-algebra A is infinite if there exists a ∈ A with a∗a = 1 but aa∗ 6= 1.

Exercise 7.4. ,

(1) Is B(`2) infinite? What about K(`2)?
(2) If a unital C∗-algebra A is infinite, when can it have a trace?

Cuntz showed that, moreover, the algebras On are all purely infinite: for any nonzero x ∈ On, there exist
a, b ∈ On with axb = 1. (Observe that any unital purely infinite C∗-algebra is a fortiori simple.)

In addition to being separable and purely infinite, the algebras On have a lot of other intriguing properties
that you’ll learn about in the coming weeks (or in your future classes on C∗-algebras): they’re nuclear, they
can be realized as a crossed product of a UHF algebra, they’re not inductive limits of type I C∗-algebras.
O2 and O∞ (defined to be the universal C∗-algebra generated by infinitely many isometries si, i ∈ N, such
that for any n we have

∑n
i=1 sis

∗
i ≤ 1) behave particularly nicely with respect to tensor products.

Some of above properties are shared by general Cuntz–Krieger algebras OB . They are again nuclear, for
example – the proof of this is based on the description of OB as a groupoid C∗-algebra. (You’ll see more
about groupoid C∗-algebras in Robin Deeley’s expository talk next week.) The groupoid picture of OB
arises from a certain type of dynamical system, called a shift of finite type, associated to B, and it turns
out [Cuntz-Krieger 1981; Franks 1984; Rørdam 1995] that the K-theory of OB is a classifying invariant for

4A word of warning, though: in the literature, Cuntz–Krieger algebras are usually denoted OA. I broke with tradition in

these notes because we wanted to continue to reserve the letter A for C∗-algebras.
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these shifts of finite type. That is, the shifts of finite type associated to matrices B1, B2 are flow equivalent
iff K0(OB1) ∼= K0(OB2).

Another useful perspective on OB is as a graph C∗-algebra. One can think of B as being the adjacency
matrix of a directed graph EB on n vertices: in EB , there is an edge from vertex i to vertex j iff Bij 6= 0.
The graph C∗-algebra (cf. [12]) C∗(EB) is isomorphic to OB .

It turns out [12, Theorem 4.9], as for AF algebras, the ideals in a Cuntz–Krieger algebra OB are in
bijection with hereditary saturated subsets of the vertices of EB .

Cuntz–Krieger algebras, graph C∗-algebras, and generalizations such as higher-rank graph algebras and
groupoid C∗-algebras, are very active areas of current research.
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8. The Gelfand-Naimark-Segal (GNS) Theorem

Preview of Lecture: In lecture, we won’t discuss the proofs of the technical results we’ll need about states
for this lecture (eg Lemmas 8.8 and 8.11). However, these are important both for von Neumann algebraic
applications and for C∗-algebras, so you should read the proofs carefully and ask questions in office hours if
you’re confused.

We will prove Theorem 8.9 in lecture as well as Theorem 8.1. We’ll discuss irreducible representations
but, depending on time, perhaps not the proof of Proposition 6.1. We will, however, discuss the proof of
Proposition 5.10.

There are a lot of exercises in this section! If there’s time, we’ll discuss a few in lecture (so please let us
know if there are any that you’d particularly like to see).

The main goal of this section is the following theorem:

Theorem 8.1 (Gelfand-Naimark). Every C∗-algebra A admits a faithful nondegenerate representation π :
A→ B(H). If A is separable, π can be chosen to be separable.

As an immediate corollary, every C∗-algebra A is isomorphic to a norm-closed ∗-subalgebra of B(H) for
some Hilbert space H. (It can be useful to take this as the definition of a C∗-algebra, which justified our
using the term “C∗-algebra” for abstract (not concretely represented) C∗-algebras.)

Throughout this section, we generally assume A is unital, for simplicity; the arguments can all be made
in general, by taking some care with approximate identities. See Exercise 8.15 below (and Remark 8.16 for
why we can’t just unitize our way out of this one).

Our first step on the road to proving Theorem 8.1 has to do with states.

Definition 8.2. A state on a C∗-algebra A is a linear functional φ : A→ C which is positive in that φ(a) ≥ 0
whenever a ≥ 0, and such that

‖φ‖ := sup{|φ(a)| : ‖a‖ = 1} = 1.

The closed convex (exercise) subset S(A) ⊂ A∗≤1 consisting of states is called the state space.

Example 8.3. If π is a representation of A on H, and h ∈ H has norm 1, the function

φ(a) := 〈π(a)h, h〉

is a state on A.

Exercise 8.4. If π : A → C is a character, then it is a representation (by 2.15). What is the state
corresponding to a character π?

Exercise 8.5. Show that any positive linear functional φ : A→ C is ∗-preserving, i.e. φ(a∗) = φ(a) for all
a ∈ A.

Exercise 8.6. Show that S(A) is a closed convex subset of A∗≤1. It follows from Alaoglu’s theorem that it

is weak∗-compact. What does the Krein-Milman theorem say about S(A)?

Given a state5 φ on A, if we define [a, b]φ := φ(b∗a), then this form on A is sesquilinear (linear in the first
variable, conjugate linear in the second variable) and satisfies the Cauchy-Schwarz inequality:

Exercise 8.7. Show that |[a, b]φ| ≤ [a, a]φ [b, b]φ = φ(a∗a)φ(b∗b).

Here are a few facts about states that we will need later.

Lemma 8.8. Let A be a unital C∗-algebra.

(1) If φ is a state on A, then φ(1) = 1.
(2) If φ is a bounded linear functional on A which satisfies 1 = ‖φ‖ = φ(1), then φ is a state.

5Actually, all you need is a positive linear functional for the following assertions and exercise.
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Proof. If φ is a state, then |φ(1)| = φ(1) ≤ ‖φ‖ = 1. For the other inequality, Exercise 8.7 tells us that

|φ(a)|2 ≤ φ(1)φ(a∗a).

Moreover, since ‖a∗a‖ ≥ a∗a by the functional calculus, we have φ(a∗a) ≤ ‖a∗a‖φ(1). It follows that for any
a ∈ A with ‖a‖ = 1,

|φ(a)|2 ≤ φ(1)2,

and hence ‖φ‖ ≤ φ(1). We conclude that 1 = ‖φ‖ = φ(1).
If 1 = φ(1) = ‖φ‖, then once we know that φ is positive, φ must be a state. Pick a ∈ A+ and write

φ(a) = α+ iβ. If necessary, replace a with −a to ensure that β ≥ 0. We begin by showing that β = 0. Fix
n ∈ N and observe that, since a∗ = a,

‖n− ia‖2 = ‖(n+ ia∗)(n− ia)‖ = ‖n2 + in(a∗ − a) + a2‖ ≤ n2 + ‖a‖2.
On the other hand, |φ(n− ia)|2 = |nφ(1)− iα+ β|2 = (n+ β)2 + α2. So,

(n2 + ‖a‖2) = ‖φ‖2(n2 + ‖a‖2) ≥ ‖φ‖2 ‖n− ia‖2 ≥ |φ(n− ia)|2 = n2 + 2nβ + β2 + α2.

In order for this inequality to hold for all n ∈ N we must have β = 0, as claimed.
To complete the proof that φ is positive, fix a positive a ∈ A+ with ‖a‖ ≤ 1. Then Proposition 3.6 implies

that ‖1− a‖ ≤ 1. Since ‖φ‖ = 1 by hypothesis,

1 ≥ ‖1− a‖ ≥ φ(1− a) = φ(1)− φ(a) = 1− φ(a).

It follows that φ(a) ≥ 0 for any positive a. �

The next theorem is the cornerstone of our proof of Theorem 8.1.

Theorem 8.9 (GNS construction). If φ is any state on a unital C∗-algebra A, there is a nondegenerate
representation πφ : A→ B(H) and a unit vector h ∈ H such that φ(a) = 〈πφ(a)h, h〉 for any a ∈ A.

Such a vector h is called a cyclic vector for the representation π.

Proof. We will build H out of A itself. Let Nφ = {a ∈ A : [a, a]φ = 0}. Observe (check!) that Nφ is a vector
subspace of A, which is closed in norm. (The fact that Nφ is closed under addition follows from Exercise
8.7. Proving that Nφ is closed in norm is also a good exercise.)

In fact, Exercise 8.7 actually proves that Nφ is a left ideal in A: if x ∈ Nφ and a ∈ A then

|[ax, ax]φ| = |φ(x∗(a∗ax))| ≤ φ(x∗x)φ(x∗(a∗a)2x) = 0,

so ax ∈ Nφ.
Therefore, let X be the vector space quotient X = A/Nφ, and define an inner product on X by

〈a+Nφ, b+Nφ〉φ := φ(b∗a).

The fact that Nφ is a left ideal means that 〈·, ·〉φ is well defined.
Take Hφ to be the completion of X with respect to the norm induced by 〈·, ·〉φ. Then our representation

πφ : A→ B(Hφ) is given by left multiplication: πφ(a)(b+Nφ) = ab+Nφ.
To see that πφ is actually a representation, we need to check that πφ(a) is a bounded linear operator for

all a, and also check that πφ is linear, multiplicative and ∗-preserving. In checking that πφ is ∗-preserving,
you will see why we defined 〈·, ·〉φ as we did.

We use the functional calculus to show that πφ(a) is a bounded operator. Since a∗a ∈ A is positive, we
have ‖a∗a‖1− a∗a ≥ 0 is a positive element of A. Thus, for any x ∈ A, Exercise 3.11 tells us that

0 ≤ x∗(‖a∗a‖1− a∗a)x = ‖a∗a‖x∗x− x∗a∗ax,
so (ax)∗ax ≤ ‖a∗a‖x∗x. In particular,

‖πφ(a)‖2 = sup{〈πφ(a)(x+Nφ), πφ(a)(x+Nφ)〉φ : φ(x∗x) = 1}
= sup{φ((ax)∗(ax)) : φ(x∗x) = 1}
≤ ‖a∗a‖ = ‖a‖2.

So, we conclude that πφ is a representation of A on a Hilbert space Hφ. To see that πφ is nondegenerate,
suppose that πφ(a)(x+Nφ) = 0 for all a. In particular, taking a = 1,

0 = ‖πφ(1)(x+Nφ)‖2 = 〈x+Nφ, x+Nφ〉φ = φ(x∗x),
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so we must have x ∈ Nφ.
Finally, note that the unit vector h such that φ(a) = 〈π(a)h, h〉 is h = 1 +Nφ. �

Remark 8.10. If you ever see in some proof in the literature a representation unceremoniously associated to
some state (in particular for a trace that is moreover a state), it’s assumed to be the GNS representation
constructed as above.

To prove Theorem 8.1, we will take the direct sum of a lot of the representations whose existence we have
just established.

Lemma 8.11. Let A be a C∗-algebra and a a nonzero normal element of A. Then there is a state τ on A
such that |τ(a)| = ‖a‖.

Proof. Let B = C∗({a, 1}) ⊆ Ã. Fix λ ∈ σ(a) with |λ| = r(a) maximal, and let gλ : C(σ(a)) → C be given
by evaluation at λ. Observe that gλ is a positive linear functional, and gλ(1) = 1, so gλ is a state on C(σ(a)).

Because gλ can be viewed as a linear functional on the closed subspace B of Ã, the Hahn-Banach Theorem
tells us there is a norm one linear functional τ on A which extends gλ. As τ(1) = gλ(1) = 1, Lemma 8.8 tells

us that τ is also a state. Furthermore, as the Gelfand transform Γ : B
∼=→ C(σ(a)) takes a to the function

f(z) = z, it follows that |τ(a)| = |λ| = r(a), which equals ‖a‖ by the fact that the Gelfand transform is
isometric. �

Corollary 8.12. If F ⊆ S(A) is a subset of the states of A which is dense in the weak-∗ topology, then for
any a ∈ A,

sup{|φ(a)| : φ ∈ F} = ‖a‖.

We are finally ready to prove our main theorem.

Proof of Theorem 8.1. Choose a subset F of S(A) which is dense in the weak-∗ topology on S(A) ⊆ A∗.
Define π :=

⊕
φ∈F πφ, where πφ is the representation arising from the state φ as in the previous Theorem.

Fix a ∈ A. Since φ(1) = 1,

‖π(a)‖2 = sup
φ∈F
‖πφ(a)‖2 = sup{〈πφ(a∗a)ξ, ξ〉 : φ ∈ F, ξ ∈ Hφ} ≥ sup

φ∈F
〈πφ(a∗a)1, 1〉 = sup

φ∈F
φ(a∗a) = ‖a‖2.

As π is a ∗-homomorphism and therefore norm-decreasing, it follows that ‖π(a)‖ = ‖a‖ for all a ∈ A. The
fact that π is nondegenerate follows from the fact that each πφ is nondegenerate, which in turn follows from
our construction of Hφ as a completion of (a quotient of) A.

If A is separable, then [4, Theorem V.5.1] implies that A∗ ⊇ S(A) is too, so we can take the set F to be
countable. The separability of A implies the separability of Hφ for each φ,6 so H is separable. �

Definition 8.13. The representation

πu :=
⊕

φ∈S(A)

πφ : A→ B

 ⊕
φ∈S(A)

Hφ

 =: B(Hu)

is called the universal representation of A.

For the sake of a faithful representation, we could instead form the direct sum over a weak*-dense subset
of S(A).

Remark 8.14. This representation has a special extra property in that the associated von Neumann algebra
πu(A)′′ is isometrically isomorphic to A∗∗ (ask Roy). Both are often called the enveloping von Neumann
algebra of A.

Exercise 8.15. Generalize the results in this section to non-unital C∗-algebras. (In particular, you will have
to show that an approximate unit (eλ)λ becomes Cauchy in A/Nφ for any state φ, and hence gives rise to a
cyclic vector in any GNS representation πφ.)

6There is something to check here, since the norm on Hφ is not the same as the norm on A. Exercise: How do they relate?
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Remark 8.16. Why can’t we just unitize in Exercise 8.15? Well, as easy as it was to always guarantee a
unique extension of a ∗-homomorphism to the unitization, it is no longer true in general for positive linear
maps. (We’ll return to this in Proposition 9.21.) In fact, the non-unital version of Theorem 8.9 is required
to prove this for states because it allows us to borrow from this fact for representations. The proof of this
fact takes us a little off course, so we will state it here with reference:

[5, Corollary 1.9.7] Every state on a nonunital C∗-algebra A extends uniquely to a state on Ã.

What does Theorem 8.1 say about Abelian C∗-algebras? In this case, the Riesz-Markov-Kakutani rep-
resentation theorem tells us that states on C0(X) are in bijection with probability measures on X, so that
φ(f) =

∫
X
f dµφ. Note that Nφ consists of the set of C0 functions on X which are 0 off a µφ-null set. Thus,

Hφ = C0(X)/Nφ ∼= L2(X,µφ), and πφ represents C0(X) on L2(X,µφ) as multiplication operators:

πφ(f)ξ = x 7→ f(x)ξ(x).

To me at least, this is reminiscent of the link between the continuous and the Borel functional calculus.

Exercise 8.17. What does the universal representation of an Abelian C∗-algebra look like?

Exercise 8.18. Let A be a C∗-algebra.

(1) Show that for any b ∈ A, there exists a representation π : A→ B(H) and unit vector h ∈ H so that
‖π(b)x‖ = ‖b‖. (Hint: Apply Lemma 8.11 to a = b∗b.)

(2) Use Exercise 4.16 to give a different argument for the last claim in Theorem 8.1, i.e. that any
separable C∗-algebra has a faithful separable representation.

8.1. Applications. We’ve already seen the GNS theorem invoked several times, for structural results about
C∗-algebras. Here are some of those delayed proofs.

Exercise 8.19. Show that if 0 ≤ a ≤ b, then ‖a‖ ≤ ‖b‖, without assuming a and b commute.

Exercise 8.20. Show that if the C∗-algebra A is finite dimensional as a vector space, then we may take
the Hilbert space H of Theorem 8.1 to be finite dimensional. Hint: Show that you only need finitely many
states φ ∈ F , and that Hφ is finite dimensional for all φ.

Exercise 8.21. Use the GNS theorem to give a very quick proof of Theorem 3.10.

Exercise 8.22. For a commutative C∗-algebra A, what would a weak∗-dense subspace of S(A) look like?

The following should rightfully be called a Definition/Theorem. The proof uses results that take us a
little far afield, so we give it as a definition and refer you to [5, Lemma 1.9.1-Theorem 1.9.4] for a proof.

Definition 8.23. A representation π : A → B(H) of a C∗-algebra A is irreducible if one of the following
equivalent conditions hold:

(1) π has no proper invariant subspaces, i.e. no subspace V ( H so that π(a)V ⊂ V for all a ∈ A.
(2) π has no proper invariant manifolds (i.e. subspaces which may or may not be closed).
(3) π(A)′ = C1H.

Under the additional assumption that π has a cyclic unit vector h ∈ H, these are also equivalent to

(4) The state a 7→ 〈π(a)h, h〉 is pure, i.e. it is an extreme point in the state space S(A).

Remark 8.24. We have a couple remarks on irreducible representations:

(1) First, it’s sometimes helpful to see a non-example: Let πi : A→ B(Hi), i = 1, 2 be two nondegenerate
representations of A. Then π1⊕π2 : A→ B(H1⊕H2) is not irreducible. (Evidently we don’t bother
with calling things “reducible”.)

(2) Notice that a character on a C∗-algebra is a pure state. (Indeed, for any states φ1, φ2 and α1, α2 ∈
(0, 1) with α1 + α2 = 1, the map α1φ1 + α2φ2 will not be multiplicative.) It turns out ([5, Lemma
1.9.10]) that you can use a Krein-Milman argument to strengthen parts (1) and (2) of Exercise 8.18
to hold for pure states/irreducible representations. Then an argument like part (3) will allow you to
prove the conclusion of Corollary 8.12 where F consists of all pure states of A.

(3) Not every C∗-algebra has a faithful irreducible representation. Such C∗-algebras are called primitive.

Exercise 8.25. If π : A→ B(H) is irreducible, what does that say about the von Neumann algebra π(A)′′?
(Looking for a one word answer.)
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Proof of Proposition 6.1. Suppose that A is a finite dimensional C∗-algebra. By GNS, view A as a subalgebra
of B(H), where H is finite dimensional. Thus, A is an algebra of compact operators.

It turns out [5, Corollary I.10.6] that every irreducible representation of K(H) is unitarily equivalent to
the identity representation. Thus, decompose the (identity) representation of A on H into a direct sum of
irreducible representations πi : A → B(Hi) where H =

⊕
iHi. Then each Hi must be finite dimensional,

and we must have only finitely many terms in this direct sum decomposition, since H is finite dimensional.
In other words, if Hi ∼= Cni , then πi(A) ∼= Mni . Thus,

A =
⊕
i

πi(A) ∼=
⊕
i

Mni

as desired. �

The proof of Proposition 5.10 relies on positive definite functions on groups, and their connection with
states on C∗(G).

