
Chapter 4

Types of von Neumann Algebras

We saw back in Corollary 2.1.4 that von Neumann algebras are equal to the C
⇤-algebra generated by

its projections. So it is perhaps unsurprising that much of the structure of a von Neumann algebras is
determined by its projections. More precisely, there is an equivalence relation on the projections in a von
Neumann algebra, and one can classify von Neumann algebras into three types according to the behavior of
this equivalence relation

In the first section we will define and study this equivalence relation on projections. In the second section
we study certain subalgebras related to projections called compressions. In the third section we will define
the three types of von Neumann algebras and show how any von Neumann algebra decomposes into a direct
sum of the three types. We will also consider a few examples.

Lecture Preview: The content of this lecture will covered over two days: Wednesday, July 8th (p. 44–
54) and Friday, July 10th (p. 55–63). The first lecture on July 8th will cover equivalence of projections
(Definition 4.1.1), central supports (Definition 4.1.7), and the Comparison Theorem. We will likely forego
most proofs in favor of concrete examples. Regardless, it is recommended that you skip the proof of Proposi-
tion 4.1.5. The second lecture on July 8th will cover compressions of von Neumann algebras (Definition 4.2.1)
and various properties of projections (Definitions 4.2.5 and 4.3.1), and emphasis will be put on concrete ex-
amples.

For the first lecture on July 10th, we will state the type decomposition (see Theorem 4.3.7) and its
refinements (see Definitions 4.3.10 and 4.3.13), though we will not prove them. Instead we will focus on the
examples at the end of Section 4.3 (Examples 4.3.14, 4.3.15, and 4.3.16).

4.1 Equivalence of Projections

Throughout this section, let M ⇢ B(H) be a von Neumann algebra. We will write P(M) for the collection
of projections in M . Also, for a subset S ⇢ H we write [S] for the projection onto the closed span of S; that
is, [S] = PspanS .

Recall that, viewing B(H) as C
⇤-algebra, positivity gives us a partial ordering on projections: p  q if

and only if q� p � 0. In fact, (P(M),) is a complete lattice for any von Neumann algebra M ⇢ B(H) (see
Exercise 4.1.1). For P ⇢ P(M) a set of projections (not assumed to be pairwise orthogonal) the infimum
and supremum of P are defined by
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If P = {p1, . . . , pn} is a finite subset, we also write p1 ^ · · · ^ pn :=
V

P and p1 _ · · · _ pn :=
W

P. Note
that P ⇢ M implies that the subspaces used to define

V
P and

W
P are reducing for M 0, and consequentlyV

P,
W
P 2 M by Lemma 1.2.5.
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Unfortunately, this lattice structure tends to be too rigid for our purposes. For example, in M2(C) the
projections E1,1 and E2,2 have the same rank but are not comparable via . The underlying issue is that
this partial ordering it too dependent on the Hilbert space: p  q if and only pH ⇢ qH. Partial isometries
will be the key ingredient for loosening this dependence.

Definition 4.1.1. Let M ⇢ B(H) be a von Neumann algebra. For p, q 2 P, we say that p is equivalent to
q in M and write p ⇠ q if there exists a partial isometry v 2 M such that v⇤v = p and vv

⇤ = q. We say that
p is subequivalent to q in M and write p � q if there exists a partial isometry v 2 M such that v

⇤
v = p

and vv
⇤
 q. If p � q but p 6⇠ q, we write p � q.

Note that if p, q 2 P(M) are such that p  q, then by taking v = p we see that p � q. Thus p � q is a
coarser relation than p  q.

Example 4.1.2. Consider the following projections in M3(C):

P :=

0

@
1 0 0
0 1 0
0 0 0

1

A , Q :=

0

@
0 0 0
0 1 0
0 0 1

1

A , E1,1 =

0

@
1 0 0
0 0 0
0 0 0

1

A .

If we set

V :=

0

@
0 0 0
0 1 0
1 0 0

1

A ,

then V
⇤
V = P and V V

⇤ = Q, so P ⇠ Q. We also have E1,1 � P (since E1,1  P ) and E1,1 � Q (using
either of the partial isometries E2,1 or E3,1). Actually, we have E1,1 � P,Q. To see this note that for any
partial isometry V 2 M3(C) with V

⇤
V = E1,1 we have

Tr(V V
⇤) = Tr(V ⇤

V ) = Tr(E1,1) = 1 < 2 = Tr(P ),Tr(Q).

So V V
⇤ can never equal P or Q. In general, a projection in M3(C) is equivalent to another projection if and

only if they have the same trace (see Exercise 4.1.4). ⌅
Remark 4.1.3. A subtle aspect of Definition 4.1.1 is that we can only say p is subequivalent to q in M if
we can find a partial isometry v in M that satisfies v⇤v = p and vv

⇤
 q. To emphasize this, we may write

p �M q or p ⇠M q. If M ⇢ N ⇢ B(H) is a larger von Neumann algebra, it may be that p ⇠N q but p 6⇠M q.
For example, E1,1 and E2,2 are equivalent in M2(C), but not in the von Neumann algebra CE1,1 � CE2,2.

