First lecture

Wednesday, May 24, 2023 4:53 PM

what is a subfactor? It's a unit induce Info N C M
where both N × M are II-factors
· Identify M with it's standard rep on C(M)
· Whenever we write N' with the tablesy denit N' NB((2(M)))
where will be a backer of type II (as N is type II)
In case N' is at type II, we'll dende its unspectace by T_N.
Note that
$$T_{N|N} = T_{N}$$
 and therefore the closure of N?
in $L^{2}(M) \stackrel{e_{N}}{=} U^{2}(N) \subset L^{2}(M)$ be the attractive on careful
 $L^{2}(M) \stackrel{e_{N}}{=} U^{2}(N) \subset L^{2}(M)$ be the attractive of $U^{2}(M)$)
in fact $e_{N} \in N'$.
Def: Let $1_{N} \in N \subset M$ be an induce of II, factor.
 $[M:N] := \frac{1}{T_{N}}(e_{N}) \leq 1 + [M:N] \ge 1$
· If $[M:N] := \frac{1}{T_{N}}(e_{N}) \leq 1 + [M:N] \ge 1$
· If $[M:N] = 1$ then $T_{N}(e_{N}) \leq 1 + [M:N] \ge 1$
· If $[M:N] = 1$ then $T_{N}(e_{N}) \leq 1 + [M:N] \ge 1$
· If $[M:N] = 1$ then $T_{N}(e_{N}) \leq 1 + [M:N] \ge 1$
· If $[M:N] = 1$ then $T_{N}(e_{N}) \leq 1 + [M:N] \ge 1$
· If $[M:N] = 1$ then $T_{N}(e_{N}) \leq 1 + [M:N] \ge 1$
· If $[M:N] = 1$ then $T_{N}(e_{N}) \leq 1 + [M:N] \ge 1$
· If $[M:N] = 1$ then $T_{N}(e_{N}) \leq 1 + [M:N] \ge 1$
· If $[M:N] = 1$ then $T_{N}(e_{N}) \leq 1 + [M:N] \ge 1$
· If $[M:N] = 1$ the index is the method in terms of cooping contacts.
Grown the obtain the index is the method of $M = 1$; down $H \in [0, \infty]$
We can also obtain the index is the method of $M = H : down H \in [0, \infty]$
close: down $L^{2}(M) = 1$.

• draw N'nM cos : Otherwise
$$\exists (P_1)_{i \in S}$$
 family de prijs in N'nM
et: $\sum_{i \in I} p_i = 1$ and $|I| = 0$. Hence $t_{i \in I}(p_1) \rightarrow 0$ as $t_{i \in I}$ is mind
 $\exists d t_{i \in I}(1) = 1$.
Let $[M:N] = \sum_{i \in I} \frac{f_{i \in I} Ap_{i \in N} N_{i \cap I}}{t_{r_{i \cap I}}(p_{i})} \geq \sum_{i \in I} \frac{1}{t_{r_{i \cap I}}(p_{i})} = 0$ (even).
• $[M:N] < d \Rightarrow N^{i} \cap M = C \cdot 1$: Assume draw N'nM $\ni 2$ draw $\exists p \in N^{i} \cap M$
et. $O \neq p \neq 1$. Then
 $[M:N] < [emp: N_{p}] + \frac{\Gamma(1 - p) \cap (1 + p_{1}) \cdot N(1 + p_{1})}{t_{r}(1 - p)}$
 $\Rightarrow \frac{1}{t} + \frac{1}{1 + t} = \frac{1}{t_{I + t_{1}}}$ where $t = tr(p_{1})$
 $hat \frac{1}{t_{I + t_{1}}} \neq 4$ if $t \in 0, 1$ ($\Rightarrow d \Rightarrow$)
Exercise N.C.M., $[M:N] < co \Rightarrow dim N' \cap M \in [M:N]$
Exercise N.C.M., $[M:N] < co \Rightarrow dim N' \cap M \in [M:N]$
Exercise N.C.M., $[M:N] < co \Rightarrow dim N' \cap M \in [M:N]$
Exercise N.C.M., $[M:N] < co \Rightarrow dim N' \cap M \in [M:N]$
Exercise N.C.M., $[M:N] < co \Rightarrow dim N' \cap M \in [M:N]$
Exercise N.C.M., $[M:N] < co \Rightarrow dim N' \cap M \in [M:N]$
Exercise N.C.M., $[M:N] < co \Rightarrow dim N' \cap M \in [M:N]$
Exercise N.C.M., $[M:N] < co \Rightarrow dim N' \cap M \in [M:N]$
Exercise N.C.M., $[M:N] < co \Rightarrow dim N' \cap M \in [M:N]$
Exercise N.C.M., $[M:N] < co \Rightarrow dim N' \cap M < [M:N]$
 $hat $H = L^{2}(N)$ and compared $\tau_{i}(S) := G_{i}(X)$ for $X \in N$, $sore \sigma_{3}$
Is Kace preparing, estandar $\tau_{i}(S) := G_{i}(X)$ for $X \in N$, $sore \sigma_{3}$
 $N \mid G \mid = \frac{1}{[X: X_{i} M_{i}] / S \in G_{i} X_{i} \in M \setminus [X = M_{i}] / S = \frac{1}{S \times M_{i}} / S \in G_{i} X_{i} \in M \setminus [X = M_{i}]^{2}$
 $N_{i} O = N[G]^{1}$
Now, $N \in N \times N \subseteq M$ will be a unible incluse of I_{i} for $bood$,
moreover $[M: N] = 1G]$
Now $N \in N \times M \subseteq M$ will be a unible incluse of I_{i} for $bood$,
 $M \in [M:N] = 1G]$$

Theorem (Janes, 1983)
$$N \in M$$

[M:N] $\in \{4as^{1/1}K_{0}: n_{23} \notin U[4, \infty]$
Every value occurs as the index of some $N \in M$.
A key shop in the proof of this realt is the constructioned
the M:: $\langle M, e_{N} \rangle$ be the vise generated by $e_{N} \ge M$ in $\mathcal{B}(\mathcal{B}(M))$
we call thus the bare andirection for $N \le M$
In Rest, $\langle M, e_{N} \rangle = J N'J = (5xeens)$ and thurder
 M_{1} will be $\ge T_{1} \cdot foolow Th [M:N] < \infty$
 $\cdot (JN'J)^{1} \cap JN'J = foolow Th [M:N] < \infty$
 $J NJ \cap JN'J = J(N \cap N')J = C \cdot 1$
 $\cdot [M:N] < \infty \le N'$ is finite $\le N'$ has store $T_{N'}$
 $(f N' has store: $T_{N'}(x) > T_{N'}(JxJ) \Rightarrow M' \cap horke$
 $If M, has store: $T_{N'}(y) = T_{m'}(JyJ) \Rightarrow N' \cap horke$
 $Rrep: If [M:N] < \infty Ham [M:M] = [M:N] = and$
 $T_{A_{1}}(x < N) = \frac{1}{2} \cdot M = 0$$$

MILLEN [MIN] This means that starting with NEM of fin. index NCMCM, CM_{2} CM3 C ---- CUM; =: Mao Fin index fun molex Arother II, -fider It's in Moo where the obstructions for the index stort to monifest. (Jones rigidity)