Definition 8.26. Let G be a discrete group. A function ψ : G → C is positive definite if, for any finite
subset F ⊆ G, the matrix Mψ in MF (C) given by

Mψ
s,t = ψ(s−1t)

is positive.

Proposition 8.27. If φ is a state on C∗(G), then the function ψφ(g) = 〈πφ(ug)1, 1〉φ is positive definite.
Conversely, every positive definite function defines a state on C∗(G).

Proof. If φ is a state on C∗(G), we compute that

Mψφ

s,t = 〈πφ(us−1t)1, 1〉 = 〈πφ(ut)1, πφ(us)1〉 = φ(ut)φ(us).

In other words, if T is the matrix with entries indexed by elements of G, such that the first column consists

of the entry φ(us) in the sth row, and T is zero in all other columns, then Mψφ = T ∗T is positive. So ψφ is
positive definite, as claimed.

For the converse, given a positive definite function ψ, define φψ(
∑
g agug) := 1

ψ(e)

∑
g agψ(g). By con-

struction, φψ is a linear functional on CG. Considering the set F = {e} tells us that ψ(e) > 0, so φψ is well
defined, and moreover that

φψ(ue) =
ψ(e)

ψ(e)
= 1. (8.1)

Moreover, φψ is bounded with respect to ‖ · ‖u, because

|φψ(
∑
g

agug)| = |〈πφψ (
∑
g

agug)1, 1〉| ≤ ‖ππψ (
∑
g

agug)‖ ≤ ‖
∑
g

agug‖u. (8.2)

It now follows that ‖φψ‖ = 1: equation (8.1) implies that ‖φψ‖ = sup{|φψ(f)| : ‖f‖u = 1} ≥ |φψ(ue)| = 1,
and equation (8.2) implies that ‖φψ‖ ≤ 1. Thus, Lemma 8.8(2) tells us that φψ extends to a state on
C∗(G). �

Proof of Proposition 5.10. We first address the case of the reduced C∗-algebras. Suppose G ≤ H are dis-
crete groups, and decompose `2(H) =

⊕
h `

2(Gh) via the right cosets of G. Notice that the left regular
representation of CG ⊆ CH on `2(H) preserves this decomposition, and `2(Gh) ∼= `2(G) (via a canonical
isomorphism) for any h ∈ H. As the operator norm of a direct sum satisfies

‖f ⊕ g‖ = max{‖f‖, ‖g‖},

it follows that the norm induced on CG by the left regular representation λH is the same as the norm
induced by λG. In other words, the inclusion CG ⊆ CH is isometric with respect to the reduced norm, so
C∗r(G) ⊆ C∗r(H).

Now, we show that if G ≤ H (and G is countable) then C∗(G) ≤ C∗(H). The fact that G countable
implies that C∗(G) is separable. In this case,C∗(G)

∗
is also separable, so there exists a faithful state φ on

C∗(G): namely, for a weak-∗ dense subset {ωn}n∈N of S(A), take φ =
∑
n 2−nωn. It is straightforward to

check that, thanks to the density of {ωn}n, φ(a) = 0 implies a = 0, so φ is indeed faithful.
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Consider the positive definite function ψφ on G which Proposition 8.27 associates to φ. Extend it to ψ
on H by setting ψ(h) = 0 whenever h 6∈ G. To see that ψ is positive definite, note first that if s, t ∈ H and

sG 6= tG, then s−1t 6∈ G and therefore Mψ
s,t = 0. In other words, for any finite set F , Mψ is block diagonal,

where each block is indexed by F ∩ sG for a single left coset sG of G. Block diagonal matrices are positive
precisely when each block is positive, so to see that ψ is positive definite it suffices to consider the matrices
Mψ associated to finite sets F ⊆ sG which are contained in a single coset. For any g, h ∈ G,

Mψ
sg,sh = ψ(g−1h) = ψφ(g−1h) = Mψφ

g,h,

so the fact that ψφ is positive definite implies that ψ is as well.
Now, consider the GNS representation πψ associated to φψ. As φψ and φ agree on C∗(G), it follows that

for any f ∈ C∗(G),
‖ι̃(f)‖u,H ≥ ‖πψ(f)‖ = ‖πφ(f)‖.

The fact that φ is faithful means that πφ is injective and therefore isometric, by Theorem 4.11: if πφ(f) = 0
then

0 = ‖πφ(f)‖2 = sup{‖πφ(f)[a]‖2 : [a] ∈ Hφ = C∗(G)
‖·‖φ

, ‖[a]‖ = 1}
= sup{φ(a∗f∗fa) : φ(a∗a) = 1} ≥ |φ(f∗f)| = |φ(f)|2

by Exercise 8.5. The fact that φ is faithful then implies that f = 0. In other words, ‖πφ(f)‖ = ‖f‖u,G
for any f ∈ C∗(G). So ‖ι̃(f)‖u,H ≥ ‖f‖u,G. As we saw in Monday’s notes that ι̃ : C∗(G) → C∗(H) is
norm-decreasing, it now follows that ‖ι̃(f)‖u,H = ‖f‖u,G. Consequently, ι̃ must be injective: if ι̃(f) = 0 then
f = 0. �

Remark 8.28. For those that are wondering whether all of this rigamarole about positive definite functions
is really necessary: If you try to extend a state from C∗(G) to C∗(H) by just making it zero on all elements
not coming from C∗(G), it’s hard to prove directly that this extension is still a state.

Now that we have faithful representations, we are ready to give our first proof of a powerful and useful tool
in C∗-algebras. Aloud we usually reference it by saying something like, “contractions lift to contractions”
(with the assumption that we can scale to get the full result).

Proposition 8.29. Let π : A → B be a ∗-homomorphism between C∗-algebras and b ∈ π(A). Show that
there exists a ∈ A with π(a) = b and ‖a‖ = ‖b‖.

Proof. First, by possibly identifying B with its image inside B̃, we assume B is unital. Moreover, it suffices
to show the claim for ‖b‖ = 1 (why?).

We by choosing any a ∈ A with π(a) = b. Then 1 = ‖π(a)‖ ≤ ‖a‖. If we have equality, then there is
nothing to do. So, we assume ‖a‖ > 1, and hence also that its positive part |a| has norm strictly greater than
1. By taking a faithful representation, we assume A ⊂ B(H) and let a = u|a| be the polar decomposition of
a in B(H).7 Define a function f ∈ C[0, ‖a‖] by

f(t) =

 t ; t ∈ [0, 1]

1 ; t ∈ (1, ‖a‖]

Note that f(|a|) ∈ C∗(a) ⊂ C∗(a, 1H) ' Ã. Now, we define g ∈ C[0, ‖a‖] by

g(t) =


1 ; t ∈ [0, 1]

t−1 ; t ∈ (1, ‖a‖]
If A is unital, then g(|a|) ∈ A, and if not, it’s in C∗(A, 1H). But notice that tg(t) = f(t) for all t ∈ [0, ‖a‖]
with f(|a|) ∈ C∗(|a|), and so8

uf(|a|) = u|a|g(|a|) = ag(|a|) ∈ C∗(a) ⊂ A.
Moreover,

‖uf(|a|)‖ ≤ ‖u‖‖f(|a|)‖ = ‖f(|a|)‖ ≤ 1.

7Yes, we are deviating from the “operators are capitalized” notation. Don’t tell Brent and Rolando.
8Alternatively, we know automatically from Proposition 3.16 that uf(|a|) ∈ A.
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(Exercise Why is ‖u‖ = 1?) (We could give a better estimate for the norm here, but this is all we need.)
We claim uf(|a|) is the desired lift of b. Indeed, let π̃ denote the unital extension of π to C∗(A, 1H) (where
we take π̃ = π if C∗(A, 1H) = A, i.e. if A is unital). Then, by Exercise 2.20,

π(uf(|a|)) = π̃(uf(|a|)) = π̃(ag(|a|)) = π̃(a)g(|π̃(a)|) = bg(|b|).
But as a continuous function in C(σ(|b|)), g = 1. Hence g(|b|) = 1, and so bg(|b|) = b. So, π(uf(|a|)) = b
and moreover,

‖b‖ ≥ ‖uf(|a|)‖ ≥ ‖π(uf(|a|))‖ = ‖b‖.
�
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9. Completely Positive Maps

This section gives a very quick introduction to completely positive maps for C∗-algebraists. If this is your
first time seeing such maps defined, we recommend ignoring the non-unital generalities for this go around.
Once you have a grasp of the unital setting, you’ll understand what’s going on, and you will know where to
look if you ever need the non-unital generalizations in the future. With the exception of a few examples, we
will stick with the unital assumption in lecture.

The lecture will focus mostly on understanding key examples of completely positive maps (Examples
9.5, 9.8, 9.9 and Exercise 9.10), the characterization of completely positive maps afforded by Stinespring’s
Dilation theorem (Theorem 9.22), and an understanding Arveson’s Extension theorem (9.28) for completely
positive maps into B(H).

With time, we will give an overview of the proof of Stinespring’s Dilation Theorem, which is a direct
generalization of the GNS construction. In which case, it will be beneficial to have the GNS construction
proof handy. This proof goes through some algebraic tensor products for vector spaces. If it feels too
confusing, try revisiting it after we’ve had a treatment of tensor products next week.

Section 9.1 establishes some preliminary results and delves into dilation techniques. We encourage you
to read through the various dilation tricks and try the corresponding exercises in Section 9.1. These are
valuable tools, which we will not address in lecture.

This section concerns maps that preserve positivity even after matrix amplification. We will have to
forego several important facts and results on (completely) positive maps. For a full treatment, we highly
recommend Vern Paulsen’s book: [9, Chapters 2,3,6,7].

We begin with what we mean by matrix amplification. Ignoring the norm for a moment, given a ∗-algebra
A and some 1 ≤ n < ∞, we define Mn(A) to be the n × n matrices with entries in A (just as we would in
more general ring theory).

Mn(A) := {[aij ]1≤i,j≤n : aij ∈ A, 1 ≤ i, j ≤ n} (9.1)

We will usually suppress the usual subscripts on the matrices, i.e. we write [aij ] for [aij ]1≤i,j≤n (sometimes
also [aij ]ij).

This also comes with a natural involution where [ai,j ]
∗ = [a∗j,i] for all [ai,j ] ∈ Mn(A).

Definition 9.1. For a linear map φ : A→ B between ∗-algebras we define, for each n ≥ 1, the linear map

φ(n) : Mn(A)→ Mn(B), φ(n)([aij ]) = [φ(aij)].

The map φ(n) is often called a matrix amplification of φ.

When A is a C∗-algebra, there is a natural C∗-norm on Mn(A), which is inherited from the norm on A in
the following sense:

Recall from Exercise 7.50 from Day 1 Lectures that Mn(B(H)) = B(Hn) for any Hilbert space H. Now
(using Theorem 8.1), we faithfully represent A on some Hilbert space H with an injective ∗-homomorphism
π : A→ B(H). This induces a ∗-homomorphism π(n) : Mn(A)→ Mn(B(H)) = B(Hn), which is also injective
(check). Then we can define a norm on Mn(A) by ‖[aij ]‖ := ‖π(n)([aij ])‖ (injectivity implies this is a norm

and not just a semi-norm), which will satisfy the C∗-identity (because (π(n))−1 : π(n)(Mn(A)) → Mn(A) is
a ∗-homomorphism).

The following inequality is a useful exercise, but we already have plenty of exercises. The argument is
outlined in [13, Exercise 1.13].

Proposition 9.2. For any C∗-algebra A, n ≥ 1, and [aij ] ∈ Mn(A), we have

max
i,j
{‖aij‖} ≤ ‖[aij ]‖ ≤

∑
ij

‖aij‖.

9.1. Preliminary results on cp maps. Unlike with the Gelfand-Naimark Theorem for commutative C∗-
algebras, we will not start from scratch here. However, results in this section are developed nicely in [9,
Chapter 2]. The proofs therein are well-written and easy to follow, but we are after bigger fish and therefore
will just take these as means to an end.



36 KRISTIN COURTNEY AND ELIZABETH GILLASPY

Definition 9.3. We say a linear map φ : A→ B between C∗-algebras is positive if it maps positive elements
to positive elements. We say it is n-positive if φ(n) is positive, and we say that it is completely positive (c.p.
or cp) if it is n-positive for all n ≥ 1. A completely positive map that is unital is abbreviated ucp.

Remark 9.4. For notation and terminology: often the word “linear” is dropped when discussing cp maps,
and φ(n) is sometimes denoted by φn.

One important class of examples that we have already seen is positive linear functionals (such as the states
used in the GNS representation theorem).

Example 9.5. For a unital C∗-algebra A, a positive linear functional φ ∈ A∗ is completely positive. Indeed,
(for the unital case) note that φ(n) : Mn(A) → Mn(C), so we check positivity by checking for positive-
definiteness. To that end, let ξ ∈ Cn and [aij ] ∈ Mn(A) positive. Then by Exercise 3.11,

ξ̄1 . . . ξ̄n
0 . . . 0
...

...
0 . . . 0


a11 . . . a1n

...
...

an1 . . . ann


ξ1 0 . . . 0

...
...

...
ξn 0 . . . 0

 =


∑n
i,j=1 ξiξjaij 0 . . . 0

0 0 . . . 0
...

...
0 . . . . . . 0

 (9.2)

is positive in Mn(A). Then
∑n
i,j=1 ξiξjaij is positive in A,9 which means its image under φ is positive by

assumption. Then we compute

〈φ(n)([aij ])ξ, ξ〉 = 〈[φ(aij)]ξ, ξ〉 =

〈
∑n
j=1 φ(a1j)ξj

...∑n
j=1 φ(an,j)ξj

 ,
ξ1...
ξn

〉

=

n∑
i,j=1

ξiξjφ(aij) = φ(

n∑
i,j=1

ξiξjaij) ≥ 0

Exercise 9.6. Show that the composition of completely positive maps is completely positive.

Exercise 9.7. Let φ : A → B be a positive map between C∗-algebras. Show that φ is ∗-preserving, i.e.
φ(a∗) = φ(a)∗ for all a ∈ A.

Exercise 9.8. Show that the matrix amplification of any ∗-homomorphism between C∗-algebras is again a
∗-homomorphism. Conclude that any ∗-homomorphism is completely positive.

Example 9.9. To get more examples of completely positive maps we build them out of known examples.
The idea is to conjugate another cp map: Let ψ : A → B be a cp map between C∗-algebras and b ∈ B.

Then the map φ := b∗ψ(·)b : A → B is linear and positive by Exercise 3.11. It is moreover completely
positive. Indeed, for each n ≥ 1 and positive element [aij ] ∈ Mn(A),

φ(n)([aij ]) =

b
∗φ(a11)b . . . b∗φ(a1n)b

...
. . .

...
b∗φ(an1)b . . . b∗φ(ann)b

 =


b∗ 0 . . . 0

0
. . .

. . .
...

...
. . .

. . .
...

0 . . . 0 b∗


φ(a11) . . . φ(a1n)

...
. . .

...
φ(an1) . . . φ(ann)



b 0 . . . 0

0
. . .

. . .
...

...
. . .

. . .
...

0 . . . 0 b

 .
Observe (exercise) that when ‖b‖ ≤ 1, φ is cp. Moreover, φ is contractive: ‖φ(a)‖ ≤ ‖a‖ for all a.

Exercise 9.10. Now consider a more concrete setting of B(`2), and consider the rank n projection P defined
on the basis vectors by Pei = 1 if i ≤ n and Pei = 0 if i > n. If we write an operator A ∈ B(`2) as a matrix
array, what does its image under the completely positive map A 7→ PAP look like? (This is where the word
“compression” comes from.)

Now, we identify PB(`2)P ' B(P`2) ' Mn(C) (like in Example 6.5). These are ∗-isomorphisms, which
means their composition with the above compression by P gives a completely positive map B(`2)→ Mn(C).

9Perhaps there is a quicker argument, but here is one through tensor products. We’ll go ahead and record it so you can

come back after we’ve covered them. Exercise 11.11 tells us that Mn � A = Mn(A). So, the positive matrix in (9.2) is of the
form x = p⊗ b ∈ Mn ⊗A, where p is the projection onto the first coordinate. Then x = |x| =

√
p⊗ b∗b, which must also equal

|b| ⊗ p by uniqueness of positive square roots. Then p⊗ b− p⊗ |b| = 0 implies b = |b| ≥ 0.
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Example 9.11. One important class of completely positive maps are conditional expectations, which feature
more prominently in von Neumann algebras. Recall from the von Neumann lecture notes that a conditional
expectation is a contractive linear projection E : A → B from a C∗-algebra onto a C∗-subalgebra B ⊂ A
such that Eb = b for all b ∈ B. By a theorem of Tomiyama, any conditional expectation is automatically
completely positive and contractive. In this exercise, we consider a class of these that we will use a few times
in these notes.

Recall that a finite dimensional C∗-algebra has the form F = ⊕mj=1Mlj (C) ⊂ ML(C) where L =
∑
lj . We

define a conditional expectation ML(C)→ F as follows: for each j, let Pj denote the projection onto the jth
component of F , and define ρj : ML → Mlj as the compression Ej(·) = Pj · Pj (where we identify Mlj (C)
with its copy in ML(C)). Then E : ML(C)→ F , given by

∑
j Ej , is a ucp map (exercise check). (Why do

we automatically know F is unital?)

Theorem 9.12 (Russo-Dye). Let A and B be unital C∗-algebras and φ : A → B a positive map. Then
‖φ‖ = ‖φ(1)‖.

This is [9, Corollary 2.9], where it appears as a Corollary to von Neumann’s inequality [9, Corollary 2.7],
which we will not treat here.

In the subsection on nonunital C∗-algebras in [9, Chapter 2], Paulsen gives this non-unital extension of
the Russo-Dye theorem.

Proposition 9.13. Any positive map between C∗-algebras is bounded.

Finally, we record the following examples for future use. The proof is short, but we leave it for [9, Theorem
3.9].

Proposition 9.14. For any unital C∗-algebra A and any compact Hausdorff space X, any unital positive
map φ : A→ C(X) is ucp.

Remark 9.15. The converse holds too. This is a theorem of Stinespring (not to be confused with his dilation
theorem in the next section). ([9, Theorem 3.11])

Dilation Tricks:
Though our goals are Theorems 9.22 and 9.28, we would be doing a disservice to come this close to dilation
tricks and not give you a feel for the techniques. Also, we’ll want some of these facts later.

Lemma 9.16. Let A be a unital C∗-algebra and a, b ∈ A. Then ‖a‖ ≤ 1 iff

(
1 a
a∗ 1

)
is positive in M2(A).