Proposition 4.1.4. For a von Neumann algebra M ⇢ B(H), ⇠ is an equivalence relation on P(M), and
the relation � is reflexive and transitive (a preorder).

Proof. The reflexivity of ⇠ and � follows form the fact that a projection is also a partial isometry. The
symmetry of ⇠ is evident from the definition. The transitivity of ⇠ will follow as a special case of the
transitivity of �, which we now show. Let p, q, r 2 P(M) with p � q and q � r. Then there exists partial
isometries u, v 2 M so that u⇤

u = p, uu⇤
 q, v⇤v = q, and vv

⇤
 r. It follows that

qu = quu
⇤
u = uu

⇤
u = u,

so that
(vu)⇤(vu) = u

⇤
v
⇤
vu = u

⇤
qu = u

⇤
u = p

and
(vu)(vu)⇤ = vuu

⇤
v  vqv

⇤ = v(v⇤v)v⇤ = vv
⇤
 r.

Thus p � r, and � is transitive.

The relation � is not a partial order because p � q and q � p does not imply p = q. For example, in
Mn(C) we have E1,1 � E2,2 and E2,2 � E1,1, but E1,1 6= E2,2. Instead, we have E1,1 ⇠ E2,2. We will see in
the next proposition that this actually holds in general: p � q and q � p imply p ⇠ q (it would be a crime
against notation for this not to hold). Although the proof appears to be rather complicated, it more or less
follows the same argument used to prove the Schröder–Berstein Theorem.
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Proposition 4.1.5. For a von Neumann algebra M ⇢ B(H) and p, q 2 P(M), p � q and q � p imply p ⇠ q.

Proof. Let u, v 2 M be partial isometries so that u⇤
u = p, uu⇤

 q, v⇤v = q, and vv
⇤
 p. Set p1 = p� vv

⇤,
q1 = up1u

⇤, and inductively define sequences (pn)n2N and (qn)n2N by

pn = vqn�1v
⇤ and qn = upnu

⇤
.

By Exercise 4.1.8, {pn : n 2 N} and {qn : n 2 N} are each pairwise orthogonal families of projections, with
pn  p and qn  q for each n 2 N. In particular, pn  vv

⇤ for all n � 2 and qn  uu
⇤ for all n � 1. The

following diagram provides a rough but helpful mental picture of how these sequences are defined:

p
pn pn+1

q
qn

u · u
⇤

v · v
⇤

Using Proposition 1.1.5, we define projections

p1 := p�

1X

n=1

pn and q1 := q �

1X

n=1

qn.

We also define

w := v
⇤
p1 + u

1X

n=1

pn = v
⇤
p1 +

1X

n=1

upn.

We claim w
⇤
w = p and ww

⇤ = q. The argument will be broken up into the following smaller claims:

(I) (pnu⇤)(upm) = �n=mpn and (upn)(upm)⇤ = �n=mqn for all m,n 2 N.

(II) (p1v)(v⇤p1) = p1 and (v⇤p1)(v⇤p1)⇤ = q1.

(III) (pnu⇤)(v⇤p1) = 0, (p1v)(upn) = 0, (v⇤p1)(pnu⇤) = 0, and (upn)(p1v
⇤) = 0 for all n 2 N.

Before proving these claims, observe that they are simply the multiplication rules needed to expand the
products w⇤

w and ww
⇤:

w
⇤
w =

 
p1v +

1X

m=1

pmu
⇤

! 
v
⇤
p1 +

1X

n=1

upn

!

= (p1v)(v⇤p1) +
1X

n=1

(p1v)(upn) +
1X

m=1

(pmu
⇤)(v⇤p1) +

1X

m,n=1

(pmu
⇤)(upn) = p1 +

1X

n=1

pn = p

and similarly ww
⇤ = q. Thus proving these claims with complete the proof.

(I): We compute
(upn)

⇤(upm) = pnu
⇤
upm = pnppm = pnpm = �n=mpn.

Also
(upn)(upm)⇤ = upnpmu

⇤ = �n=mupnu
⇤ = �n=mqn.

