First lecture

Wednesday, May 24, 2023 4:53 PM

What is a subholder? It's a will reduce
$$
L_{\mu}6N \subset M
$$

\nallow the *M* with its standard rep on $L^{2}(M)$

\nHowever we write N' with its standard rep on $L^{2}(M)$

\nHowever we write N' will be thought N' in $L^{2}(M)$

\nwhich will be a factor of $\exists p$ in $L^{2}(M)$ is $\exists p$ in $L^{2}(M)$

\nIn case N' is $\exists \exists p$ in $L^{2}(M)$ denote the degree $\exists p$ in $L^{2}(M)$

\nNote that $T_{\mu}|_{\mu} \leq T_{\mu}$ and therefore the closure of N?

\nNote that $T_{\mu}|_{\mu} \leq T_{\mu}$ and therefore the closure of N?

\nin $L^{2}(M)$ is isomorphic to $L^{2}(N)$ hence the corresponding μ (e μ 6B(L^{2}(M))

\nin $L^{2}(M)$ is $\exists L^{2}(M)$ is the original μ (e μ 6B(L^{2}(M))

\nin $L^{2}(M)$ is $\exists L^{2}(M)$ is $\exists L^{2}(M)$ is $\exists L^{2}(M)$

\nand $\exists L^{2}(M)$ is $\exists L^{2}(M)$ is $\exists L^{2}(M)$

\nand $\exists L^{2}(M)$ is $\exists L^{2}(M)$ is $\exists L^{2}(M)$

\nand $\forall L^{2}(M)$ is $\exists L^{2}(M)$ is $\forall L^{2}(M)$ is <

The part of the graph of condition 1.
$$
P(1) = |A| \sinh H + |B| \cosh
$$

\nWe can show that $||A|| = 1$.
\nYou can think about it at the "M-shuorum" of M, then.
\n
$$
[M:N] = \frac{dim_H H}{dim_H H} = \frac{2}{2} \int_{1}^{1} ln \sinh H \cosh H
$$
\n
$$
= \frac{dim_H H}{dim_H H} = \frac{2}{2} \int_{1}^{1} ln \sinh H \cosh H
$$
\n
$$
= [M:N] \cdot 2 \sinh H^2 \sinh H = \frac{dim_H H}{dim_H H} = \frac{1}{2} \int_{1}^{1} ln \sinh H \cosh H
$$
\n
$$
= [M: P] [P: N] = \frac{1}{2} \int_{1}^{1} ln \sinh H \cosh H
$$
\n
$$
= [M: P] [P: N] = \frac{1}{2} \int_{1}^{1} ln \sinh H \cosh H
$$
\n
$$
= [M: P] [P: N] = \frac{1}{2} \int_{1}^{1} ln \sinh H \cosh H
$$
\n
$$
= [M: P] [P: N] = \frac{1}{2} \int_{1}^{1} ln \sinh H \cosh H
$$
\n
$$
= \frac{1}{2} \int_{1}^{1} ln \sinh H \cosh H
$$
\n
$$
= \frac{1}{2} \int_{1}^{1} ln \sinh H \cosh H
$$
\n
$$
= \frac{1}{2} \int_{1}^{1} ln \sinh H \cosh H
$$
\n
$$
= \frac{1}{2} \int_{1}^{1} ln \sinh H \cosh H
$$
\n
$$
= \frac{1}{2} \int_{1}^{1} ln \sinh H \cosh H
$$
\n
$$
= \frac{1}{2} \int_{1}^{1} ln \sinh H \cosh H
$$
\n
$$
= \frac{1}{2} \int_{1}^{1} ln \sinh H \cosh H
$$
\n
$$
= \frac{1}{2} \int_{1}^{1} ln \sinh H \cosh H
$$
\n
$$
= \frac{1}{2} \int_{1}^{1} ln \sinh H \cosh H
$$
\n
$$
= \frac{1}{2} \int_{1}^{1} ln \
$$

Theorem (Jones, 1983) N E/N
\n[MIN] 6 {4 \times 1000
\n[MIN] 6 {4 \times 1000
\nEvery value occurs as the index of some N E/N.
\nA key done when
\nthe 1 hours from 1
\nthe M.
\n
$$
M_{1}:=(M,e_{N})
$$
 be the M0 gusedled by e.g. M in B($l^{2}(M)$)
\nwe call thus the base condition for N E/N.
\nIn fact, $\{M,e_{N}\}=TNT = (Seeeny)$ and the
\n M_{1} will be a X_{1} -factor W_{1} [M:N] cm
\n M_{1} will be a X_{1} -factor W_{1} [M:N] cm
\n \cdot (TN)')² TNT = type X_{1} + TN² TN³ TN⁴ RT
\n \cdot (TN)')¹ (1) TN¹ T
\n \cdot (TN¹ T)')¹ (1) TN¹ T
\n \cdot (TN¹ T)')¹ TN² = T(N1N)¹ TS = 0.1
\n \cdot [M: N) = 0.5 N¹ TS (N1N)¹ TS = 0.1
\n \cdot [M: N) = 0.6 N¹ TS (N¹ TS T) + M₁ TS R¹ RR¹
\n \cdot [M: N) = 0.6 N¹ TS (N¹ TS T) + M₁ TS R¹ TS R²
\n \cdot [M: N) = 0.6 N¹ TS (N¹ TS T) + M₁ TS R¹ TS R²
\n \cdot [M: N) = 0.6 N¹ TS (N¹ TS T) + M₁

 $m_1 \vee \cdots \vee m_n = [M; n] \wedge m_1 \wedge \cdots \wedge m_n \wedge n_n$ $(1 + 1)$ is the state $\frac{1}{2}$ This means that starting with $N \subseteq M$ of f_{in} modes
 $N \subseteq M \subseteq M_1$, $\subseteq M_2 \subseteq M_3$, $\subseteq \dots \subseteq \overline{M}$, $\subseteq M_i \subseteq M_o$
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ It's in May where the abstructions for the index start to manifest. (Jones rigidity)