Proof. We assume A is faithfully (and unitally) represented on a Hilbert space B(H), whence we check for
positive-definiteness. For a ∈ A, if ‖a‖ ≤ 1, then for any ξ, η ∈ H, we have〈(

1H a
a∗ 1H

)(
ξ
η

)
,

(
ξ
η

)〉
= 〈ξ, ξ〉+ 〈aη, ξ〉+ 〈ξ, aη〉+ 〈η, η〉

≥ ‖ξ‖2 − 2‖a‖‖η‖‖ξ‖+ ‖η‖2 ≥ 0.

On the other hand, if ‖a‖ > 1, then there exist unit vectors ξ, η ∈ A such that 〈aη, ξ〉 < −1, which would
make the inner product above negative.

�

Definition 9.17. We say a linear map φ : A→ B between C∗-algebras is completely bounded if

sup
n
‖φ(n)‖ <∞.

Corollary 9.18. Any completely positive map is completely bounded. Moreover, if A and B are unital
C∗-algebras and φ : A→ B is a completely positive map, then

‖φ(1)‖ = ‖φ‖ = sup
n
‖φ(n)‖.

We prove the case where φ is unital, i.e. φ(1) = 1, which also means φ(n)(1) = 1Mn(A) for all n ≥ 1. The
more general case needs one additional fact and is addressed in [9, Proposition 3.6], but the main idea is
already in the unital case.
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Proof. We know already that ‖φ(1)‖ ≤ ‖φ‖ ≤ supn ‖φ(n)‖. Moreover, we know ‖φ(n)(1)‖ = ‖1Mn(B)‖ = 1

for all n ≥ 1. So, we want to prove that supn ‖φ(n)‖ ≤ 1. So, let a = [aij ] ∈ Mn(A) with ‖a‖ ≤ 1. Then by
Lemma 9.16, (

1Mn(A) a
a∗ 1Mn(A)

)
∈ M2n(A)

is positive. Since φ is completely positive, φ(n) is 2-positive, and so

φ(2n)

((
1Mn(A) a
a∗ 1Mn(A)

))
=

(
1Mn(B) φ(n)(a)
φ(n)(a)∗ 1Mn(B)

)
is positive. By Lemma 9.16, this implies ‖φ(n)(a)‖ ≤ 1, as desired. �

More abbreviations:
Corollary 9.18 says that any ucp map is completely positive and completely contractive, abbreviated by cpc
(or some permutation of those letters).

Exercise 9.19. Let A be a unital C∗-algebra and a ∈ A such that ‖a‖ ≤ 1. Show that the following is a
unitary in M2(A): (

a
√

1− aa∗√
1− a∗a −a∗

)
.

This is sometimes referred to Halmos’ Dilation.

Now that we’ve tried a few dilation tricks, we (you) are ready to give another proof of Proposition 8.29.

Exercise 9.20. Let π : A→ B be a ∗-homomorphism between C∗-algebras and b ∈ π(A). Show that there
exists a ∈ A with π(a) = b and ‖a‖ = ‖b‖.

(1) Consider the element x =

[
0 b
b∗ 0

]
∈ M2(B). Show that ‖x∗x‖ = ‖b∗b‖.

(2) Apply Exercise 2.21 to x and π(2) to get some lift y =

[
y11 y12

y21 y22

]
∈ M2(A) (i.e. π(2)(y) = x) with y

self-adjoint and ‖y‖ = ‖x‖ = ‖b‖.
(3) Show that y12 is a lift of b.
(4) Now use Proposition 9.2 to finish the argument. (Don’t forget to mention why ‖y12‖ ≤ b.)

We close with one important fact that holds for cpc maps that does not hold in general is that any cpc
maps between C∗-algebras extends to a ucp map between their unitizations. The proof is short but digs into
some surprisingly technical aspects of double duals of C∗-algebras, so we leave it to [3, Proposition 2.2.1].

Proposition 9.21. Let A and B be C∗-algebras with A non-unital and B unital, and let φ : A → B be a
cpc map. Then φ extends to a ucp map φ̃ : Ã→ B, which is given by

φ̃(a+ λ1Ã) = φ(a) + λ1B .

9.2. Stinespring’s Dilation Theorem. We saw in the previous section that compressing a ∗-homomorphism
gives a completely positive map. What Stinespring’s Dilation Theorem tells us is that that’s basically how
every completely positive map arises! That’s right, when we are working with completely positive maps,
we are really just looking at “compressed” ∗-homomorphisms.10 That’s what makes Stinespring’s theorem
so powerful: cp (ucp) maps are more abundant than ∗-homomorphisms, but when you have a cp map,
you can draw a lot of conclusions pertaining to its structure by appealing to its “Stinespring Dilation”
∗-homomorphism.

Enough prelude. Here’s the theorem.

Theorem 9.22 (Stinespring’s Dilation Theorem). Let A be a unital C∗-algebra and φ : A→ B(H) a cp map.
Then there exists a Hilbert space H′, a unital representation π : A → B(H′) and a linear map V : H → H′
such that

φ(a) = V ∗π(a)V

for every a ∈ A. In particular, ‖φ‖ = ‖V ‖2 = ‖V ∗V ‖ = ‖φ(1)‖ = supn ‖φ(n)‖.

10“Compressed” is in quotations because in the non-unital setting it will be conjugation but not necessarily by a projection

as in Definition 4.2.1 in the von Neumann notes.
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Moreover, if φ is unital, then V is an isometry and V ∗ = PVH is the projection onto VH ⊂ H′. In this
case we identify H with a subspace VH ⊂ H′ and have

φ(a) = PHπ(a)|H.

Remark 9.23. We have a few remarks on this.

(1) When φ is unital, we think of π(a) as

π(a) =

[
φ(a) T12

T21 T22

]
where T12 : H⊥ → H, T21 : H → H⊥ and T22 : H⊥ → H⊥ are some bounded linear maps.

Notice how the unital case generalizes Example 9.10 (with π = id).
(2) There is a non-unital version. Follow [3, Remark 1.5.4].
(3) One usually hears the term “minimal Stinespring dilation.” Consider a Stinespring representation

(π,H′, V ) for φ : A → B(H). Let H0 ⊂ H be the closed linear span of π(A)VH, which is reducing
for π(A) (as in vN notes) and hence the co-restriction π : A→ B(H0) is a representation. Whenever
π(A)VH is dense in H′, (i.e. its closure is H0), then the Stinespring dilation is unique up to unitary
equivalence. (See [9, Proposition 4.2].)

The proof is exactly a generalization of the GNS construction of a representation corresponding to a state.
The technique in general is sometimes called “separation and completion”: first you define a semi-norm (or
semi-inner-product in this case), then you mod out by the null set– hence making it a genuine norm (or
inner product), then complete the quotient space with respect to your new norm. Since we have already
seen the technical side of the GNS proof, let’s see the overarching idea this time around in order to better
understand how to potentially use this technique in other settings. (For a proof that checks all the details,
see [9, Theorem 4.1].)

Proof of Stinespring’s Dilation Theorem. Let φ : A→ B(H) be a cp map, and consider the algebraic tensor
product

A�H := span{a� ξ : a ∈ A, ξ ∈ H}.
We define a symmetric bilinear function 〈·, ·〉 by

〈a� ξ, b� η〉 = 〈φ(b∗a)ξ, η〉H,
for a, b ∈ A and ξ, η ∈ H (extending linearly to A �H). One then checks that this is positive semidefinite
(i.e. 〈x, x〉 ≥ 0), which means it’s an inner product modulo the fact that we could potentially have 〈x, x〉 = 0
for non-zero x ∈ A�H. No worries. It turns out the space consisting of such elements N = {x ∈ A�H :
〈x, x〉 = 0} is a subspace of A � H, which means we can take the quotient (A � H)/N . The symmetric
bilinear function 〈·, ·〉 from before now induces a genuine inner product on (A�H)/N given by

〈x+N , y +N〉 := 〈x, y〉.
So, when we complete (A�H)/N with respect to this inner product, we get a Hilbert space. Let’s suggestively
call it H′.

For a ∈ A, we define the linear map π(a) : A � H → A � H by left multiplication, i.e. for a ∈ A and
b� ξ ∈ A�H, we have

π(a)(b� ξ) = ab� ξ,
and we extend linearly. A computation shows that π(a) : N → N , and so it induces a linear map on the
quotient (A�H)/N , which we still denote by π(a). Moreover, it turns out that ‖π(a)(x+N )‖ ≤ ‖a‖‖x+N‖
for all x + N ∈ (A � H)/N (where ‖x + N‖2 = 〈x + N , x + N〉), which means we can extend π(a) to a
bounded linear operator on all of H′. One then checks that this is indeed a unital ∗-homomorphism.

Define V : H → H′ by V (ξ) = (1A� ξ) +N . Then we compute for each unit vector ξ ∈ H, using Exercise
7.48 from the Day 1 Lecture Notes,

‖V ξ‖2 = 〈1A � ξ, 1A � ξ〉 = 〈φ(1∗A1A)ξ, ξ〉 ≤ ‖φ(1)‖‖ξ‖2 = ‖φ(1)‖.
It follows that ‖V ‖ = ‖φ(1)‖ and moreover that V is an isometry when φ is unital.

Finally, since V is an isometry, we conclude that for all ξ, η ∈ H,

〈V ∗π(a)V ξ, η〉H = 〈π(a)V ξ, V η〉 = 〈π(a)((1� ξ) +N ), (1� η) +N〉 = 〈φ(a)ξ, η〉H,
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and hence V ∗π(a)V = φ(a). �

Exercise 9.24. Describe in words how (the proof of) Stinespring’s Dilation Theorem generalizes the Gelfand
Naimark Segal Theorem. In particular, when φ is a state, what is H? A�H?

Yes, there is a generalization of Stinespring’s Dilation Theorem called the Kasparov-Stinespring Dilation
Theorem. This is phrased in either the language of Hilbert C∗-modules (see [6] for a nice introduction) or
multiplier algebras (in Kasparov’s original paper).

Frankly, Stinespring’s theorem admits several generalizations. For instance, there is one for maps that
are just considered completely bounded, i.e. linear maps with supn ‖φ(n)‖ <∞.

For the sake of seeing Stinespring’s Dilation Theorem in action, we introduce another useful concept for
ucp maps: multiplicative domains. Here’s how we define a multiplicative domain.

Definition 9.25. Let A and B be unital C∗-algebras and φ : A→ B ucp. Then the set

{a ∈ A : φ(a)φ(b) = φ(ab) and φ(b)φ(a) = φ(ba) ∀ b ∈ A}

is a C∗-subalgebra of A called the multiplicative domain of φ.

Notice that φ is a ∗-homomorphism when restricted to this set. In fact, this is the largest C∗-subalgebra
on which the ucp map acts as a ∗-homomorphism, though the fact that it is a C∗-algebra requires proof. To
prove this, we use Stinespring’s Dilation theorem to prove the following alternative description.

Proposition 9.26. Let A and B be unital C∗-algebras and φ : A→ B ucp. Then the multiplicative domain
of φ is equal to the set

{a ∈ A : φ(a)∗φ(a) = φ(a∗a) and φ(a)φ(a)∗ = φ(aa∗)}.

Proof of Proposition 9.26. Let A be a unital C∗-algebra and φ : A → B a ucp map. One inclusion is
immediate. We will work through the other inclusion.

Since B can be faithfully represented on some B(H) (and the composition of that representation with φ
is still cp), we assume B ⊂ B(H) and view φ as a map into B(H). Let (π, V,H′) be a Stinespring Dilation
for φ : A→ B(H), i.e. π : A→ B(H′) is a representation of A and V : H ↪→ H′ an isometric embedding so
that φ(a) = V ∗π(a)V for all a ∈ A. Then for any a ∈ A, we have

φ(a∗a)− φ(a)∗φ(a) = V ∗π(a∗a)V − V ∗π(a)∗V V ∗π(a)V

= V ∗π(a)∗1H′π(a)V − V ∗π(a)∗V V ∗π(a)V

= V ∗π(a)∗(1H′ − V V ∗)π(a)V

Now, suppose a ∈ A so that φ(a∗a) = φ(a)∗φ(a) and φ(aa∗) = φ(a)φ(a)∗. Since V is an isometry, V V ∗

is a positive contraction, and so by Exercise 3.11, 1H′ − V V ∗ is a positive contraction, which has a unique
positive square root. With that observation, we compute

0 = φ(a∗a)− φ(a)∗φ(a) = V ∗π(a)∗(1H′ − V V ∗)π(a)V

= V ∗π(a)∗(
√

1H′ − V V ∗)2π(a)V

= [
√

1H′ − V V ∗π(a)V ]∗[
√

1H′ − V V ∗π(a)V ].

It follows (from say the C∗-identity) that
√

1H′ − V V ∗π(a)V = 0.
With that, we let b ∈ A and compute

φ(ba)− φ(b)φ(a) = V ∗π(b)(1H′ − V V ∗)π(a)V = 0.

A symmetric argument shows that φ(ab) = φ(b)φ(a) for all b ∈ A, which completes the argument. �

Exercise 9.27. Conclude that the multiplicative domain of a cpc map φ : A→ B from a unital C∗-algebra
is a C∗-subalgebra.
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9.3. Arveson’s Extension Theorem. The other major theorem for completely positive maps (as far
as C∗-algebraists are usually concerned) is Arveson’s Extension Theorem. Just as Stinespring’s Dilation
Theorem was a generalization of GNS, which was a generalization of GN, Arveson’s Extension Theorem is a
generalization of Krein’s Theorem, which is a strengthening of the Hahn-Banach Theorem for C∗-algebras.
On the other hand, where Stinespring’s proof was a generalization of the proofs that came before, Arveson’s
proof builds on the proofs that came before.

Theorem 9.28 (Arveson’s Extension Theorem). Let B be a unital C∗-algebra, A ⊂ B a unital C∗-subalgebra,

and φ : A→ B(H) a cp map. Then there exists a cp map φ̃ : B → B(H) extending φ, i.e. φ̃|A = φ.

Remark 9.29. In an abuse of categorical language, B(H) is often called injective in the category of C∗-algebras
with morphisms given by cpc maps. (It’s an abuse of language because we always assume an embedding
A ⊂ B is a ∗-homomorphism embedding.)

This theorem plays a big role in the next section when we see a characterization of nuclear C∗-algebras in
terms of completely positive maps. For now, we just give an idea of the proof via the results it generalizes.

Theorem 9.30 (Krein). Let B be a unital C∗-algebra, A ⊂ B a unital C∗-subalgebra, and φ : A → C a
positive linear map. Then φ extends to a positive map on B.

This intermediate result is [9, Theorem 6.2].

Proposition 9.31. Let B be a unital C∗-algebra, n ≥ 1, A ⊂ B a unital C∗-subalgebra, and φ : A→ Mn(C)
completely positive. Then φ extends to a completely positive map B → Mn(C).

From this to Arveson’s theorem, we take a completely positive map φ : A → B(H) and an increasing
net of finite rank projections Pi ∈ B(H). Then each compression φi : A → PiB(H)Pi ' MrankPi(C),
given by Piφ(·)Pi, is a completely positive map with completely positive extension. From here you take a
point-ultraweak cluster point of the φi’s (ask Brent and Rolando), and that’s your cp extension of φ!

Exercise 9.32. Suppose C ⊂ B(H) is a unital C∗-subalgebra of B(H) (meaning its unit is 1H) and E :
B(H) → C is a conditional expectation (which we recall from Exercise 9.11 is completely positive by
Tomiyama’s theorem). Show that Arveson’s Extension Theorem holds for C as well, i.e. for any unital

C∗-algebras A ⊂ B and cp map φ : A→ C, there exists a cp map φ̃ : B → C extending φ, i.e. φ̃|A = φ.
Using Example 9.11, conclude that Arveson’s Extension Theorem holds for all finite dimensional C∗-

algebras.

Remark 9.33. If you’ve peeked at some of the reference texts, you’ll notice that many of the theorems from
this section are given for operator systems. What are those? You’ll learn more about them in Sam Kim’s
expository lecture next week, but for now, here’s an idea.

Notice that completely positive maps completely preserve the structure of positive elements in a C∗-
algebra. So, there is a lot to be gained from considering self-adjoint unital subspaces of C∗-algebras.

An operator system is a unital self-adjoint subspace of a C∗-algebra. (Not necessarily closed.) Arveson’s
extension theorem is actually stated where we assume that A ⊂ B is not a C∗-algebra but an operator
system inside B.
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10. Completely Positive Approximations

This section introduces what is historically known as the “completely positive approximation property,”
which, in the hindsight provided by a major theorem of Choi-Effros and also Kirchberg (which we give next
week), is now called nuclearity. In essence, a C∗-algebra has the completely positive approximation property
when it can be well approximated by cpc maps that factor through finite dimensional C∗-algebras. This is,
at its heart, a property of maps, which is where we start in section 10.1.

However, in the lecture, we will focus on nuclearity of C∗-algebras (10.2) and hence will take the material
in Section 10.1 for granted. We will go through the discussion on K(`2) at the beginning of this section
in the context of the definition of nuclearity. We will prove Proposition 10.15 and Proposition 10.9 in the
separable setting. Arveson’s Extension theorem will feature prominently.

Though we will not be able to treat it in lecture, we highly recommend reading the argument that
commutative C∗-algebras are nuclear (Proposition 10.10) and working out the hands-on example in Exercise
10.12.

Many of the C∗-algebras we can get our hands on have some reasonable connection to finite-dimensional
C∗-algebras. AF algebras in particular were built out of finite-dimensional subalgebras. More generally, they
can be approximated by their finite dimensional subalgebras in a way that can be generalized to a much
larger class of C∗-algebras. To get a better feeling for what we mean, let us start with a motivating example.

We know (Example 6.5) that K(`2) is built as a union of finite-dimensional algebras as follows:

K(`2) =
⋃
n

PnK(`2)Pn

where Pn is the projection onto span{e1, . . . , en}. Since the projections (Pn)n form an approximate unit for
K(`2), we have for each T ∈ K(`2),

‖T − PnTPn‖ → 0.

We saw in the previous section that the map T 7→ PnTPn is a completely positive comtractive map. Compose
that with the ∗-isomorphism PnK(`2)Pn ' Mn(C), and we have a cpc map ψn : K(`2)→ Mn(C). Moreover,
when we compose that with the ∗-homomorphism embedding φn : Mn → PnK(`2)Pn ⊂ K(`2), we can write

‖T − φnψn(T )‖ → 0.

This is called a completely positive approximation of K(`2), and the existence of such an approximation is
what it means (in modern terms) to be nuclear.

For the sake of simplicity, many results here are not stated in their full generality. If you find this section
interesting, we suggest [3, Chapter 2], which covers this material quite well, save a dearth of hands-on
examples.