(II): Let vk = v
⇤

⇣
p�

Pk
n=1 pn

⌘
. Then

vkv
⇤

k = v
⇤

 
p�

kX

n=1

pn

!
v = v

⇤
pv �

kX

n=1

v
⇤
pnv = q �

kX

n=2

qn�1 = q �

k�1X

n=1

qn,
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where we we have used v
⇤
pv = q, v⇤p1v = 0, and v

⇤
pnv = qn�1 for n � 2. Also

v
⇤

kvk =

 
p�

kX

n=1

pn

!
vv

⇤

 
p�

kX

n=1

pn

!
= vv

⇤
�

kX

n=2

pn = p� p1 �

kX

n=2

pn = p�

kX

n=1

pn.

where we have used vv
⇤
 p, p1vv⇤ = 0, and pn  vv

⇤ for n � 2. Taking limits in the SOT we obtain

(p1v)(v⇤p1) = lim
k!1

v
⇤

kvk = lim
k!1

 
p�

kX

n=1

pn

!
= p1,

and

(v⇤p1)(p1v) = lim
k!1

vkv
⇤

k = lim
k!1

 
q �

k�1X

n=1

qn

!
= q1.

(III): First note that by taking adjoints, the second equality follows from the first and the fourth from the
third. The third equality is simply a consequence of p1pn = 0. To see the first equality, note that
v
⇤
p = v

⇤ = v
⇤
q and v

⇤
pn = qn�1v

⇤, while v
⇤
p1 = 0. It follows that v

⇤
p1 = q1v

⇤, which along with
pnu

⇤ = u
⇤
qn imply (pnu⇤)(v⇤p1) = u

⇤
qnq1v

⇤ = 0.

The next lemma is an important example of equivalence, and a nice application of the polar decomposi-
tion. Recall that for a subset S ⇢ H, [S] denotes the projection onto spanS.

Lemma 4.1.6. For a von Neumann algebra M ⇢ B(H) and x 2 M , [xH], [x⇤
H] 2 M and [xH] ⇠M [x⇤

H].

Proof. Let x = v|x| be the polar decomposition and recall that v 2 M . From Theorem 3.1.1 we know that
vv

⇤ is the projection onto ran(x) = xH and v
⇤
v is the projection onto

ran(|x|) = ker(|x|)? = ker(x)? = ran(x⇤) = x⇤H.

Thus vv⇤ = [xH] and v
⇤
v = [x⇤

H], which shows the projections are equivalent and in M .

Another way to see that [xH], [x⇤
H] 2 M is to observe that the subspaces xH and x⇤H are reducing for

M
0 and use Lemma 1.2.5.

Definition 4.1.7. For x 2 M , the central support of x in M is the projection

z(x) :=
^

{z 2 P(Z(M)) : xz = zx = x}.

We amy also write zM (x) := z(x) to emphasize the role of M in the above. We say p, q 2 P(M) are
centrally orthogonal if their central supports are orthogonal: z(p)z(q) = 0.

Note that for p 2 P(M), zp = p for z 2 P(Z(M)) implies p  z, and therefore p  z(p). So in this
case we can think of z(p) as the smallest central projection that is larger than p (central being the key word
here). Also, if p, q 2 P(M) are centrally orthogonal, then this shows p and q are also orthogonal. The next
lemma provides another way to think of the central support.

Lemma 4.1.8. Let M ⇢ B(H) be a von Neumann algebra. The central support of p 2 P(M) is

z(p) =
_

x2M

[xpH] = [MpH].

Proof. The second equality above follows from the definition of the supremum. Let z = [MpH]. Since M is
unital, we have p  z. Because MpH is reducing for M and M

0, we have that z 2 M \M
0 = Z(M). Thus

z(p)  z. Conversely, for any x 2 M we have

xpH = xz(p)pH = z(p)xpH,

which implies [xpH]  z(p). Since this holds for all x 2 M , we have z  z(p).
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Proposition 4.1.9. Let M ⇢ B(H) be a von Neumann algebra. For p, q 2 P(M), the following are
equivalent:

(i) p and q are centrally orthogonal.

(ii) pMq = {0}.

(iii) There does not exist projections 0 < p0  p and 0 < q0  q such that p0 ⇠ q0.

Proof. We first show (i) and (ii) are equivalent. If p and q are centrally orthogonal, then for any x 2 M we
have

pxq = pz(p)xz(q)q = pxz(p)z(q)q = 0.

Thus pMq = {0}. Conversely, if pMq = {0}, then by Lemma 4.1.8 pz(q) = p[MqH] = 0. This implies
p  1 � z(q), and since 1 � z(q) 2 Z(M) we have z(p)  1 � z(q). That is, z(p)z(q) = 0. Thus (i) and (ii)
are equivalent.

Next we show (ii) and (iii) are equivalent. Suppose (ii) does not hold and let x 2 M be such that pxq 6= 0.
Then qx

⇤
p 6= 0 and consequently, p0 := [pxqH] and q0 := [qx⇤

pH] are non-zero projections. Clearly p0  p

and q0  q, and by Lemma 4.1.6 p0 ⇠ q0. Conversely, suppose (iii) does not hold and p0  p and q0  q are
non-zero projections such that p0 ⇠ q0. Let v 2 M be a partial isometry so that v

⇤
v = p0 and vv

⇤ = q0.
Then v

⇤ = p0v
⇤
q0 so that

pv
⇤
q = pp0v

⇤
q0q = p0v

⇤
q0 = v

⇤
6= 0.

Thus pMq 6= {0}, and we see that (ii) and (iii) are equivalent.

Our next objective in this section is to prove the Comparison Theorem (see Theorem 4.1.11), which says
that—modulo multiplying by a central projection—all projections are comparable via �. We must first
prove a lemma that will also be useful in our forthcoming classification of von Neumann algebras.

Lemma 4.1.10. Let M ⇢ B(H) be a von Neumann algebra. If {pi : i 2 I}, {qi : i 2 I} ⇢ P(M) are two
pairwise orthogonal families such that pi � qi for each i 2 I, then

P
i2I pi �

P
i2I qi. In particular, if pi ⇠ qi

for each i 2 I, then
P

i2I pi ⇠
P

i2I qi.

Proof. Let ui 2 M be a partial isometry such that u⇤

i ui = pi and uiu
⇤

i  qi. Write ri = uiu
⇤

i and note that
{ri : i 2 I} is pairwise orthogonal because {qi : i 2 I} is. We have for i 6= j

u
⇤

i uj = u
⇤

i uiu
⇤

i uju
⇤

juj = u
⇤

i rirjuj = 0,

and
uiu

⇤

j = uiu
⇤

i uiu
⇤

juju
⇤

j = uipipju
⇤

j = 0.

Consequently,  
X

i2I

ui

!⇤
0

@
X

j2I

uj

1

A =
X

i2I

u
⇤

i ui =
X

i2I

pi

and  
X

i2I

ui

!0

@
X

j2I

uj

1

A
⇤

=
X

i2

uiu
⇤

i =
X

i2I

ri 

X

i2I

qi.

Thus
P

pi �
P

qi. The last assertion follows from the above and Proposition 4.1.5.

Theorem 4.1.11 (Comparison theorem). Let M ⇢ B(H) be a von Neumann algebra. For p, q 2 P(M),
there exists z 2 P(Z(M)) such that

pz � qz and q(1� z) � p(1� z).
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Proof. By Zorn’s Lemma there exists maximal families {pi : i 2 I}, {qi : i 2 I} ⇢ P(M) of pairwise orthogonal
projections such that pi ⇠ qi for all i 2 I and

p0 :=
X

i2I

pi  p

q0 :=
X

i2I

qi  q.

Note that p0 ⇠ q0 by Lemma 4.1.10. Choose z := z(q� q0). By maximality of the families, Proposition 4.1.9
yields z(p � p0)z = 0. Consequently, (p � p0)z = 0, or pz = p0z. Now, if v 2 M is such that v⇤v = p0 and
vv

⇤ = q0, then one easily checks that p0z ⇠ q0z via the partial isometry vz. Thus

pz = p0z ⇠ q0z  qz.

Similarly, p0(1� z) ⇠ q0(1� z) and since q � q0  z we have

q(1� z) = q0(1� z) ⇠ p0(1� z)  p(1� z).

Corollary 4.1.12. Let M ⇢ B(H) be a von Neumann algebra. If M is a factor, then for p, q 2 P(M)
exactly one of the following holds:

p � q p ⇠ q q � p.

Proof. By the Comparison Theorem, there exists z 2 P(Z(M)) so that pz � qz and q(1 � z) � p(1 � z).
Since Z(M) = C, we have either z = 0 or z = 1 and the result follows.

Exercises

4.1.1. Let M ⇢ B(H) be a von Neumann algebra. In this exercise you will show that (P(M),) is a
complete lattice.

(a) Show that
V
P,
W
P 2 M .

(b) Show that
V
P  p 

W
P for all p 2 P.

(c) Show
V

P is a greatest lower bound for P and that
W

P is a least upper bound for P.

4.1.2. Let P ⇢ B(H) be a set of projections

_
P = 1�

^
P

?
^

P = 1�
_

P
?
.

4.1.3. Let {⇠1, . . . , ⇠n}, {⌘1, . . . , ⌘n} ⇢ H be two orthornomal subsets. Show that
Pn

i=1 ⇠i ⌦ ⌘̄i is a partial
isometry that implements the equivalence (

Pn
i=1 ⌘i ⌦ ⌘̄i) ⇠

�Pn
i=1 ⇠i ⌦ ⇠̄

�
.

4.1.4. Let p, q 2 (B(H)) be finite-rank projections. Show that p ⇠ q if and only if Tr(p) = Tr(q).

4.1.5. Let E ,F ⇢ H be two orthonormal subsets with the same cardinality. Show that [E ] ⇠ [F ]. [Hint:
start with a bijection from E to F (as sets).]