10.1. Nuclear Maps. We start with the definition of a nuclear map between C∗-algebras.

Definition 10.1. A cpc map θ : A → B between C∗-algebras is called nuclear if there exist cpc maps
ψi : A→ Mk(i)(C) and φi : Mk(i)(C)→ B, for i ∈ I, so that φi ◦ ψi → θ in the point norm topology, i.e. for
each a ∈ A,

lim
i∈I
‖φi(ψi(a))− θ(a)‖ = 0.

Remark 10.2. There’s lots to say here. This idea is thoroughly researched and nuanced, and there are so
many variations on the above definition. We’ll keep these remarks brief.

• If A is separable, then it can be written as a countable union of finite subsets. Then we can choose
the net I in Definition 10.1 to be a sequence.

• The requirements placed on the maps ψi and φi can vary. It turns out we could equivalently relax
the contractive requirement. On the other hand, we could equivalently keep the requirement that
they are cpc and demand moreover that they have certain (approximate) orthogonality preserving
properties (known as order zero). There’s a fair bit of research in this direction by Winter, Zacharias,
Kirchberg, Hirchberg, Brown, and Carrion to name a few. (FYI: Nate Brown will be one of our
expository speakers, and José Carrion will speak at our conference.)
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• The convergence in Definition 10.1 could have be given with respect the point-ultraweak (aka σ-
weak) topology (in which case the map would be called weakly nuclear). This is the first step on the
bridge between nuclearity for C∗-algebras and semidiscreteness/ hyperfiniteness for von Neumann
algebras (ask Brent and Rolando what those terms mean), but we are getting ahead of ourselves.

This is really a local property, as the following proposition shows.

Proposition 10.3. A cpc map θ : A → B is nuclear iff for any ε > 0 and finite set F ⊂ A, there exists
n ≥ 0 and cpc maps ψ : A→ Mn(C) and φ : Mn(C)→ B such that

‖φ(ψ(a))− θ(a)‖ < ε

for each a ∈ F .

Proof. Suppose there exist cpc maps ψi : A→ Mk(i)(C) and φi : Mk(i)(C)→ B for i ∈ I so that φi◦ψi → θ in
the point norm topology. Then for any ε > 0 and F ⊂ A finite, we choose i ∈ I so that ‖φi(ψi(a))−θ(a)‖ < ε
for each a ∈ F .

Now, we assume the localized version. As in Examples 5.3 and 5.8 in the Prerequisite materials, we form
a directed set

{(ε, F ) : ε > 0, F ⊂ A finite}.
For each (ε, F ), let φ(ε,F ) be a cpc map so that ‖φ(ε,F )(ψ(ε,F )(a))− θ(a)‖ < ε for each a ∈ F . Then for each
a ∈ A, we have the desired convergence. �

Exercise 10.4. Show that a map θ : A→ B is nuclear if there exist finite dimensional C∗-algebras Fi and
cpc maps ψi : A→ Fi and φi : Fi → B so that φi ◦ ψi converges pointwise in norm to θ.
Hint: Recall that a finite dimensional C∗-algebra has the form F = ⊕mj=1Mlj (C) ⊂ ML(C) where L =

∑
lj ,

and use Example 9.11.

Exercise 10.5. Let A and B be C∗-algebras and C ⊂ B a C∗-subalgebra. Show that if θ : A → C is a
nuclear map, then so is θ when viewed as a map from A to B. Suppose we have a map ρ : A → C that is
nuclear as a map from A to B. What could prevent ρ from being a nuclear map as a map from A to C?

10.2. Completely Positive Approximation Property.

Definition 10.6. A C∗-algebra is nuclear if the identity map idA : A → A is nuclear, i.e. there exist cpc

maps A
ψi−→ Mk(i)(C)

φi−→ A for i ∈ I such that for each a ∈ A,

‖a− φi(ψi(a))‖ → 0.

In the separable setting, the usual image one presents is something like the following approximately
commutative diagram.

A A A ...

Mk(0)(C) Mk(1)(C) Mk(2)(C) ...

id

ψ0

id

ψ1

id

ψ2φ0 φ1

Remark 10.7. Sometimes these C∗-algebras are called amenable. Sometimes for mathematical reasons—
sometimes because the word “nuclear” in a grant application means one must fill out many many more
forms.

A C∗-algebra satisfying Definition 10.6 is also said to satisfy the completely positive approximation property
(CPAP).

Example 10.8. It follows from Exercise 10.4 that finite dimensional C∗-algebras are nuclear.

Proposition 10.9. Ideals of nuclear C∗-algebras are nuclear.

Proof. Suppose A is nuclear with completely positive approximation A
ψi−→ Mk(i)(C)

φi−→ A for i ∈ I. Let J/A
be an ideal and {eλ}Λ an approximate unit of J (with 0 ≤ eλ ≤ eγ ≤ 1 when λ ≤ γ). Let ι : J → A denote
the inclusion of J into A (i.e. ι(a) = a for all a ∈ J). For each λ, define ρλ : A→ J by ρλ(a) = eλaeλ. Since
each eλ is self-adjoint and contractive, the maps ρλ are cpc by Exercise 9.9. Since the compositions of cpc
maps are cpc (Exercise 9.6), for each i, λ, the maps ψ′i,λ := ψi ◦ ι : J → Mk(i) and φ′i,λ := ρλ ◦φi : Mk(i) → J
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are cpc. (Yes, the λ is a superflous index on ψ′i.) Moreover, {(i, λ)}I×Λ is a directed set with (i, λ) ≤ (j, γ)
when i ≤ j and λ ≤ γ.

Let a ∈ J and ε > 0, and choose (i0, λ0) ∈ I × λ so that ‖a− φi ◦ψi(a)‖ < ε/2 and ‖a− ρλ(a)‖ < ε/2 for
each i ≥ i0 and λ ≥ λ0. Then for each (i, λ) ≥ (i0, λ0),

‖a− φ′i,λ ◦ ψ′i,λ(a)‖ = ‖a− eλ(φi ◦ ψi(a))eλ‖
≤ ‖a− eλaeλ‖+ ‖eλaeλ − eλ(φi ◦ ψi(a))eλ‖
≤ ‖a− eλaeλ‖+ ‖eλ‖‖a− φi ◦ ψi(a)‖‖eλ‖
≤ ‖a− eλaeλ‖+ ‖a− φi ◦ ψi(a)‖
< ε.

�

In approximately commutative diagrams, the picture from the above proof looks like this.

J J

A A

Mk(i)(C)

idJ

ι

idA

ψi

ρλ

φi

It’s not a proof, but it’s a good intuition to guide the proof.

Proposition 10.10. Abelian C∗-algebras are nuclear.

The proof uses what is known as a “partition of unity argument.” Generalizing the idea of a partition of
unity has proved very fruitful in certain areas of research in recent years, so we give this proof as an example.

We take for granted the fact from topology that, given any compact Hausdorff space X with open cover
U1, ..., Un, there exist continuous functions h1, ..., hn : X → [0, 1] so that supp(hj) ⊂ Uj and

∑
j hj = 1. (See

[Theorem 2.13, Rudin, Real and Complex Analysis].) This is a partition of unity (in fact a rather nice one).

Proof. Let A be an abelian C∗-algebra. If A is not unital, then A / Ã, and by Proposition 10.9, it suffices
to show that Ã is nuclear. So, we assume A is unital and moreover that A = C(X) for some compact
Hausdorff space X. Combining Proposition 10.3 and Exercise 10.4, we conclude that it suffices to show that
for any F ⊂ C(X) finite and ε > 0, there exists a finite dimensional C∗-algebra C (in our case, it will be

Cn = ⊕n1 M1(C)) and cpc maps C(X)
ψ−→ C

φ−→ C(X) so that ‖f − φ ◦ ψ(f)‖ < ε for every f ∈ F .
Let F ⊂ C(X) be a finite subset and ε > 0. For each x ∈ X, let

Ux :=
⋂
f∈F

f−1(Bε/2(f(x))).

Then Ux ⊂ X is an open neighborhood of x such that for each y ∈ Ux and f ∈ F , we have |f(y)−f(x)| < ε/2.
Since X is compact, we choose x1, ..., xn so that a finite subcover Ux1

, ..., Uxn covers X, and moreover for
each f ∈ F and y ∈ Ui,

|f(y)− f(xi)| < ε.

Then we choose a partition of unity h1, ..., hn : X → [0, 1] so that supp(hj) ⊂ Uxj and
∑
j hj = 1.

Define ψ : C(X)→ Cn by ψ(g) = (g(x1), ..., g(xn)) = ⊕nj=1evxj , where evxj denotes the point evaluation
g 7→ g(xj). Then ψ is a unital ∗-homomorphism. Define φ : Cn → C(X) by

(λ1, ..., λn) 7→
∑

λihi.

Then φ is a positive map, which is moreover unital since φ(1) =
∑
hi = 1. Hence by Proposition 9.14, it is

ucp, and, in particular, cpc by Corollary 9.18.
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So, we estimate for f ∈ F ,

‖f − φ ◦ ψ(f)‖ = ‖
(∑

hi

)
f −

∑
f(xi)hi‖ = ‖

∑
fhi − f(xi)hi‖

= sup
y∈X
|
∑

(f(y)− f(xi))hi(y)| ≤ sup
y∈X

∑
|f(y)− f(xi)|hi(y)

≤
∑

εhi(y) = ε.

�

Remark 10.11. There has been a significant push in the classification program for nuclear C∗-algebras (that
satisfy a nice list of adjectives) to come up with a non-commutative version of this partition of unity argument.
With it comes certain non-commutative dimension theories (see for example Winter and Zacharias’s paper
on Nuclear Dimension). Some of this may be featured in José Carrion’s conference talk.

Exercise 10.12. Partitions of unity are nicer when you have a concrete example. For each n ≥ 2, cover
[0, 1] by 2n− 1 open intervals of equal length. (What are they? Also, we could start with n = 1, but it’s too
simple to pick up on a pattern.) Call this cover Un. Define (sketch) a partition of unity for Un. (Hint: think
zig-zags.)

Now, construct a sequence of completely positive maps C([0, 1])
ψn−−→ Ckn φn−−→ C([0, 1]), (what is kn?) that

give a completely positive approximation of C([0, 1]).

Proposition 10.13. Suppose for each finite subset F ⊂ A and ε > 0, there exists a nuclear C∗-subalgebra
B ⊂ A such that for each a ∈ F , there exists b ∈ B such that ‖a− b‖ < ε. Then A is nuclear.

Proof. By Proposition 10.3, it suffices to show that for any ε > 0 and finite set F ⊂ A, there exists n ≥ 0
and cpc maps ψ : A→ Mn(C) and φ : Mn(C)→ B such that

‖φ(ψ(a))− θ(a)‖ < ε

for each a ∈ F . Let {a1, ..., am} ⊂ A be a finite subset ε > 0 and let B ⊂ A nuclear so that for each aj ,
there exists a bj ∈ B such that ‖aj − bj‖ < ε/3. Let n ≥ 0 and ψB : B → Mn(C) and φB : B → Mn(C) be
cpc maps so that ‖bj − φBψB(bj)‖ < ε/3 for each 1 ≤ j ≤ m.

But how do we get a map ψ defined on all of A? Easy, since Mn(C) = B(Cn), the cpc map ψB : B →
Mn(C) extends to a cpc map ψ : A→ Mn(C) by Arveson’s Extension Theorem.11 Since φB : Mn(C)→ B ⊂
A, we don’t need to change it, so we choose φ = φB .

Now, all that’s left is to compute for each 1 ≤ j ≤ m:

‖aj − φψ(aj)‖ ≤ ‖aj − bj‖+ ‖bj − φψ(bj)‖+ ‖φψ(bj)− φψ(aj)‖
≤ ‖aj − bj‖+ ‖bj − φψ(bj)‖+ ‖bj − aj‖
< ε

�

Exercise 10.14. Using the above proposition, show that nuclearity is closed under taking direct limits.
Conclude that AF algebras are nuclear.

The above proof is perhaps a little abstract. Here’s a version that’s a little more tangible. First, we recall
once more the construction of the CAR algebra:

Let M2n(C) be the algebra of 2n × 2n matrices with maps φn,n+1 : M2n(C)→M2n+1(C) defined by

x 7→
(
x 0
0 x

)
.

The inductive limit is denoted M2∞ =
⋃
n M2n(C). Note that by construction, for each n ≥ 0, the copy of

M2n in M2∞ is unital.

Proposition 10.15. The CAR algebra is nuclear.

11Acutally, it’s overkill here– one of the preliminary results leading up to Arveson’s would work in finite dimensions.
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Proof. For each n ≥ 0, define φn : M2n(C)→ M2∞ be the inclusion where we identify M2n with its copy inside
M2∞ . The restriction of this map to its image is a ∗-isomorphism, so we call its inverse φ−1

n : φn(M2n(C))→
M2n(C). This is a unital ∗-homomorphism from a C∗-subalgebra of M2∞ to M2n(C) = B(C2n). So Arveson’s
Extension theorem says φ−1

n has a ucp extension ψn : M2∞ → M2n(C). So, we have ucp maps ψn : M2∞ →
M2n(C) and φn : M2n(C) → M2∞ . Moreover, for each a ∈

⋃
n M2n(C), there exists an N ≥ 0 so that

a ∈ M2n(C) for all n ≥ N , which means φn ◦ ψn(a) = φn ◦ φ−1
n (a) = a for all n ≥ N .

Now, suppose a ∈ M2∞ , and a0 ∈
⋃
n M2n(C) so that ‖a−a0‖ < ε/2. Choose N ≥ 0 so that φn ◦ψn(a0) =

a0 for all n ≥ N . Then for all n ≥ N ,

‖a− φn ◦ ψn(a)‖ ≤ ‖a− a0‖+ ‖a0 − φn ◦ ψn(a0)‖+ ‖φn ◦ ψn(a0 − a)‖ < ε

�

Exercise 10.16. Generalize the proof of Proposition 10.15 to get another proof that all separable AF
algebras are nuclear.
Hint: Consider a inductive (aka directed) system of finite dimensional C∗-algebras (An, ιmn) where ιmn :
An → Am is the inclusion map, and let A be the direct (inductive) limit of this system. Then use Exercise
9.32.

Chapter 2 in [3] does an excellent job of introducing the operations that do and do not preserve nuclearity.
Since we do not wish to re-write their book, we will just collect them here. These range from easy exercises
to deep theorems.

(1) Nuclearity passes to direct limits and direct sums (
⊕

iAi) (but not direct products
∏
iAi).

(2) Nuclearity passes to quotients.
There are essentially two proofs for this. The first is a consequence of Connes’ Fields Medal work
involving showing hyperfinite ⇔ injective– ask Brent and Rolando. Otherwise, it follows from the
fact that exactness (defined soon) passes to quotients. The proof of this (due to Kirchberg) is one
of the most difficult proofs in C∗-algebras, resting some of the deepest and most difficult theorems
in von Neumann algebra theory. – See [3, Chapter 9] for a (not self-contained) outline.

(3) Nuclearity does not necessarily pass to subalgebras.
The easiest examples come from crossed products, which we’ll see next week. (See [3, Remark 4.4.4].)
For a more sophisticated appeal, we have Kirchberg’s O2 embeddability theorem, which implies that
the non-nuclear C∗-algebra C∗r(F2) embeds into the nuclear C∗-algebra O2. (We will see next week
why C∗r(F2) is not nuclear. We take for granted that the Cuntz-Krieger algebras are nuclear.)

(4) Nuclearity passes to ideals (Proposition 10.9) (even hereditary subalgebras) and C∗-subalgebras to
which there exists a conditional expectation.

(5) Nuclearity passes to extensions, i.e. if 0 → J → A → B → 0 is short exact and both J and B are
nuclear, then so is A. (This one is easier with next week’s characterization.)

We wrap up this section with a slight weakening of nuclearity that is still a very powerful property.
As we saw in Exercise 10.5, the range of a cpc map has a lot of bearing on whether or not it is nuclear.

It may be that a C∗-algebra fails to be nuclear but still has a faithful nuclear representation. These are still
a nice class of C∗-algebras.

Definition 10.17. A C∗-algebra A is exact if there exists a faithful nuclear representation π : A→ B(H).

Every nuclear C∗-algebra is exact– moreover for nuclear C∗-algebras, the map π : A → π(A) is nuclear.
A non-nuclear example of an exact C∗-algebra is C∗(F2) (due to Wasserman).

Exercise 10.18. Show that exactness does pass to C∗-subalgebras. What does that tell you about every
C∗-subalgebra of a nuclear C∗-algebra?

The name “exact” is hardly justified here. We will see it again later in the tensor product section, where
it will make more sense.
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11. Tensor Products of C∗-algebras

Overall, sections 11.1 and 11.2 will be treated as preliminary material in the lecture, which will focus more
on sections 11.3 and 11.7. Section 11.4 goes into much more difficult problems concerning injectivity and
exactness for tensor products. The point there is to just give a feel for the the questions and obstacles
in both settings. With time, we will touch on the topics in lecture. Section 11.5 gives a tensor product
characterization of nuclearity (Theorem 11.50) and highlights some important examples (Remark 11.53).
We will mention these in lecture but without much discussion. Section 11.6 establishes an important class
of examples (Theorem 11.57), which we will be sure to mention in lecture, but without much word on the
proof.

Section 11.3 defines the two primarily studied C∗-norms on tensor products. These are quite analogous
to the universal and reduced norms for discrete groups, and we will explore several tensor product analogies
to results we saw for groups, e.g. Corollary 11.29, Proposition 11.34, and Proposition 11.33. Section 11.7
justifies our use of completely positive maps. We will cover Example 11.60 and mention how Stinespring’s
Dilation theorem is used in the proof of Theorem 11.61.

The way you read these notes will depend on your background and comfort level. If algebraic tensor
products are new to you, spend more time in section 11.1. Regardless of your comfort level with algebraic
tensors, be sure you’ve digested Exercise 11.11, which is quite foundational to the later sections. If you are
still shaky on Hilbert space operators, linger in section 11.2. If you feel comfortable with (assuming) the
material in these sections, but still want some more fundamental examples and arguments under your belt,
check out sections 11.6 and 11.5.

One of the most important constructions in C∗-algebras is the tensor product. Given two C∗-algebras A
and B, we form a C∗-tensor product A⊗αB by taking the ∗-algebraic tensor product A�B and completing
with some C∗-norm. In this section, we consider the two most prominent ones. This section is taken heavily
from the first half of [3, Chapter 3].

One word on notation. Because there is so much significance to the norm on a given tensor product,
we will denote algebraic tensor products by � and tensor products that are also complete with respect to
a norm by ⊗ (possibly with decoration to denote which norm). Sometimes ⊗ is used in the literature to
denote an algebraic tensor product, and sometimes it is used to indicate the normed tensor product space
with the spatial tensor product norm Definition 11.22. Usually authors are good about warning you of this.