4.1.6. Let A ⇢ B(H) be an abelian von Neumann algebra. For p, q 2 P(A), show that p ⇠A q if and only
if p = q.

4.1.7. For p � q, let v be a partial isometry satisfying v
⇤
v = p and vv

⇤
 q. Show that qvp = v.

4.1.8. Let p, q be projections, and let u, v be partial isometries so that u
⇤
u = p, uu⇤

 q, v⇤v = q, and
vv

⇤
 p. Set p1 := p� vv

⇤, q1 = up1u
⇤, and inductively define sequences (pn)n2N and (qn)n2N by

pn = vqn�1v
⇤ and qn = upnu

⇤
.

(a) For each n 2 N, show that pn = (vu)n�1
p1((vu)⇤)n�1 and qn = (uv)n�1

q1((uv)⇤)n�1.
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(b) For each n 2 N, show that (vu)n and (uv)n are partial isometries. In particular, show

((vu)⇤)n(vu)n = p (vu)n((vu)⇤)n  vv
⇤

((uv)⇤)n(uv)n = q (uv)n((uv)⇤)b  uu
⇤
.

(c) For each n 2 N, show that pn and qn are projections satisfying pn  p and q  q.

(d) For m < n, show that

((vu)⇤)m(vu)n = (vu)n�m and ((uv)⇤)m(uv)n = (uv)n�m
.

(e) For m < n, show that pmpn = 0 and qmqn = 0. [Hint: first check that p1v = 0 and q1uv = 0.]

4.1.9. Let M ⇢ B(H) be a von Neumann algebra and let p, q 2 P(M) satisfy p � q. Show that z(p)  z(q).
[Hint: use Lemma 4.1.8.]

4.1.10. Let M ⇢ B(H) be a von Neumann algebra and let p, q 2 P(M). In this exercise you will prove
Kaplansky’s formula:

(p _ q � p) ⇠ (q � p ^ q).

(a) For x := (1� p)q, show that [x⇤
H] = q � p ^ q.

[Hint: first compute [ker(x)].]

(b) For x as above, show that [xH] = p _ q � p.

[Hint: use the previous part and Exercise 4.1.2.]

(c) Use Lemma 4.1.6 to deduce the desired equivalence.

4.2 Compressions

Before we can continue our study of projections, it is necessary to understand an important operation on
von Neumann algebras.

Definition 4.2.1. For a von Neumann algebra M ⇢ B(H) and p 2 B(H) a projection,

pMp := {pxp : x 2 M}

is called a compression (or corner) of M .

The terminology comes from the fact that under the identification H ⇠= pH � (1 � p)H, pxp for x 2 M

is identified with ✓
pxp 0
0 0

◆
2 B(pH� (1� p)H),

where we view pxp as an operator on pH. In fact, for M = B(H) we have pB(H)p ⇠= B(pH)
Note that pMp is a subspace and is closed under taking adjoints. There are two cases where pMp is

actually a ⇤-algebra. The first is if p 2 M , in which case pMp is actually a ⇤-subalgebra of M . The second
is if p 2 M

0, where pxp = xp for all x 2 M implies pMp = Mp. In both cases p is the unit of the ⇤-algebra,
so if p < 1 then they cannot be von Neumann algebras in B(H). However, p is the identity operator on
B(pH), and by the above identification we can view pMp as operators on pH.

Theorem 4.2.2. Let M ⇢ B(H) be a von Neumann algebra and p 2 P(M). Then pMp and M
0
p are von

Neumann algebras in B(pH) and are commutants of one another.
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Proof. From the discussion preceding the theorem, we see that pMp and M
0
p are both unital ⇤-subalgebras

of B(pH). So it su�ces to show (pMp)00 = pMp and (M 0
p)00 = M

0
p, where the commutants here are taken

in B(pH) (rather than B(H)). Toward this end we will show the following equalities:

(M 0
p)0 \B(pH) = pMp

(pMp)0 \B(pH) = M
0
p.

The inclusion pMp ⇢ (M 0
p)0 \ B(pH) is immediate. Conversely, suppose x 2 (M 0

p)0 \ B(pH). Define
x̃ 2 B(H) by

x̃ =

✓
x 0
0 0

◆
.

That is, x̃ = px̃p, and for p⇠ 2 pH we have x̃p⇠ = xp⇠. If y 2 M
0, then for ⇠ 2 H we have

yx̃⇠ = ypx̃p⇠ = ypxp⇠ = xyp⇠ = xpy⇠ = x̃py⇠ = x̃y⇠.

So yx̃ = x̃y and hence x̃ 2 M
00 = M . As operators on pH we have x = px̃p 2 pMp.

The inclusion M
0
p ⇢ (pMp)0 \B(pH) is immediate. Suppose y 2 (pMp)0 \B(pH). Using the functional

calculus to write y as a linear combination of four unitaries, we may assume y = u is a unitary. We will
extend u to an element ũ 2 B(H). Define ũ on MpH by

ũ

 
nX

i=1

xip⇠i

!
=
X

i

xiup⇠i,

for x1, . . . , xn 2 M and ⇠1, . . . , ⇠n 2 H. Observe that
�����ũ

nX

i=1

xip⇠i

�����

2

=
nX

i,j=1

hxiup⇠i, xjup⇠ji

=
nX

i,j=1

⌦
px

⇤

jxipu⇠i, up⇠j

↵

=
nX

i,j=1

⌦
upx

⇤

jxip⇠i, up⇠j

↵

=
nX

i,j=1

⌦
px

⇤

jxip⇠i, p⇠j

↵
=

�����

nX

i=1

xip⇠i

�����

2

.

Thus ũ is well-defined and an isometry, which we extend toMpH. Observe that ũ commutes withM onMpH

by definition of ũ, and consequently they commute on MpH. Recall that z(p) = [MpH] by Lemma 4.1.8. So
if we extend ũ to H by setting ũ|(MpH)? ⌘ 0, then ũ = ũz(p). It follows that for x 2 M and ⇠ 2 H we have

xũ⇠ = xũz(p)⇠ = ũz(p)x⇠ = ũx⇠.

That is, ũ = M
0
\ B(H). By definition ũ, we have ũp = u and so u 2 M

0
p.

Corollary 4.2.3. Let M ⇢ B(H) be a von Neumann algebra and p 2 P(M). If M is a factor then pMp

and M
0
p are factors.

Proof. Since pMp and M
0
p are each commutants of one another in B(pH) by Theorem 4.2.2, they have the

same center and so it su�ces to show M
0
p is a factor. First note that for y 2 M

0, if yp = 0 then for all
x 2 M and ⇠ 2 H we have

yxp⇠ = xyp⇠ = 0.

Since M is a factor, we have [MpH] = z(p) = 1 by Lemma 4.1.8. This means MpH is dense in H and
consequently the above implies y = 0. Now, if zp 2 Z(M 0

p) for z 2 M
0, then for all y 2 M

0 we have
[z, y]p = [zp, yp] = 0. By what we just argued, [z, y] = 0 and so z 2 Z(M 0). Since M

0 is a factor (by virtue
of M being a factor), we have z 2 C and zp 2 Cp. Thus Z(M 0

p) = Cp and M
0
p is a factor.
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The next proposition shows that a compression depends only on the equivalence class of p in M .

Proposition 4.2.4. Let M ⇢ B(H) be a von Neumann algebra. If p, q 2 P(M) are equivalent in M , then
pMp and qMq are spatially isomorphic.

Proof. Let v 2 M be a partial isometry satisfying v
⇤
v = p and vv

⇤ = q. We will show that v|pH is a unitary
from pH to qH that implements the spatial isomorphism. Note that v = qvp. This implies v|pH is indeed
valued in qH, and is surjective since q⇠ = vv

⇤
⇠ = vpv

⇤
⇠ for any x 2 H. For p⇠, p⌘ 2 pH, we have

hvp⇠, vp⌘i = hv
⇤
vp⇠, p⌘i = hp⇠, p⌘i .

Thus v|pH : pH ! qH is a unitary. Using v = qvp again, we have for any x 2 M

vpxpv
⇤ = vxv

⇤ = q(vxv⇤)q.

and
qxq = vv

⇤
xvv

⇤ = v(pv⇤xvp)v⇤.

Thus v(pMp)v⇤ = qMq.

Note that in the above proof, we used v 2 M to guarantee vxv
⇤
2 M and v

⇤
xv 2 M for all x 2 M . Also

note that if y 2 M
0, then vypv

⇤ = yvpv
⇤ = vq, which shows the spatial isomorphism sends M 0

p to M
0
q.

Definition 4.2.5. Let M ⇢ B(H) be a von Neumann algebra. We say p 2 P(M) is minimal in M if p 6= 0
and pMp = Cp. We say p is abelian in M if pMp is abelian.

Note that a minimal projection is also abelian.

Example 4.2.6. ,

(1) Let p 2 B(H). Then pB(H)p ⇠= B(pH). Since B(pH) is always a factor, it can only be abelian if
B(pH) ⇠= C. This holds o↵ and only if pH ⇠= C; that is, if and only if p is a rank 1 projection.