11.1. Facts about algebraic tensor products. In this section we list some relevant facts about algebraic
tensor products that we will take for granted in the lecture. Many of these are proved in [3, Section 3.1-3.2].

We give a non-constructive definition since it highlights the key properties: Let A and B be C-vector
spaces. Their tensor product is the vector space A� B, together with a bilinear map � : A× B → A� B,
such that A�B is universal in the following sense:
For any C-vector space C and any bilinear map φ : A × B → C, there exists a unique bilinear map
φ̃ : A�B → C so that φ̃(a�b) = φ(a, b) for all a ∈ A and b ∈ B. The bilinearity of the map � : A×B → A�B
means that we have the following algebraic relations in A�B:

(1) (a1 + a2)� b = (a1 � b) + (a2 � b) and
a� (b1 + b2) = (a� b1) + (a� b2) for all a, a1, a2 ∈ A, b, b1, b2 ∈ B; and

(2) λ(a� b) = (λa)� b = a� (λb) for all a ∈ A, b ∈ B, and λ ∈ C.

Elements of the form a� b for a ∈ A and b ∈ B are called simple tensors. Note that if a = 0 or b = 0, then
a� b = 0.

Remark 11.1. A�B is spanned by its simple tensors, but consists of many more elements. For example, in
general the element (a1 � b1) + (a2 � b2) cannot be written as a simple tensor a� b.

As a vector space, the notion of linear independence in an algebraic tensor product is a little technical
but also technically very useful. We lay out the following propositions for later use.

As far as linear independence goes, the following propositions can be useful:
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Proposition 11.2. Suppose {a1, ..., an} ⊂ A are linearly independent and {b1, ..., bn} ⊂ B. Then
n∑
1

ai � bi = 0⇒ bi = 0, for 1 ≤ i ≤ n.

Proposition 11.3. If {ei}i∈I is a basis for A and {e′j}j∈J is a basis for B, then {ei� e′j}(i,j)∈I×J is a basis
for A�B.

Proposition 11.4. If {ei}i∈I is a basis for A and x ∈ A � B, then there exists a unique finite set I0 ⊂ I
and {bi}i∈I0 so that x =

∑
i∈I0 ei � bi.

Just as we take tensor products of linear spaces, we can take tensor products of linear maps.12 The
following is more of a proposition/ definition; existence and uniqueness of these maps come from the above
universal property.

Definition 11.5. Suppose A1A2, B1, B2 are C-vector spaces and φi : Ai → Bi, i = 1, 2 are linear maps.
Then there is a unique linear map

φ1 � φ2 : A1 �B1 → A2 �B2

so that φ1 � φ2(a� b) = φ1(a)� φ2(b) for all a ∈ A1, b ∈ A2. This is called the tensor product of the maps
φ1 and φ2.

The tensor product of linear maps preserves both injectivity and exact sequences:

Proposition 11.6. Suppose A1, A2, B1, B2 are C-vector spaces and φi : Ai → Bi, i = 1, 2 are injective
linear maps. Then φ1 � φ2 is also injective.

Proposition 11.7. Suppose J,A,B,C are C-vector spaces. If 0 → J
ι−→ A

π−→ B → 0 is a short exact
sequence (i.e. ι is injective, π is surjective, and ker(π) = ι(J)), then so is

0→ J � C ι�idC−−−−→ A� C π�idC−−−−→ B � C → 0.

We highlight a special case of this tensor product map when B1 = B2 is an algebra.

Definition 11.8. Suppose A1, A2 are C-vector spaces, B a C-algebra, and ψi : Ai → B are linear maps.
Then there exists a unique linear map

ψ1 × ψ2 : A1 �A2 → B

so that ψ1×ψ2(a� b) = ψ1(a)ψ2(b) for all a ∈ A1, b ∈ A2. This is called the product of the maps ψ1 and ψ2.

Exercise 11.9. Explain what is meant by ψ1 × ψ2 is a “special case” of a tensor product of maps. (Think
of the universal property and the bilinear map B �B → B given on simple tensors by b1 � b2 7→ b1b2.)

We are interested in particular in tensor products of C∗-algebras. When A and B are C∗-algebras, then
the algebraic tensor product is a ∗-algebra with multiplication and involution defined on simple tensors as

(a� b)∗ = a∗ � b∗ and (a1 � b1)(a2 � b2) = a1a2 � b1b2,
and extended linearly to all of A�B.

When we take the product of two ∗-homomorphisms ψ1 : A1 → B and ψ2 : A2 → B, we are forced to
impose an extra condition to guarantee that the product ψ1 × ψ2 is again a ∗-homomorphism: the images
must commute, i.e. for each a1 ∈ A1 and a2 ∈ A2, ψ1(a1)ψ2(a2) = ψ2(a2)ψ1(a1).

Exercise 11.10. Justify the claim above, i.e. the product ψ1 × ψ2 of two ∗-homomorphisms ψ1 : A1 → B
and ψ2 : A2 → B is a ∗-homomorphism provided that the ranges ψ1(A1) and ψ2(A2) commute in B.

Recall from Section 9 where we defined a natural C∗-norm on

Mn(A) := {[aij ] : ai,j ∈ A, 1 ≤ i, j ≤ n}. (11.1)

Exercise 11.11. Let A be any C∗-algebra, 1 ≤ n < ∞, and let Ei,j denote the matrix units on Mn(C)
(i.e. the matrices with 1 in the i, j coordinate and 0 elsewhere). Define a map π : Mn(A) → Mn � A by
π([ai,j ]) =

∑n
i,j=1Ei,j � aij . Show that this is an algebraic ∗-isomorphism.

12For those categorically inclined, tensors play well with linear categories and act like “multiplication” for objects/ mor-

phisms. Ask Corey Jones after his expository talk.
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11.2. Tensor Products of Hilbert Space Operators. We saw in the prereqs how to define a tensor
product of two Hilbert spaces H1 ⊗ H2. (Recall that H1 ⊗ H2 is the completion of the algebraic tensor
product H1 �H2 with respect to the norm coming from the inner product which is given on simple tensors
by 〈ξ1 ⊗ ξ2, η1 ⊗ η2〉 = 〈ξ1, η1〉〈ξ2, η2〉.)

Given operators Ti ∈ B(Hi) for i = 1, 2, we have a natural algebraic tensor product mapping T1 � T2 :
H1 �H2 → H1 �H2 given on simple tensors by

(T1 � T2)(ξ � η) = T1ξ � T2η.

This extends linearly to a linear map H1 �H2 → H1 �H2 defined on sums of simple tensors by

T1 � T2

n∑
1

cj(ξj ⊗ ηj) =

n∑
1

cj(T1ξj ⊗ T2ηj).

This map extends to an operator T1 ⊗ T2 ∈ B(H1 ⊗H2) by the following proposition.

Proposition 11.12. Given Hilbert spaces H1 and H2 and operators Ti ∈ B(Hi), i = 1, 2, there is a unique
linear operator T1 ⊗ T2 ∈ B(H1 ⊗H2) such that

T1 ⊗ T2(ξ1 ⊗ ξ2) = T1ξ1 ⊗ T2ξ2

for all ξi ∈ Hi, i = 1, 2, and moreover ‖T1 ⊗ T2‖ = ‖T1‖‖T2‖.

Proof. First, we want to show that the operator T1 � T2 is bounded on H1 � H2, which means we can
extend it to a bounded operator on H1 ⊗ H2. Assume for now that T2 = 1H2

, and write T = T1. Let∑n
1 cj(ξj � ηj) ∈ H1 � H2. Using a Gram-Schmidt process, we may assume ηj are orthonormal (check).

Then we compute∥∥∥∥∥∥T � 1H2
(

n∑
j=1

cj(ξj � ηj))

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑
j=1

cjTξj � ηj

∥∥∥∥∥∥
2

=

∣∣∣∣∣∣〈
n∑
i=1

ciTξi � ηi,
n∑
j=1

cjTξj � ηj〉

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑
i=1

n∑
j=1

cic̄j〈Tξi, T ξj〉〈ηi, ηj〉

∣∣∣∣∣∣ =

n∑
j=1

|cj |2‖Tξj‖2 ≤ ‖T‖2
n∑
j=1

|cj |2‖ξj‖2

= ‖T‖2
∣∣∣∣∣∣
n∑
i=1

n∑
j=1

cic̄j〈ξi, ξj〉〈ηi, ηj〉

∣∣∣∣∣∣ = ‖T‖2
∥∥∥∥∥∥
n∑
j=1

cj(ξj � ηj)

∥∥∥∥∥∥
2

.

Then ‖T � 1H2‖ ≤ ‖T‖ on H1�H2, meaning it extends to an operator in B(H1⊗H2), denoted by T ⊗ 1H2 ,
with ‖T ⊗ 1H2

‖ ≤ ‖T‖. Similarly, one shows that for any T2 ∈ B(H2), we have 1H1
⊗ T2 ∈ B(H1 ⊗H2).

Now, for T1 ∈ B(H1) and T2 ∈ B(H2), we compose (1H1
⊗ T2)(T1 ⊗ 1H2

) to get T1 ⊗ T2 ∈ B(H1 ⊗H2)
with ‖T1 ⊗ T2‖ ≤ ‖T1‖‖T2‖ and

T1 ⊗ T2(ξ1 ⊗ ξ2) = T1ξ2 ⊗ T2ξ2

for all ξi ∈ Hi. To show that this norm inequality is an equality, we find, for any ε > 0, unit vectors ξi ∈ Hi
with |‖Tiξi‖ − ‖Ti‖| < ε(2 maxi ‖Ti‖)−1 for i = 1, 2. Then, using Exercise 7.49 from Day 1, we have

‖(T1 ⊗ T2)(ξ1 ⊗ ξ2)‖ = ‖T1ξ1 ⊗ T2ξ2‖ = ‖T1ξ1‖‖T2ξ2‖ ∼ε ‖T1‖‖T2‖.
(That’s shorthand for ‖T1ξ1‖‖T2ξ2‖ is within epsilon of ‖T1‖‖T2‖.) �

We will take for granted that taking tensor products of operators is well-behaved with respect to addition,
(scalar) multiplication, and adjoints.

Exercise 11.13. For A = [aij ] ∈ M2(C) = B(C2) and B = [bi,j ] ∈ M3(C) = B(C3), write a matrix array
for A⊗B ∈ B(C2 ⊗ C3). (This is called a Kronecker product.)

In infinite dimensions, we do not have B(H1)�B(H2) = B(H1⊗H2) (the former is no longer automatically
closed).

Proposition 11.14. For Hilbert spaces H1 and H2, we define ∗-homomorphisms ιi : B(Hi)→ B(H1⊗H2)
by identifying B(H1) ' B(H1)�C1H2

and B(H2) ' C1H1
�B(H2). These induce a product ∗-homomorphism

ι1 × ι2 : B(H1)�B(H2)→ B(H1 ⊗H2), which is injective.
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Proof. Since B(H1) ' B(H1) � C1H2 and B(H2) ' C1H1 � B(H2) (Exercise: check) and B(H1) � C1H2

and C1H1 � B(H2) commute in B(H1 ⊗ H2) (Exercise: check), we have from Section 11.1 the product
∗-homomorphism

B(H1)�B(H2)→ B(H1 ⊗H2),

given by
n∑
j=1

Sj � Tj 7→
n∑
j=1

(Sj ⊗ 1H2
)(1H1

⊗ Ti) =

n∑
j=1

Sj ⊗ Tj .

We just need to show that this map is injective, i.e. if the operator
∑n
j=1 Sj ⊗ Tj ∈ B(H1 ⊗ H2) is

zero, then the sum of elementary tensors
∑n
j=1 Sj � Tj ∈ B(H1) � B(H2) is also zero. By possibly re-

writing the coefficients of the Sj , we may assume that the operators {Sj} are linearly independent. If
0 =

∑n
j=1 Sj ⊗ Tj ∈ B(H1 ⊗H2), then for all vectors ξ1, η1 ∈ H1 and ξ2, η2 ∈ H2, we have

0 = 〈(
n∑
j=1

Sj ⊗ Tj)(ξ1 ⊗ ξ2), (η1 ⊗ η2)〉 =

n∑
j=1

〈Sjξ1 ⊗ Tjξ2, η1 ⊗ η2〉

=

n∑
j=1

〈Sjξ1, η1〉〈Tj , ξ2, η2〉 =

n∑
j=1

〈
(
〈Tjξ2, η2〉

)
Sjξ1, η1〉.

Since this holds for all ξ1, η1 ∈ H1 the operator
∑n
j=1〈Tjξ2, η2〉Sj ∈ B(H1) is zero (by Exercise 7.45 from

Day 1 Lectures). Since we assumed the {Sj} are linearly independent, it follows from Proposition 11.2 that
the coefficients 〈Tjξ2, η2〉 must all be 0. Again, since this holds for all ξ2, η2 ∈ H2, it follows that each
Tj = 0 ∈ B(H2), which finishes the proof. �

Corollary 11.15. Given two representations πi : Ai → B(Hi), i = 1, 2, there is an induced representation

π1 � π2 : A1 �A2 → B(H1 ⊗H2)

such that π1 � π2(a1 � a2) = π1(a1)⊗ π2(a2) for all ai ∈ Ai, i = 1, 2.

We have discussed extending pairs of linear maps to tensor products, but what about restricting maps
on tensor products to the tensor factors? Given a ∗-homomorphism on an algebraic tensor product of C∗-
algebras φ : A� B → C, when can we define restrictions φ|A : A→ C and φ|B : B → C? In general this is
not so easy. In the unital setting, there is a natural way to do this.

Exercise 11.16. Suppose A,B, and C are C∗-algebras with A and B unital and φ : A � B → C a ∗-
homomorphism. Then there exist ∗-homomorphisms φA : A → C and φB : B → C with commuting ranges
such that φ = φA × φB .

A little harder to prove is the following (without the assumption that A and B are unital). See [3, Theorem
3.6.2].

Theorem 11.17. Let A and B be C∗-algebras and π : A � B → B(H) a nondegenerate ∗-homomorphism.
Then there exist nondegenerate representations πA : A→ B(H) and πB : B → B(H) so that π = πA × πB.

Exercise 11.18. Given a representation π : A1 � A2 → B(H), show that the restrictions πi : Ai → B(H)
have commuting images.

11.3. C∗-norms on tensor products. For C∗-algebras A and B, A�B is a ∗-algebra. In order to turn it
into a C∗-algebra, we need to be able to define a C∗-norm ‖ · ‖ on A�B. With this, (A�B, ‖ · ‖) will be a
pre-C∗-algebra, i.e. its completion is a C∗-algebra. Much like the situation with groups, we are guaranteed
the following:

• C∗-norms on algebraic tensor products of C∗-algebras always exist;
• there can be (very) many different C∗-norms on a given algebraic tensor product of two C∗-algebras;
• but we know how to describe the largest and smallest;13 and
• it is extremely interesting to ask when the two coincide (and this is related to the notion of amenabil-

ity for groups because math is beautiful).

13The second part of this statement is a deep theorem due to Takesaki.
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Definition 11.19. For C∗-algebras A and B, a cross norm on a A�B is a norm ‖·‖ such that ‖a⊗b‖ = ‖a‖‖b‖
for every a ∈ A and b ∈ B.

Example 11.20. We verified in the previous section that for T1 ∈ B(H1) and T2 ∈ B(H2), the norm on
B(H1)�B(H2) inherited from B(H1⊗H2) is a cross norm. In fact as a consequence of Takesaki’s theorem14

(which we will discuss more later in this section) every C∗-norm on A�B is a cross norm. We will take this
as a fact as we proceed.

In Exercise 11.11, we saw that there is an algebraic ∗-isomorphism Mn(C)�A ' Mn(A), the latter being
a C∗-algebra with norm induced by the norm of A. Hence pulling back the norm along this ∗-isomorphism
gives a C∗-norm on Mn(C)�A (i.e. ‖[λij ]� a‖ = ‖[λija]‖). Moreover, Mn(C)�A is already complete with
respect to this norm, which means it is a C∗-algebra. Hence any other C∗-norm we define on Mn(A) agrees
with this norm. (See remarks after Proposition 1.21.) That means we have proved the following proposition.

Proposition 11.21. Let A be a C∗-algebra and 1 ≤ n < ∞. Then there is a unique C∗-norm on the
algebraic tensor product Mn(C)�A, which comes from the ∗-isomorphism Mn(C)�A ' Mn(A). Hence we
write Mn(C)⊗A.

This identification also introduces very convenient notation, e.g. for the diagonal matrix in Mn(A) with
a ∈ A down the diagonal:

In ⊗ a ↔


a 0 . . . 0

0 a . . .
...

...
...

. . .
...

0 . . . . . . a

 .
For general C∗-algebras A and B, it should not be taken for granted that a C∗-norm exists at all on A�B.

However, it turns out the two most natural candidates both yield C∗-norms.
The first is the spatial norm, i.e. the norm inherited as a subspace of bounded operators on a tensor

product of Hilbert spaces. Recall that as a consequence of the GNS construction, every C∗-algebra has at
least one faithful representation on some Hilbert space.

Definition 11.22 (Spatial Norm). Let πi : Ai → B(Hi) be faithful representations. The spatial norm on
A1 �A2 is ∥∥∥∑ ai � bi

∥∥∥
min

=
∥∥∥∑π1(ai)⊗ π2(bi)

∥∥∥
B(H1⊗H2)

.

Remark 11.23. We will explain the ‖·‖min notation later with Takesaki’s theorem, which we keep mentioning.

Exercise 11.24. Check that ‖ · ‖min is a semi-norm satisfying the C∗-identity.

Proposition 11.25. The semi-norm ‖ · ‖min is a norm, i.e. for each x ∈ A1 � A2, if ‖x‖min = 0, then
x = 0.

Proof. Let πi : Ai → B(Hi) be faithful representations. Then the algebraic tensor product map π1 � π2 :
A1 � A2 → B(H1) � B(H2) is injective. By Proposition 11.14, we can view B(H1) � B(H2) as a ∗-
subalgebra of B(H1 ⊗H2), and consequently have π1 � π2 : A1 �A2 → B(H1 ⊗H2) injective. Then for any
x =

∑n
i=1 ai � bi ∈ A1 �A2, if ‖x‖min = 0, then

0 = ‖x‖min = ‖
n∑
i=1

π1(ai)⊗ π2(bi)‖ = ‖(π1 � π2)(x)‖,

which by injectivity means x = 0. �

Hence ‖ · ‖min is a norm, and we can define the C∗-algebra

A⊗B := A�B‖·‖min
.

It is sometimes denoted A⊗min B, but we choose the undecorated notation to match the literature. In most
cases this the unofficial “default” norm to take on a tensor product of C∗-algebras.15

14Full disclosure, using this theorem is wayyyy overkill. A functional calculus argument could prove this, but this section is

already long enough.
15For groups, it’s the other way around and the maximal C∗-completion of the group algebra is often the undecorated one.
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For a sense of perspective, dropping the representation notation, we view A1 ⊂ B(H1) and A2 ⊂ B(H2).
Then there is a natural way to stick them into a common C∗-algebra, i.e. B(H1 ⊗H2), from whence they
can inherit the C∗-norm, i.e. A1 ⊗A2 is the closure of the ∗-subalgebra A1 �A2 ⊂ B(H1 ⊗H2).

However, the norm was defined with an arbitrary choice of faithful representations. Fortunately, the value
of the norm is independent of that choice.

Proposition 11.26. Given faithful representations πi : Ai → B(Hi) and π′i : Ai → B(H′i), then the minimal
tensor norms ‖ · ‖min and ‖ · ‖′min defined by each pair of faithful representations agree.

The proof is nice to see because it highlights two useful techniques. The first, yet again, is approximate
identities. The second is the fact that there is only one C∗-norm on Mn(B) for any C∗-algebra B.

In our proof, we limit ourselves to the countable setting to avoid the extra notation involved with nets.

Proof. By symmetry, it suffices to prove the case where H1 = H′1 and π1 = π′1.
We first consider the case where A1 = Mn(C) for some n. Since both ‖ · ‖min and ‖ · ‖′min are C∗-norms,

by Proposition 11.21, for every x =
∑m
i=1 Ti � ai ∈ Mn(C)�A2,∥∥∥∥∥

n∑
i=1

π1(Ti)⊗ π2(ai)

∥∥∥∥∥ = ‖x‖min = ‖x‖′min =

∥∥∥∥∥
n∑
i=1

π1(Ti)⊗ π′2(ai)

∥∥∥∥∥ . (11.2)

Now, for the general separable case, take an increasing net of finite-rank projections P1 ≤ P2 ≤ ... in
B(H1) where the rank of Pn is n and such that ‖Pnξ − ξ‖ → 0 for all ξ ∈ H1 (i.e. Pn converge in SOT to
1H1). Then for every T ∈ B(H1 ⊗H2), (Pn ⊗ 1H2)T (Pn ⊗ 1H2) converges in ∗-SOT16 to T , and so we have
(check)

‖T‖ = sup
n
‖(Pn ⊗ 1H2)T (Pn ⊗ 1H2)‖.

That means for any x =
∑m
i=1 ai � bi ∈ A1 �A2,

‖x‖min = sup
n

∥∥∥∥∥
m∑
i=1

Pnπ(ai)Pn ⊗ π2(bi)

∥∥∥∥∥
‖x‖′min = sup

n

∥∥∥∥∥
m∑
i=1

Pnπ(ai)Pn ⊗ π′2(bi)

∥∥∥∥∥ .
For n ≥ 1, define a ∗-isomorphism φ : Mn(C) → PnB(H)Pn. Since φ is a faithful representation of Mn(C),
by (11.2), we have ∥∥∥∥∥

m∑
i=1

Pnπ(ai)Pn ⊗ π2(bi)

∥∥∥∥∥ =

∥∥∥∥∥
m∑
i=1

φ(φ−1(Pnπ(ai)Pn))⊗ π2(bi)

∥∥∥∥∥
=

∥∥∥∥∥
m∑
i=1

φ(φ−1(Pnπ(ai)Pn))⊗ π′2(bi)

∥∥∥∥∥
=

∥∥∥∥∥
m∑
i=1

Pnπ(ai)Pn ⊗ π′2(bi)

∥∥∥∥∥ .
It follows that ‖x‖min = ‖x‖′min. �

So, given C∗-algebras A1 and A2 and faithful nondegenerate representations πi : Ai → B(Hi), we complete
π1 � π2 to a faithful representation

π1 ⊗ π2 : A1 ⊗A2 → B(H1 ⊗H2).

There is another often useful description of the minimal tensor norm.

Proposition 11.27. For C∗-algebras A1 and A2, and x =
∑n
j=1 aj � bj ∈ A1 �A2,

‖x‖min = sup{‖
n∑
j=1

π1(aj)⊗ π2(bj)‖ : πi : Ai → B(Hi) (nondegenerate) representations}.

16Sn → S in ∗-SOT if Sn → S in SOT and S∗
n → S∗ in SOT.
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Proof. Let πi : Ai → B(Hi) be representations and σi : Ai → B(H′i) be faithful representations. Then by
Exercise 4.16, πi⊕σi : Ai → B(Hi⊕H′i) is a faithful representation. Let Pi ∈ B(Hi⊕H′i) be the compression
to Hi for each i = 1, 2... �

Exercise 11.28. Finish the proof of Proposition 11.27. This is an example of a technique where one can
dilate a map to one with a desired property (e.g. faithfulness) and then cut down to the original map to
draw the desired conclusion.

Corollary 11.29. For a pair of ∗-homomorphisms φi : Ai → Bi, the algebraic tensor product φ1 � φ2

extends to a ∗-homomorphism

φ1 ⊗min φ2 : A1 ⊗min A2 → B1 ⊗min B2.

Proof. We are charged with showing that φ1 � φ2 is continuous with respect to the topologies on A1 � A2

and B1 � B2 induced by their respective ‖ · ‖min norms. We know that there exist faithful representations
πAi : Ai → B(HAi ) and faithful representations πBi : Bi → B(HBi ). So if x =

∑n
j=1 aj � bj ∈ A1 � A2, the

fact that ∗-homomorphisms are norm-decreasing means that

‖x‖A1⊗minA2
= ‖

n∑
j=1

πA1 (aj)⊗ πA2 (bj)‖ ≥ ‖
n∑
j=1

πB1 (φ1(aj))⊗ πB2 (φ2(bj))‖ = ‖φ1 � φ2(x)‖B1⊗minB2
.

But each πBi φi : Ai → B(HBi ) is a representation of Ai, so we complete the proof via an appeal to the
preceding proposition. �

Just as with groups, there is another natural norm which comes from taking all possible representations.

Definition 11.30 (Maximal Norm). Let A and B be C∗-algebras. We define the maximal C∗-tensor norm
on A�B by

‖x‖max = sup{‖π(x)‖ : π : A�B → B(H) a (nondegenerate) rep}
for all x ∈ A�B.

The first question is if this is even finite; it is by Theorem 11.17. Indeed, given π : A�B → B(H), with
restrictions π|A and π|B , then we have for all simple tensors a� b ∈ A�B,

‖π(a� b)‖ = ‖π|A(a)π|B(b)‖ ≤ ‖π|A(a)‖‖π|B(b)‖ ≤ ‖a‖‖b‖. <∞.

Just as we argued for groups (Proposition 5.7), this with the triangle inequality guarantees that ‖x‖max <∞
for all x ∈ A�B.

Exercise 11.31. Check that ‖ · ‖max is a semi-norm satisfying the C∗-identity.

For any pair of faithful representations πi : Ai → B(Hi), we get a representation π = π1�π2 : A1�A2 →
B(H1 ⊗H2). It follows that for any x ∈ A1 �A2,

‖x‖min = ‖π(x)‖ ≤ ‖x‖max.

So, for any x ∈ A1 �A2,

‖x‖max = 0⇒ ‖x‖min = 0⇒ x = 0,

which means ‖ · ‖max is a norm. Hence we define the C∗-algebra

A1 ⊗max A2 := A1 �A2
‖·‖max

.

Remark 11.32. Note that by definition, the ∗-algebra A1 � A2 is a dense subalgebra in A1 ⊗max A2 and
A1 ⊗A2.

Just as with groups, the maximal tensor product enjoys the following universal property.

Proposition 11.33. If φ : A1�A2 → C is a ∗-homomorphism, then there exists a unique ∗-homomorphism
A1⊗maxA2 → C, which extends φ. In particular, any pair of ∗-homomorphisms φi : Ai → C with commuting
ranges induces a unique ∗-homomorphism

φ1 × φ2 : A⊗max B → C.
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Note that this is really just a statement about norms, and it is a theme we’ve seen before (Proposition
5.7). Let’s flesh out a more general idea that underlies both.

Suppose B and C are C∗-algebras, B0 ⊂ B is a dense ∗-subalgebra, and π : B0 → C is a ∗-homomorphism.
(Notice that, unless B0 = B, this means B0 is not a C∗-algebra.) The only obstruction to extending π to
a ∗-homorphism on B is if π is not contractive on B0, i.e. ‖π(b)‖ > ‖b‖ for some b ∈ B0. In other
words, π extends to B iff π is contractive on B0. The necessity is easy to see. Indeed, if π does extend
to B, then the C∗-norm on B forces π to be contractive on all of B, including B0. On the other hand, if
π : B0 → C is a contractive ∗-homomorphism, then it is in particular bounded, which means it extends to
a bounded homomorphism π : B → C. Moreover, just as we saw in Proposition 5.7, for any b ∈ B with
bn ∈ B0 converging to b, we have π(bn) → π(b) and hence π(bn)∗ → π(b)∗. Then by uniqueness of limits,
π(b∗) = π(b) since

‖π(bn)∗ − π(b∗)‖ = ‖π(b∗n)− π(b∗)‖ → 0.

For the sake of reference, we record this in a proposition:

Proposition 11.34. Suppose B and C are C∗-algebras, B0 ⊂ B is a dense ∗-subalgebra, and π : B0 → C
is a ∗-homomorphism. Then π extends to B iff π is contractive on B0.

With that digression, the proof of proposition 11.33 is quite immediate.

Proof of Proposition 11.33. Take a faithful nondegenerate representation π : C → B(H). Then π ◦ φ :
A1 � A2 → B(H) is a contractive ∗-homomorphism (with respect to the ‖ · ‖max norm) and hence extends
to A⊗max A2. �

It follows from this that ‖ · ‖max is the largest possible C∗-norm on A1 �A2.

Corollary 11.35. Given any C∗-norm ‖·‖ on A1�A2, there is a surjective ∗-homomorphism A1⊗maxA2 →
A1 �A2

‖·‖
extending the identity map on A1 �A2.

Proof. Suppose ‖ · ‖ is another C∗-norm on A1 � A2. Then the identity map A1 � A2 → A1 �A2
‖·‖

is a
∗-homomorphism, which then extends to a ∗-homorphism

A1 ⊗max A2 → A1 �A2
‖·‖
.

Since it is a ∗-homomorphism, its image is closed and contains the dense subset A1 � A2, and so it is a
surjection. As a surjective ∗-homomorphism, it is contractive, and so ‖x‖max ≥ ‖x‖ for all x ∈ A1 �A2. �

Remark 11.36. Very often in the literature, the closure of A � B with respect to an arbitrary tensor norm
is denoted by A⊗α B where the norm is denoted by ‖ · ‖α.

It turns out that the spatial norm ‖ · ‖min is the minimal C∗-norm on A1 � A2. This is an important
theorem due to Takesaki whose proof involves some heavy work in extending states to tensor products. For
the sake of time, we will have to take this for granted. The proof is worked out in [3, Section 3].

Theorem 11.37 (Takesaki). The spatial norm ‖ ·‖min is the minimal C∗-norm on A1�A2. In other words,
given any C∗-norm ‖ · ‖ on A1 �A2, there are surjective ∗-homomorphisms

A1 ⊗max A2 → A1 �A2
‖·‖ → A1 ⊗A2

extending the identity map

A1 �A2 → A1 �A2 → A1 �A2.

It follows that if the natural surjection A1 ⊗max A2 → A1 ⊗ A2 is injective, then A1 � A2 has a unique
tensor norm. This fact is often indicated by writing

A1 ⊗max A2 = A1 ⊗A2.

Remark 11.38. It is important here that it is this natural surjection that is also injective, i.e. the one that
extends the identity map A1 �A2.

We have been avoiding the non-unital elephant in the room. We relegate the proof to [3, Corollary 3.3.12].
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Proposition 11.39. If A and B are C∗-algebras with A non-unital, then any C∗-norm on A � B can be
extended to a C∗-norm on Ã � B (meaning the norms agree on A � B ⊂ Ã � B). Similarly, when both A

and B are non-unital, any C∗-norm can be extended to Ã� B̃.17

Exercise 11.40. For C∗-algebras A and B, we have canonical18 isomorphisms A⊗B ' B⊗A and A⊗maxB '
B ⊗max A.

11.4. Inclusions and Short Exact Sequences. This section is dedicated to two properties that held
automatically for algebraic tensor products but that can now fail for their C∗-completions:

(1) They respect inclusions, i.e. if B and C are C∗-algebras and A ⊂ B a C∗-subalgebra, then we have
a natural inclusion

A� C ↪→ B � C.
(2) They respect exact sequences, i.e. if B and C are C∗-algebras and J /B an ideal, then the following

sequence is exact.

0→ J � C → B � C → B/J � C → 0.

Proposition 11.41. Let B and C be C∗-algebras, A ⊂ B a C∗-subalgebra, and J / B an ideal. Then

(1) We have a natural inclusion A⊗min C ⊆ B ⊗min C.
(2) This can fail for the maximal tensor product.

Exercise 11.42. Check (1). (This is just a statement about norms on sums of simple tensors.)

For (2), that’s where things get interesting. Questions about embeddability of maximal tensor products
get hard quick. So, it’s easiest to explain why it can go wrong. Recall that the maximal tensor product norm
was defined as a supremum over all representations. A representation on B � C restricts to one on A� C,
but a representation on A�C need not extend to B�C. So, in general the sup taken for the maximal norm
on A� C is taken over a larger set than the one for B � C.

Remark 11.43. One fact that will play a role promptly is that this does hold when A is an ideal in B. A
representation from an ideal J /A in a C∗-algebra does always extend to a representation on A (see [1, Section
1.3]). So when J / A is an ideal, then so is J �C for any C∗-algebra C, and we have J ⊗max C /A⊗max C .

Here are some examples of where this can go wrong. Unfortunately, we haven’t built up sufficient termi-
nology to explain why.

Example 11.44. Let A ⊂ B(H) be a separable C∗-algebra lacking Lance’s Weak Expectation Property
([3, Exercise 2.3.14]), e.g. an exact C∗-algebra that is non-nuclear (exactness due to Wasserman), such as
C∗r(F2). Then A⊗max C∗(F2) does not embed into B(H)⊗max C∗(F2).

Using Kirchberg’s O2 embedding theorem (a very difficult and sophisticated result in C∗-theory) as well
as his groundbreaking work enabling the recent solution to Connes’ Embedding Problem (more on that
later), we can give another example: C∗r(F2) embeds into O2 (because it is exact and separable), but
C∗r(F2)⊗max C∗(F2) does not embed into O2 ⊗max C∗(F2).

Proposition 11.45. Let B and C be C∗-algebras and J / B an ideal. Then

(1) The sequence

0→ J ⊗max C → B ⊗max C → B/J ⊗max C → 0

is exact.
(2) This can fail for the minimal (i.e. spatial) tensor product.

For (1), the proof in full detail is provided in [3, Proposition 3.7.1]. We simply give an idea of what needs
to be shown. In either case, J ⊗max C / B ⊗max C and J ⊗ C / B ⊗ C. So we have exact sequences

0→ J ⊗max C → B ⊗max C → (B ⊗max C)/(J ⊗max C)→ 0

and

0→ J ⊗min C → B ⊗min C → (B ⊗min C)/(J ⊗min C)→ 0.

17In general (i.e. when we don’t have A = Ã or B = B̃, this is a larger algebra than Ã�B.
18i.e. This is another way of saying “natural”. In this setting, this means the maps extend the usual algebraic maps.
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In both cases, from the algebraic identification B/J � C ' (B � C)/(B � J) one argues that there is a
C∗-norm so that

(B ⊗max C)/(J ⊗max C) ' B/J ⊗α C and (B ⊗min C)/(J ⊗min C) = B/J ⊗β C.

It will follow from the maximality of ‖ · ‖max that ⊗α = ⊗max. But for the other quotient, that won’t always
happen.

Definition 11.46. We say a C∗-algebra C is exact if the sequence

0→ J ⊗min C → B ⊗min C → (B ⊗min C)/(J ⊗min C)→ 0

is exact for any C∗-algebra B and any ideal J / B.

Though seemingly unrelated, the two definitions we have given for exactness are indeed equivalent, though
the proof of this is not easy.

Theorem 11.47 (Kirchberg). A C∗-algebra is exact in the sense of Definition 10.17 if and only if the
functor ⊗minA is exact, i.e. if the above definition holds.

The question of when two C∗-algebras have a unique C∗-tensor norm is very difficult, and resolving this
question for certain algebras is equivalent to resolving big open problems.

For example, thanks to deep and groundbreaking work of Kirchberg, we know that a famous recently-
resolved problem, Connes’ Embedding Problem, is equivalent to answering the question of whether or not
C∗(F2) ⊗max C∗(F2) = C∗(F2) ⊗ C∗(F2). (Ask Brent and Rolando for the the original statement.) Further
work (building on Kirchberg’s results) connected this to what is known as Tsirelson’s problem in quantum
information theory, which was what was actually refuted earlier this year.

Another example is A. Thom’s example of a hyperlinear group that is not residually finite. (Again, thanks
to work of Kirchberg, this is equivalent to the full group C∗-algebra of said group not having a unique tensor
norm with B(H).)

Another example is Junge and Pisier’s proof that B(H)� B(H) does not have a unique C∗-tensor norm
when H is infinite dimensional, which was proven by Kirchberg to be equivalent to another collection of open
problems.

Remark 11.48. You may have noticed that Kirchberg was very influential in a lot of results pertaining to
tensor products of C∗-algebras. Yeah.

Remark 11.49 (Remark on tensors and commutivity). Given C∗-algebras A1 and A1, an example of a
representation of A1 �A2 → B(H) is the tensor product of two representations,

σ1 � σ2 : A1 �A2 → B(H1 ⊗H2).

But in general, there can be many representations that are not of this form, i.e. for some x ∈ A1 � A2, we
could have

‖x‖max = sup{‖π(x)‖ : π : A1 �A2 → B(H)}
> sup{‖π1 � π2(x)‖ : πi : Ai → B(Hi)}.

On an philosophical level, this is a question about commutivity. Given C∗-algebras A1 and A2, is there any
context (= C∗-algebra they can be simultaneously embedded into) where A1 and A2 commute but not as
tensors. Let’s try to flesh this out a little.

Given a representation π : A1 � A2 → B(H), the restrictions πi : Ai → B(H) have commuting images
(Exercise 11.18). When π = σ1 � σ2 : A1 � A2 → B(H1 ⊗ H2), we have a much better idea of what the
images are and why they commute. In this case the restrictions are given for ai ∈ Ai by

π1(a1) = σ1(a1)⊗ 1H1
and π2(a2) = 1H2

⊗ σ2(a2).