(2) Let (X,µ) be a �-finite measure space. Recall f 2 P(L1(X,µ)) if and only if f = 1E for some
measurable E ⇢ X (see Exercise 1.3.3). Consequently, all compressions of L1(X,µ) are of the form
L
1(E, µ|E) for some measurable E ⇢ X, and so all projections in L

1(X,µ) are abelian. If 1E is
minimal, then 1E 6= 0 and L

1(E, µ|E) = C1E . The former holds if and only if µ(E) 6= 0 and the latter
holds if and only if for all measurable subsets F ⇢ E we have µ(F ) 2 {0, µ(E)} (see Exercise 4.2.3).
We call such a subset E an atom of µ. Thus L

1(X,µ) has minimal projections if and only if µ has
atoms. ⌅

If p 2 P(M) is minimal, then whenever q 2 P(M) satisfies q  p we must have q 2 {0, p} since
q = pqp 2 pMp = Cp. Conversely, if p 2 P(M) is such that q 2 {0, p} whenever q 2 P(M) satisfies q  p,
then p and 0 are the only projections in pMp. Since von Neumann algebras are equal to the C

⇤-algebras
generated by their projections (see Corollary 2.1.4), we must have pMp = Cp and so p is minimal. Thus,
“q 2 {0, p} whenever q 2 P(M) satisfies q  p” is an equivalent definition of being minimal, and this is
non-commutative analogue of an atom for a measure.

Proposition 4.2.4 implies that if p is minimal (resp. abelian) and q 2 P(M) satisfies q ⇠M p, then q is also
minimal (resp. abelian). In fact, if q 6= 0 and q � p then it is minimal (resp. abelian). For p minimal, this
is simply because q � p implies q ⇠ p by the above characterization of minimality. For p abelian, suppose
v 2 M is a partial isometry satisfying v

⇤
v = q and vv

⇤
 p. Then (vv⇤)M(vv⇤) is abelian as a subalgebra of

pMp, and hence qMq(⇠= (vv⇤)M(vv⇤)) is abelian. We record these observations in the following proposition.

Proposition 4.2.7. Let M ⇢ B(H) be a von Neumann algebra. Let p, q 2 P(M) be non-zero projections
that satisfy q � p. If p is minimal (resp. abelian), then q is minimal (resp. abelian).

We conclude this section by using compressions to prove that the image of a von Neumann algebra under
a normal unital ⇤-homomorphism is again a von Neumann algebra.

Theorem 4.2.8. Let M ⇢ B(H) and N ⇢ B(K) be von Neumann algebras. If ⇡ : M ! N is a normal
unital ⇤-homomorphism, then ⇡(M) ⇢ B(K) is a von Neumann algebra.
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Proof. We first prove a special case: assume ⇡ is injective. Because ⇡ is a unital ⇤-homorphism, ⇡(M) is a
unital ⇤-subalgebra of B(K) and so by Corollary 3.4.8 we just need to check that (⇡(M))1 is �-WOT closed.
Because ⇤-homomorphisms preserve positivity, for x 2 M we have

⇡(x)⇤⇡(x) = ⇡(x⇤
x)  ⇡(kx⇤

xk1) = kx
⇤
xk⇡(1) = kx

⇤
xk,

and hence k⇡(x)k = k⇡(x)⇤⇡(x)k1/2  kx
⇤
xk

1/2 = kxk. The same argument applied to ⇡
�1 : ⇡(M) ! M

gives k⇡(x)k = kxk for all x 2 M . Thus (⇡(M))1 = ⇡((M)1). The duality M ⇠= (M⇤)⇤ and the Banach–
Alaoglue theorem imply (M)1 is �-WOT compact, and consequently so is its �-WOT continuous image
⇡((M)1) = (⇡(M))1. In particular, (⇡(M))1 is �-SOT closed and therefore ⇡(M) is a von Neumann algebra.

Now suppose ⇡ is not injective. Consider p := [ker(⇡)M ] and note that ker(⇡)H is reducing for M since
ker(⇡) is an ideal, and is reducing for M

0 since ker(⇡) ⇢ M . Thus p 2 M \M
0 = Z(M) by Lemma 1.2.5.

We will show that ⇡(M) is the injective image of (1 � p)M(1 � p) = M(1 � p), which is a von Neumann
algebra by Theorem 4.2.2, and hence ⇡(M) is a von Neumann algebra by the first part of the proof. Our
first step, is to show that p 2 ker(⇡).