Then we have

π1(a1)π2(a2) =
(
σ1(a1)⊗1H1

)(
1H2
⊗σ2(a2)

)
= σ1(a1)⊗σ2(a2) =

(
1H2
⊗σ2(a2)

)(
σ1(a1)⊗1H1

)
= π2(a2)π1(a1).
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11.5. Nuclearity. On the other end of the spectrum are C∗-algebras which always have unique tensor
product norms. The term originally used for such C∗-algebras was in fact “nuclear.” But we’ve already used
this term for C∗-algebras satisfying the completely positive approximation property. That these two coincide
is a remarkable theorem, independently proved by Choi-Effros and Kirchberg

Theorem 11.50 (Choi-Effros, Kirchberg). A C∗-algebra A satisfies the completely positive approximation
property (Definition 10.6) if and only if A�B has a unique C∗-tensor norm for any C∗-algebra B.

The proof of this theorem would require us to build up a fair bit of theory first, so we simply point you
to Chapters 2 and 3 in [3], where the argument and surrounding theory is laid out quite well.

In general, it’s often easier to prove that a C∗-algebra has the completely positive approximation property
(an internal property) as opposed to always having a unique tensor product norm (an external property).
However, it was not so hard to show the latter for one class of C∗-algebras.

Example 11.51. From Proposition 11.21, we know that Mn(C) is nuclear for any n ≥ 1. It turns out that
any finite-dimensional C∗-algebra is nuclear. (This mostly comes down to Proposition 6.1. See [7, Theorem
6.3.9] for more details.)

We have already seen that K(H), as an AF algebra, is nuclear. Just for fun, here’s an argument from the
tensor product perspective.

Example 11.52. Let K denote the compact operators on some Hilbert space H and A any C∗-algebra.
First we claim that FR(H)�A is a dense ∗-subalgebra of K�A with respect to any C∗-norm on K�A.

We know from Day 1 lectures that FR(H) is dense in K. Now, suppose S � a ∈ K � A and Sj ∈ FR(H)
a sequence with Sj → S. Recall that any C∗-norm ‖ · ‖ on K � A is a cross norm, and so for any norm
C∗-norm ‖ · ‖ on K �A, we have

‖(S � a)− (Sj � a)‖ = ‖(S − Sj)� a‖ = ‖S − Sj‖‖a‖ → 0.

Using the triangle inequality, we can extend this to show that any x =
∑m
j=1 Tj � aj ∈ K � A can be

approximated in any C∗-norm by sums of simple tensors of finite rank operators.
So if we know ‖x‖max = ‖x‖min for any x ∈ FR(H) � A, then it follows that the natural surjection

K⊗max A→ K⊗A is isometric and K is nuclear. Fix x =
∑m
j=1 Tj � aj ∈ FR(H)�A, and let π : K�A→

B(H′) be a representation. Then there exists a projection P ∈ B(H) of rank n <∞ such that Tj = PTjP for
each j, and x =

∑m
j=1 PTjP�aj . Hence x ∈ PB(H)P�A. From Exercise 7.41 from Day 1 Lectures, we have

a ∗-isomorphism φ : Mn(C)→ PB(H)P , and hence a representation π′ := π◦(φ�idA) : Mn(C)�A→ B(H).
Since we know Mn(C) ⊗max A = Mn(C) ⊗min A, we know that for any faithful representations σ1 :

Mn(C)→ B(H1) and σ2 : A→ B(H2),

‖
m∑
j=1

σ1(φ−1(PTjP ))� σ2(aj)‖B(H1⊗H2) = ‖
m∑
j=1

φ−1(PTjP )� aj‖min

= ‖
m∑
j=1

φ−1(PTjP )� aj‖max ≥ ‖π′(
m∑
j=1

φ−1(PTjP )� aj)‖

= ‖π(

m∑
j=1

PTjP � aj)‖ = ‖π(x)‖.

In particular, this holds for the faithful representations σ1 = idK ◦φ : Mn(C)→ PB(H)P ⊂ K ↪→ B(H) and
any faithful representation σ2 of A. But then we have

‖x‖min = ‖
m∑
j=1

idK(Sj)� σ2(aj)‖B(H⊗H2)

= ‖
m∑
j=1

σ1(φ−1(PSjP ))� σ2(aj)‖B(H⊗H2)

≥ ‖π(x)‖.
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Since π : K �A→ B(H′) was arbitrary, it follows that

‖x‖min ≥ ‖x‖max,

which finishes the proof.

Remark 11.53. Consider K = K(`2). It follows from Example 11.52 that the completion of K�K under any
tensor norm can be identified with the completion of K�K with respect to the norm on B(`2 � `2) (via the
tensor product of faithful representations idK�idK). This will be a closed two-sided ideal in B(`2�`2), which
means it must be the compact operators K(`2 � `2). Moreover, after a permutation of the basis elements,
we have `2 ⊗ `2 ' `2. With this, one can then argue that K ⊗K ' K. More generally, we say a C∗-algebra
is stable if A⊗K ' A. (Because of nuclearity, it does not matter what tensor product we choose.)

Since K is stable and since (A⊗K)⊗K ' A⊗ (K ⊗ K) ' A⊗K for any C∗-algebra A19, we call A⊗K
the stabilization of A. This is a basic object in many results and theories in C∗-algebras, such as multiplier
algebras, K-theory and classification, and is closely tied to Morita equivalence for C∗-algebras. It turns
out that the stabilization of A is very similar to A from the perspective of many C∗-algebraic invariants,
and so replacing A by its stabilization gives one more “wiggle room” for computations without affecting the
underlying structure very much.

There is another fundamental class of nuclear C∗-algebras: commutative C∗-algebras. This was not so
hard to prove with the completely positive approximation property definition of nuclearity (Proposition
10.10). Before the Choi-Effros/Kirchberg theorem, Takesaki showed that tensor products with commutative
C∗-algebras always have a unique C∗-norm, but the proof was much more involved.

Theorem 11.54 (Takesaki). Let A and C be C∗-algebras with C commutative. Then there is a unique
C∗-tensor norm on C �A.

11.6. C0(X,A) as tensor products. Let us spend a little more time on this last class of nuclear C∗-algebras.
Recall from the Gelfand Naimark Theorem that any commutative C∗-algebra is ∗-isomorphic to C0(X) for
some locally compact Hausdorff space X. With this in mind look into another description of the tensor
product of a C∗-algebra with a commutative C∗-algebra.

Definition 11.55. Let A be a C∗-algebra and X a locally compact Hausdorff space (when X is not compact,
we denote by X ∪ {∞} its one point compactification). Just as we did for A = C, we define

C0(X,A) := {f : X ∪ {∞} → A : f continuous and f(∞) = 0}.
When X is moreover compact, this is the same as C(X,A).

Lemma 11.56. Let A be a C∗-algebra and X a locally compact Hausdorff space. Define the ∗-homomorphism
φ : C0(X)� A→ C0(X,A) on simple tensors by f � a 7→ f(·)a. This gives a ∗-homomorphism, which then
extends to a surjective ∗-homomorphism C0(X)⊗maxA→ C0(X,A). Moreover, φ is injective on C0(X)�A.

The proof that the image of φ is dense in C0(X,A) is another example of a “partition of unity argument.”
We will give the argument from [7, Lemma 6.4.16] in the case where X is compact. The non-compact case
amounts to identifying C0(X,A) = {f ∈ C(X∪{∞}, A) : f(∞) = 0} (see [7, Lemma 6.4.16] for full details).

Recall that we take for granted the fact from topology that, given any compact Hausdorff space X
with open cover U1, ..., Un, there exist continuous functions h1, ..., hn : X → [0, 1] so that supp(hj) ⊂ Uj
and

∑
j hj = 1. (See [Theorem 2.13, Rudin, Real and Complex Analysis].) This is a partition of unity

subordinate to U1, ..., Un (in fact a rather nice one).

Proof of Lemma 11.56. Since there is nothing surprising in checking that it is a ∗-homomorphism, which by
universality extends to a ∗-homomorphism on A⊗max B, we move straight to the surjective ∗-isomorphism
claim.

For the surjectivity argument, we assume X is compact (or work in its one point compactification as
aforementioned). Since the image of a ∗-homomorphism from a C∗-algebra is closed, it suffices to show that
C(X,A) is the closed linear span of functions of the form f(·)a for f ∈ C(X) and a ∈ A. Let g ∈ C(X,A) and
ε > 0. Since X is compact and g continuous, g(X) is compact, which means we can find a finite collection

19In fact, the associativity for the minimal and maximal tensor product norms holds for all C∗-algebras, i.e. for C∗-algebras
A,B,C, we have (A ⊗ B) ⊗ C ' A ⊗ (B ⊗ C) and (A ⊗max B) ⊗max C ' A ⊗max (B ⊗max C). This is normally an exercise,

but we have plenty already.
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a1, ..., an ∈ g(X) ⊂ A so that {Bε(aj)}j covers g(X), and hence Uj = g−1(Bε(aj)) forms a finite open cover
of X. Since X is compact, the aforementioned fact from topology tells us there exist continuous functions
hj : X → [0, 1], 1 ≤ j ≤ n so that for each j, supp(hj) ⊂ Uj and

∑
j hj(x) = 1 for all x ∈ X. Notice that,

by our choice of Uj , that means that for each x ∈ X, either hj(x) = 0 or ‖g(x)− aj‖ < ε. Then we compute
for each x ∈ X,

‖g(x)−
∑
j

hj(x)aj‖ = ‖

∑
j

hj(x)

 g(x)−
∑
j

hj(x)aj‖

= ‖
∑
j

hj(x)(g(x)− aj)‖ ≤
∑
j

hj(x)‖g(x)− aj‖

≤
∑
j

hj(x)ε = ε.

This establishes our claim.
For injectivity, on C0(X)�A, suppose c =

∑n
j=1 fj � aj ∈ ker(φ) where f1, ..., fn ∈ C0(X) and a1, ..., an

are linearly independent elements of A. Then φ(c) = 0 implies that
∑
fj(x)aj = 0 for all x ∈ X. But now

these fj(x) are just complex numbers, and so the linear independence of the a1, ..., an implies that fj(x) = 0
for each 1 ≤ j ≤ n and every x ∈ X. That means f1 = ... = fn = 0 and so c = 0. Hence φ is injective on
C0(X)�A. �

Theorem 11.57. If A is a C∗-algebra and X is a locally compact Hausdorff space, then for any C∗-tensor

norm, we have C0(X)�A
‖·‖
' C0(X,A).

Proof. Since the map φ from Lemma 11.56 is injective, the pull-back of the norm from C0(X,A) (i.e.
‖c‖ = ‖π(c)‖) gives a C∗-norm on C0(X)�A (as opposed to just a semi-norm). By Theorem 11.54, there is
a unique C∗-tensor norm on C0(X) � A, which means this norm agrees with ‖ · ‖max. Hence the surjective
∗-homomorphism C0(X) ⊗max A → C0(X,A) is isometric, and hence a ∗-isomorphism. By identifying
C0(X)⊗max A with the closure of C0(X)�A under any other C∗-norm, the claim follows. �

Example 11.58. Three particularly interesting cases are when X = [0, 1], X = (0, 1], and X = (0, 1). 20

For a C∗-algebra A, the cone over A is the C∗-algebra

CA := C0((0, 1], A) = {f : (0, 1]→ A : f is continuous and lim
t→0

f(t) = 0},

and the suspension21 over A is the C∗-algebra,

SA := C0((0, 1), A) := {f : (0, 1)]→ A : f is continuous and lim
t→0

f(t) = 0 = lim
t→1

f(t)}.

The suspension will become very important when we get to K-theory. It is also sometimes denoted by ΣA.

11.7. Continuous linear maps on tensor products. In Takesaki’s proof that ‖ · ‖min is the smallest
C∗-norm, a delicate and crucial part of the argument is showing that states extend to tensor products, i.e.

for φi ∈ S(Ai), φ1 � φ2 extends to a state on A1 �A2
‖·‖

for any C∗-norm ‖ · ‖ (mapping into C⊗ C = C).
Given a pair of ∗-homomorphisms φi : Ai → Bi, we have a ∗-homomorphism

φ1 � φ2 : A1 �A2 → B1 �B2

defined on the dense ∗-subalgebra A1�A2 of A1 �A2
‖·‖

where ‖·‖ is any C∗-norm. By Proposition 11.34, this

extends to a ∗-homomorphism on A1 �A2
‖·‖

iff φ1� φ2 is contractive on sums of simple tensors. Naturally,
this depends on the norm we put on B1 � B2 (e.g. if Ai = Bi and we give A1 � A2 the minimal norm and
B1 �B2 the maximal norm).

We already saw in Corollary 11.29 that this holds when we consider both A1�A2 and B1�B2 with their
respective minimal tensor product norms.

20Depending on how we like to define our functions these intervals are sometimes replaced with homeomorphic copies, e.g.,

sometimes R is used in place of (0, 1). This certainly makes the “∞” notation more natural!
21“Cone” and “suspension” are not to be confused with the notions from topology, in case you are wondering.
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Exercise 11.59. Show that for a pair of ∗-homomorphisms φi : Ai → Bi, the algebraic tensor product
φ1 � φ2 extends to a ∗-homomorphism on

φ1 ⊗max,β φ2 : A1 ⊗max A2 → B1 ⊗β B2

for any C∗-tensor product B1 ⊗β B2.

However, many maps that we want to work with (e.g. states) are not necessarily ∗-homomorphisms. Hence
it is important to understand which class of bounded linear maps extend to tensor products, in particular,
for which bounded linear maps φi : Ai → Bi does φ1 � φ2 extend to continuous linear maps

φ1 ⊗max φ2 : A1 ⊗max A2 → B1 ⊗max B2

and

φ1 ⊗min φ2 : A1 ⊗min A2 → B1 ⊗min B2?

Let us consider an example where this fails.

Example 11.60. Consider K = K(`2). As we saw in Example 11.52, K is nuclear, meaning in particular
that the completion of K � K under any tensor norm can be identified with the completion of K � K with
respect to the norm on B(`2 ⊗ `2) (via the tensor product of faithful representations idK � idK). For each
i, j, we define the rank one operator Pi,j = 〈·, ei〉ej . (Think of these as an infinite-dimensional version of the
matrix units for Mn(C).) For each n ≥ 1, define Vn ∈ K ⊗K by

Vn :=

n∑
i,j=1

Pi,j ⊗ Pj,i.

Then Vn is a partial isometry. (Indeed, since Pi,jPl,k = δj,lPi,k, we can compute that V ∗n Vn = Pn�Pn where
Pn is the rank n projection sending ej 7→ ej for 1 ≤ j ≤ n and ej 7→ 0 for j > n.) So ‖Vn‖ = 1 for all n.

Now considering each T = [tij ] ∈ K as an array, we let Tr : K → K denote the transpose map, which is
given by Tr([tij ]) = [tji]. This is a linear ∗-preserving isometric map (since T ∗ = [t̄ji]), and

Tr � 1K(Vn) =

n∑
i,j=1

eji ⊗ eji.

Now, consider the vector ξ =
∑n
k=1 ek ⊗ ek. One computes

‖Tr � 1K(Vn)ξ‖ = ‖
n∑

i,j=1

n∑
k=1

〈ek, ej〉ei ⊗ 〈ek, ej〉ei‖

= ‖
n∑
i=1

n∑
k=1

〈ek, ek〉ei ⊗ 〈ek, ek〉ei‖

= ‖
n∑
i=1

n(ei ⊗ ei)‖ = ‖nξ‖ = n‖ξ‖.

In particular, this means that ‖Tr � 1K(Vn)‖ ≥ n and hence ‖Tr � 1K‖ ≥ n for all n ∈ N. This is an
unbounded operator and hence not continuous.

So what kinds of bounded linear maps on C∗-algebras yield continuous tensor product maps? Notice
that the above example is ∗-preserving, so that’s not enough. We have remarked several times that much of
the structure of the C∗-algebra is preserved by positive elements. Perhaps we need to consider linear maps
φ : A→ B that send positive elements in A to positive elements in B? But even that isn’t enough. It turns
out that the transpose map above does send positive elements to positive elements. So, what gives? This is
where we finally motivate the idea of completely positive maps. Recall that a linear map φ : A→ B between
C∗-algebras is completely positive if (equivalently) the linear map

φ(n) : Mn(C)⊗A→ Mn(C)⊗B

is positive for all n ≥ 1.
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Theorem 11.61. Let φi : Ai → Bi be linear cp maps. Then the algebraic tensor product map

φ1 � φ2 : A1 �A2 → B1 �B2

extends to a linear cp map (which is then also bounded and hence continuous) map on both the maximal and
minimal tensor products:

φ1 ⊗ φ2 :A1 ⊗A2 → B1 ⊗B2

φ1 ⊗max φ2 :A1 ⊗max A2 → B1 ⊗max B2.

Moreover, we have ‖φ1 ⊗max φ2‖ = ‖φ1 ⊗ φ2‖ = ‖φ1‖‖φ2‖.

Remember that we have already proved this for ∗-homomorphisms. Stinespring’s Dilation theorem will
allow us to transfer this fact to cpc maps.

In full disclosure, we need a stronger version of this to prove the ⊗max part of Theorem 11.61, so we
direct you to [3, Proposition 1.5.6] and its use in the proof of [3, Theorem 3.5.3]. But for the sake of seeing
Stinespring’s Theorem in action, let’s prove that the algebraic tensor product of cp maps extends to a cp
map between spatial tensor products.

Proof of Theorem 11.61 (for spatial tensor). Let A1, A2, B1, B2 be C∗-algebras and φi : Ai → Bi cp maps.
First, by taking faithful representations, it suffices to assume that Bi ⊂ B(Hi) for i = 1, 2 (why?). Then
φi : Ai → B(Hi) are cp maps, which have Stinespring dilations (πi,H′i, Vi) for i = 1, 2. Since these are
∗-homomorphisms, π1�π2 : A1�A2 → B(H′1)�B(H′2) ⊂ B(H′1⊗H′2) extends to A1⊗A2. Define the map
φ1 ⊗ φ2 : A1 ⊗A2 → B1 ⊗B2 ⊂ B(H′1 ⊗H′2) by

φ1 ⊗ φ2(x) = (V1 ⊗ V2)∗(π1 ⊗ π2)(x)(V1 ⊗ V2).

By Example 9.9, this is a cp map. Moreover, for elementary tensors a1 � a2 ∈ A2 �A2, we have

φ1 ⊗ φ2(a1 � a2) = (V ∗1 π1(a1)V1)⊗ (V ∗2 π2(a2)V2) = φ1(a1)� φ2(a2),

which means (by linearity) that φ1 ⊗ φ2|A1�A2 = φ1 � φ2. �
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12. Amenability

Preview of Lecture: In lecture, we’ll discuss the paradoxical decomposition of F2 (Example 12.3), but
probably not the proof of Proposition 12.4 or Proposition 12.5. My goal in lecture will be to discuss the proof
of Theorem 12.13; this will require also discussing Følner sets, but we won’t get into the proof of Proposition
12.10 or Proposition 12.12.

The concept of amenability for groups was introduced by John von Neumann in 1929, in response to the
Banach-Tarski paradox. For modern operator algebraists, amenable groups are important because these are
precisely the groups G for which C∗(G) ∼= C∗r(G). Another C∗-algebraic characterization of amenability is
that G is amenable iff C∗r(G) is nuclear – indeed, this is what underlies the use of the word “amenable” instead
of “nuclear” for more general C∗-algebras. More generally, if a C∗-algebra A is nuclear and α : G→ Aut(A)
is an action of an amenable group on A, then the crossed product C∗-algebra C∗(G,A, α) will be nuclear.
(In particular, this is true for all of the crossed products Dawn Archey mentioned yesterday in her talk.)

There are many (many) equivalent characterizations of amenability (and they all have analogues for locally
compact groups, although in these notes we’ll just treat the discrete case). If you want to know more than
what’s presented here, [3, Section 2.6] is a good place to start. For a more exhaustive account, check out [8].

Definition 12.1. A discrete group G is amenable if it admits a left-invariant mean: that is, there is a state22

µ on `∞(G) such that
µ(f) = µ(g 7→ f(s−1g))

for all f ∈ `∞ and s ∈ G.

Example 12.2. Any finite group G is amenable. We define µ(δg) = 1
|G| for each g ∈ G. It is easy to check

that if we extend µ to `∞(G) by requiring it to be linear, the result is a state.

Example 12.3. The free group F2 is not amenable.
Recall that F2 = 〈a, b〉 is the set of all words in two noncommuting generators (here called a, b) and their

inverses. We will assume that the words are reduced in the sense that a variable is never immediately followed
by its inverse. Let A+ denote the set of words in F2 whose first letter is a, and A− denote the set of words
whose first letter is a−1, and note that

F2 = A+ t aA−;

if a reduced word w doesn’t start with a, then a−1w ∈ F2 lies in A−, and so w ∈ aA−.
Similarly, define B+ (resp. B−) to be the words whose first letter is b (resp. b−1). So if C = {bn : n ≥ 0},

then we can also write
F2 = A+ tA− t (B+\C) t (B− ∪ C).

Finally, I claim that F2 = b−1(B+\C)t (B− ∪C). Why? Notice that (B+\C) is the set of words whose first
letter is b (so the second letter can’t be b−1) but which contain other letters, so b−1(B+\C) consists of words
whose first letter is not b−1, and which contain some letter that’s not b. On the other hand, (B− ∪C) is the
set of words which either have b−1 as the first letter, or contain only nonnegative powers of b.

Now that we have these three decompositions of F2, suppose that we did in fact have a left-invariant mean
µ on `∞(F2). Observe that χtS = χS(t−1·), for any t ∈ F2. In other words (abusing notation and writing
µ(S) rather than µ(χS) for S ⊆ F2) we have µ(tS) = µ(S) for any S ⊆ F and any t ∈ F. It follows that

1 = µ(F2) = µ(A+ t aA−) = µ(A+) + µ(A−).

On the other hand, µ(F2) = µ(A+)+µ(A−)+µ(B+\C)+µ(B−∪C), so we must have µ(B+\C) = µ(B−∪C) =
0. However, this contradicts the fact that (by our third decomposition)

1 = µ(F2) = µ(B+\C) + µ(B− ∪ C).

Notice that our decomposition F2 = A+ t A− t (B+\C) t (B− ∪ C) thus writes F2 as the disjoint union
of two subsets, namely A+tA− and (B+\C)t (B−∪C), which both end up having the same measure as F2

under any translation-invariant measure (thanks to our first and last decompositions of F2). This is often
called a paradoxical decomposition of F2, and is what underlies the Banach-Tarski paradox.

22We’ve only defined states on C∗-algebras so far, but the definition in this context is the same: a linear functional of norm

1 which assigns a nonnegative real number to any nonnegative function.
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Proposition 12.4. If G is abelian then G is amenable.

The proof uses the Markov-Kakutani fixed point theorem: [5, Theorem VII.2.1] if X is a topological vector
space, K ⊆ X is compact and convex, and T is a collection of continuous, linear, pairwise commuting maps
t : X → X is such that every t ∈ T satisfies tK ⊆ K, then there is a point in K which is fixed by all t ∈ T .

Proof of Proposition 12.4. The compact convex set K of interest here is the set S(`∞(G)) of states on `∞(G);
take T = {λ∗s : s ∈ G}, where

λ∗s(φ)(f) = φ(λsf) = φ(g 7→ f(s−1g)).

Then one checks that every element of T is continuous, in the sense that if a net (φi)i ∈ `∞(G)∗ satisfies
φi → φ in the weak-* topology, then λ∗s(φi) → λ∗s(φ) for all s ∈ G. The fact that G is abelian implies that
T is a set of pairwise commuting maps, and one can check that T preserves S(`∞(G)). So, the Markov-
Kakutani fixed point theorem gives us µ ∈ S(`∞(G)) such that λ∗s(µ) = µ for all s. By construction, µ is a
left-invariant mean on `∞(G). �

Proposition 12.5. The class of amenable groups is closed under taking subgroups, quotients, extensions,
and inductive limits.

Proof. We will prove that the class of amenable groups is closed under extensions, and leave the rest as an
exercise. So, suppose that N,H are amenable, with left invariant means µN , µH respectively, and 1→ N →
G → H → 1 is a short exact sequence of groups (so that N is normal in G and H ∼= G/N). We define a
functional µ on `∞(G) by

µ(f) = µH(sN 7→ µN (g 7→ f(sg))).

Notice that the function sN 7→ µN (g 7→ f(sg)) is well defined by our hypothesis that µN is left invariant;
we have

µN (g 7→ f(sg)) = µN (g 7→ f(sng)).

Moreover, if f is positive, then the fact that µH , µN are positive linear functionals implies that µ is also a
positive linear functional. To see that µ is indeed a left invariant mean, then, it merely remains to check left
invariance. If g̃ ∈ G, then

µ(λg̃f) = µH(sN 7→ µN (g 7→ (λg̃(sg))) = µH(sN 7→ µN (g 7→ f(g̃−1sg))) = µH(g̃−1sN 7→ µN (g 7→ f(g̃−1sg)))

by the left invariance of µH . However, replacing the variable s ∈ G with g̃s reveals that this latter is precisely
µ(f), as desired. �

Exercise 12.6. Complete the proof of Proposition 12.5. Some hints:

• If H ≤ G is a subgroup of an amenable group, pick a set S of left coset representatives of H ≤ G,
so that you can write any g ∈ G uniquely as g = sh for s ∈ S, h ∈ H. Use this to embed `∞(H) into
`∞(G).

(Side question: Why can’t we just define µ by µ|H
µ(H)?)

• To show that G = lim−→Gn is amenable whenever all the groups Gn are, you’ll need to take a weak-∗
cluster point of the left invariant means witnessing amenability of the Gns.

In particular, Proposition 12.5 implies that Fn is not amenable for any n ≥ 2: Each such Fn contains F2

as a subgroup.

Theorem 12.7. G is amenable iff C∗r(G) ∼= C∗(G).

Proof. We will prove the backwards direction; the forwards direction (cf. [5, Theorem VII.2.8] or [3, Theorem
2.6.8]) uses a lot of machinery that we don’t have time to introduce.

Suppose C∗r(G) ∼= C∗(G). Note that the universal property of C∗(G) means that it always admits a one-
dimensional representation χ, arising from the unitary representation π(ug) = 1 for all g ∈ G. Then, since we
assumed that the canonical surjection πλ : C∗(G) → C∗r(G) is an isomorphism, χ becomes a 1-dimensional
representation on C∗r(G).

By the Hahn-Banach Theorem, extend χ to a norm-1 bounded linear functional (also called χ) on
B(`2(G)), and then restrict it to a bounded linear functional on `∞(G) (viewed as a subalgebra of B(`2(G)),
acting by left multiplication). If f ∈ `∞(G) is positive, f = sup{f |F : F ⊆ G finite}, and as each f |F is
positive in C∗r(G), the fact that χ|C∗r(G) is a ∗-homomorphism (and hence positive) implies χ(f) ≥ 0 for all
f ≥ 0 in `∞(G).
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It’s straightforward to check Exercise: do it! that if f ∈ `∞(G), f =
∑
g∈G agug, then λs(f) = usfu

∗
s

as operators on `2(G). Moreover, as χ is a ∗-homomorphism on C∗r(G) 3 ug, these elements are in the
multiplicative domain of χ (see Proposition 9.26). Therefore, χ(λsf) = χ(f) for any f ∈ `∞(G), so χ is our
left-invariant mean. �

We would also like to prove that G is amenable iff C∗r(G) is nuclear. To do this, it will be easier to
work with a different characterization of amenability. To introduce it, recall that if S, T are sets, then
S∆T = (S ∪ T )\(S ∩ T ) is the set of elements which are in precisely one of S, T .

Definition 12.8. A discrete group G satisfies the Følner condition if for any finite subset E ⊆ G and any
ε > 0, there is a finite subset F ⊆ G such that

|sF∆F |
|F |

< ε for all s ∈ E.

It is a fact (although not one we’ll prove here) that G satisfies the Følner condition iff G is amenable.
However, we can prove that satisfying the Følner condition is equivalent to the following property, which is
hopefully sufficiently reminiscent of the definition of amenability that you’re willing to believe said fact. If
you recall that `1(G) is the predual of `∞(G) and hence is dense in `∞(G)∗, you may be even more credulous.

Definition 12.9. A discrete group G admits an approximate invariant mean if, for any finite subset E ⊆ G
and any ε > 0, there is a positive function m = m(E, ε) ∈ `1(G) with

∑
s∈Gm(s) = 1 and such that

sup
s∈E

∑
t∈G
|m(s−1t)−m(t)| < ε.

Proposition 12.10. G satisfies the Følner condition iff G admits an approximate invariant mean.

Proof. Suppose G satisfies the Følner condition. Given a finite set E and ε > 0, let F ⊆ G be the finite set
guaranteed by the Følner condition and let m = 1

|F |χF . Note that

χF (s−1t) = 1⇔ s−1t ∈ F ⇔ t ∈ sF,

so
∑
t∈G |m(s−1t)−m(t)| = |sF∆F |

|F | < ε for all s ∈ E.
On the other hand, suppose that G admits an approximate invariant mean. We first make a helpful

technical observation. Given a positive function f ∈ `1(G) and r ≥ 0, set F (f, r) = {t : f(t) > r}. Notice
first that F (f, r) must be finite for each fixed r, in order to have f ∈ `1(G). We now observe that if f, h are
two such functions, both bounded above by 1, then

|f(t)− h(t)| =
∫ 1

0

|χF (f,r)(t)− χF (h,r)(t)| dr.

To see this, suppose without loss of generality that f(t) = x, h(t) = y with x ≤ y. Then χF (f,r)(t) = 1 iff
r < x and χF (h,r)(t) = 1 iff r < y, so the integrand is 1 precisely on the interval [x, y).

Now, supposing G admits an approximate invariant mean, fix a finite subset E ⊆ G and δ > 0; write
ε = δ/|E|, and let m ∈ `1(G) be a norm-1 positive function such that

∑
t∈G |m(t) − m(s−1t)| < ε for all

s ∈ E. Applying our above observation to the functions f = m,h = (t 7→ m(s−1t)), we have∑
t∈G
|m(t)−m(s−1t)| =

∑
t∈G

∫ 1

0

|χF (f,r)(t)− χF (h,r)(t)| dr =

∫ 1

0

∑
t∈G
|χF (f,r)(t)− χF (h,r)(t)| dr

(as the integrand is positive we can exchange the integral and the sum). Moreover, we have t ∈ F (h, r)
precisely if m(s−1t) > r, that is, if t ∈ sF (m, r). It follows that∑

t∈G
|m(t)−m(s−1t)| =

∫ 1

0

|F (m, r) ∆ sF (m, r)| dr < ε

for all s ∈ G. Furthermore, as m is positive, 1 =
∑
t∈Gm(t) =

∫ 1

0
|F (m, r)| dr. It follows that∑

s∈E

∫ 1

0

|sF (m, r) ∆F (m, r)| dr <
∫ 1

0

|E|ε|F (m, r)| dr,
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and so we must have ∑
s∈E
|sF (m, r) ∆F (m, r)| < |E|ε|F (m, r)|

for some r. Then, in particular, for each s ∈ E we have

|sF (m, r) ∆F (m, r)|
|F (m, r)|

< |E|ε = δ,

so F (m, r) satisfies the Følner condition for the given E and δ > 0. �

The proof of the following Proposition can be found in [3, Theorem 2.6.8] (see also [5, Theorem VII.2.8]).
It uses a lot more Banach space theory than one might expect.

Proposition 12.11. G is amenable iff G admits an approximate invariant mean (iff G satisfies the Følner
condition).

Before proving our next theorem, we need the following useful fact about completely positive maps.

Proposition 12.12. A map φ : Mn(C)→ A is completely positive iff [φ(Eij)] ∈Mn(A) is positive.

Proof. We prove the backwards direction and leave the forwards direction as an easy exercise to the reader.
So, suppose a = [φ(Eij ] ∈Mn(A) is positive; write [bij ] := a1/2, so that

aij = φ(Eij) = (b∗b)ij =

n∑
k=1

b∗kibkj .

Without loss of generality, assume A ⊆ B(H), so that each entry bij of b ∈ Mn(A) lies in B(H). Define
V : H → Cn ⊗ Cn ⊗H by

V (ξ) =

n∑
j,k=1

ej ⊗ ek ⊗ bk,jξ.

Then we compute that if T = [tij ] ∈Mn(C),

〈V ∗(T ⊗ 1⊗ 1)V η, ξ〉 = 〈(T ⊗ 1⊗ 1)(V η), V ξ〉

= 〈
n∑

i,j,k=1

tijei ⊗ ek ⊗ bk,jη,
n∑

`,m=1

e` ⊗ em ⊗ bm,`ξ〉

=

n∑
i,j,k=1

tij〈bk,jη, bk,iξ〉 =

n∑
i,j,k=1

tij〈b∗k,ibk,jη, ξ〉

= 〈φ([tij ])η, ξ〉.

In other words, φ(T ) = V ∗(T⊗1⊗1)V is a compression of the ∗-homomorphism ψ : Mn(C)→ B(Cn⊗Cn⊗H)
given by ψ(T ) = T ⊗ 1⊗ 1, so φ is cp. �

Finally, we can prove our second marquee theorem.

Theorem 12.13. G is amenable iff C∗r(G) is nuclear.

Proof. Suppose G is amenable (and, for simplicity, countable, so that we can enumerate the elements of G).
By Proposition 12.11, we can assume that G satisfies the Følner condition. Choose, then, a sequence of
finite sets Fn such that Fn satisfies the Følner condition for ε = 1/n and the finite set consisting of the first
n elements of G. Let Pn ∈ B(`2(G)) be the projection onto the subspace spanned by {δg : g ∈ Fn}, so that
we can identify PnB(`2(G))Pn with MFn(C). Define φn : C∗r(G) → MFn(C) by φn(x) = PnxPn. Example
9.9 shows that φn is ccp.

To define ψn : MFn(C)→ C∗r(G), write Epq for the matrix unit in MFn(C) such that Epq(δq) = δp. Then
define

ψn(Epq) =
1

|Fn|
upu

∗
q ,
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and extend ψn to be a linear map on MFn(C). If we enumerate the elements of Fn as p1, . . . , p|Fn|, then
[ψn(Epq)] satisfies

[ψn(Epq)] =
1

|Fn|2


up1 0 · · · 0
up2 0 · · · 0

...
... · · ·

...
up|Fn| 0 · · · 0



up1 0 · · · 0
up2 0 · · · 0

...
... · · ·

...
up|Fn| 0 · · · 0


∗

≥ 0,

so Proposition 12.12 tells us that ψn is also cp. In fact, ψ is ucp: our choice of scaling factor and the fact
that each up is a unitary means that

ψn(1) =
∑
p∈Fn

ψn(Epp) = 1.

To complete the proof that C∗r(G) is nuclear when G is amenable, it remains to show that for any a ∈ C∗r(G)
we have limn→∞ ‖a−ψn(φn(a))‖ = 0. In fact, since the generators us densely span C∗r(G), it suffices to show
that limn→∞ ‖us − ψn(φn(us))‖ = 0 for all s ∈ G.

One quickly computes that φn(us) =
∑
p:p,s−1p∈Fn Ep,s−1p, and therefore

ψn(φn(us)) =
1

|Fn|
∑

p:p,s−1p∈Fn

upu
∗
s−1p =

1

|Fn|
∑

p:p,s−1p∈Fn

us = us
|Fn ∩ sFn|
|Fn|

.

As |Fn ∆ sFn| = 2|Fn| − 2|Fn ∩ sFn|, our choice of the sets Fn implies that

0 = lim
n→∞

|Fn ∆ sFn|
|Fn|

= lim
n→∞

1− |Fn ∩ sFn|
|Fn|

for any s ∈ G. In particular,

lim
n→∞

‖us − ψn(φn(us))‖ = lim
n→∞

1− |Fn ∩ sFn|
|Fn|

= 0,

as desired.
Now, for the converse. Assume C∗r(G) is nuclear, so that we have cpc maps φn : C∗r(G) → Mk(n) and

ψn : Mk(n) → C∗r(G). By Arveson’s Extension Theorem, we might as well assume that φn is defined on all of

B(`2(G)), so that the composition Φn = ψn ◦φn is a cpc map from B(`2(G)) to C∗r(G), such that Φn(x)→ x
for all x ∈ C∗r(G). Take a point-ultraweak limit of the maps Φn (ask Brent and Rolando), and we end up
with a cpc map Φ : B(`2(G))→ L(G) which restricts to the identity on C∗r(G).

Recall from your von Neumann algebra lectures that there is a canonical trace τ on L(G), given by
τ(x) = 〈xδe, δe〉. Define µ = τ ◦Φ; we claim that µ is a left invariant mean. To see this, we again use that the
left translation action λs on functions in `∞(G) ⊆ B(`2(G)) is given by λs(f) = usfu

∗
s. Since Φ|C∗r(G) = id,

we have ug in the multiplicative domain of Φ for all g. Consequently, for any f ∈ `∞(G),

µ(λs(f)) = τ(Φ(usfu
∗
s)) = τ(usΦ(f)u∗s) = τ(Φ(f)),

since τ is a trace and us is a unitary. �
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