Since ⇡ is ⇤-homomorphism, ker(⇡) is a ⇤-subalgebra of M , and it is norm closed by virtue of being
�-WOT closed. Consequently, ker(⇡) is a C

⇤-algebra and therefore has an approximate identity (ei)i2I

by [Theorem 4.2, C
⇤-Algebras Mini-course]. We claim that (ei)i2I converges to p in the �-WOT, and

consequently p 2 ker(⇡) since ker(⇡) is �-WOT closed. Note that x = pxp for all x 2 ker(⇡), and so
it su�ces to check �-WOT convergence on pH. Moreover, because (ei)i2I is uniformly bounded, it not
only su�ces to show WOT convergence on pH, it su�ces to show this on the dense subset ker(⇡)H. For
x, y 2 ker(⇡) and ⇠, ⌘ 2 H we have

| h(ei � p)x⇠, y⌘i | = | h(eix� px)⇠, y⌘i | = | h(eix� x)⇠, y⌘i |  keix� xkk⇠kky⌘k ! 0

by definition of the approximate identity. Thus p is the �-WOT limit of (ei)i2I .
Since p 2 ker(⇡), for x 2 M we have

⇡(x(1� p)) = ⇡(x)(⇡(1)� ⇡(p)) = ⇡(x)(1� 0) = ⇡(x).

Thus ⇡(M) is the image of M(1 � p) under ⇡. This also shows x(1 � p) 2 ker(⇡) if and only if x 2 ker(⇡),
but in this case x(1� p) = x� xp = x� x = 0. Thus ⇡|M(1�p) is injective and so ⇡(M) is a von Neumann
algebra by the first part of the proof.

Remark 4.2.9. There is a partial converse to the above theorem: if ⇡ : M ! B(K) is an injective ⇤-
homomorphism such that ⇡(M) is a von Neumann algebra, then ⇡ is normal. That is, ⇤-isomorphisms
between von Neumann algebras are automatically normal (compare this to how ⇤-isomorphisms between
C

⇤-algebras are automatically isometric). This follows from a characterization of normality in terms of the
increasing but uniformly bounded nets of positive operators (see Section III.2.2 in Operator Algebras: Theory
of C*-Algebras and von Neumann Algebras by Bruce Blackadar).

Exercises

4.2.1. Let p 2 B(H) be a rank n projection for n 2 N. Show that pB(H)p ⇠= Mn(C).

4.2.2. LetM ⇢ B(H) be a von Neumann algebra and let z 2 P(Z(M)). Show thatM is spatially isomorphic
to the direct sum of compressions Mz �M(1� z) (see Exercise 1.2.8).

4.2.3. Let (X,µ) be a positive �-finite measure space. We call a measurable subset A ⇢ X an atom of if
µ(A) > 0 and for all measurable subsets E ⇢ A one has µ(E) = µ(A) or µ(E) = 0.

(a) If A1, A2 ⇢ X are atoms, show that either 1A1\A2 = 0 or 1A1\A2 = 1A1 = 1A2 .

(b) If A ⇢ X is an atom, show that f |A is constant for all f 2 L
1(X,mu).

4.2.4. Let (X,µ) be a positive �-finite measure space. Show that L1(X,µ) is finite dimensional (as a vector
space) if and only if X can be partitioned into a finite union of atoms. Also show that in this case the
dimension is given by the number of distinct atoms.
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4.2.5. Let M ⇢ B(H) be a factor. Show that any abelian projection in M is either zero or minimal. [Hint:
use Corollary 4.2.3.]

4.2.6. Let M ⇢ B(H) be a factor. Show any two minimal projections are equivalent. [Hint: use the
Comparison Theorem.]

4.2.7. Let ⇡ : M ! N be a ⇤-homomorphism between von Neumann algebras.

(a) Show that ⇡(P(M)) ⇢ P(N).

(b) For p, q 2 P(M), show that p � q implies ⇡(p) � ⇡(q).

(c) Show that if p is minimal (resp. abelian) in M , then ⇡(p) is minimal (resp. abelian) in ⇡(M). Show
that ⇡(p) need not be minimal (resp. abelian) in N .

4.2.8. Let M ⇢ B(H) be a von Neumann algebra and let I ⇢ M be a �-WOT closed subspace.

(a) Show that if I is a left ideal then there exists p 2 P(M) so that I = Mp.

(b) Show that if I is a right ideal then there exists p 2 P(M) so that I = pM .

(c) Show that if I is a (two-sided) ideal then there exists p 2 P(Z(M)) so that I = Mp.

4.3 The Type Decomposition

The following definition highlights some additional important properties of projections, which will be needed
in the statement of the type decomposition of von Neumann algebras.

Definition 4.3.1. For M ⇢ B(H) be a von Neumann algebra, p 2 P(M) is said to be

• finite in M if q  p and q ⇠M p implies p = q for q 2 P(M).

• semi-finite in M if there exists a family {pi}i2I ⇢ P(M) of pairwise orthogonal, finite projections
such that p =

P
i2I pi.

• purely infinite in M if p 6= 0 and there does not exist any non-zero finite projections q 2 P(M) with
q  p.

• properly infinite in M if p 6= 0 and for all non-zero z 2 P(Z(M)) the projection zp is not finite.

Furthermore, M is said to be finite, semi-finite, purely infinite, or properly infinite if 1 2 M has the
corresponding property in M .

Recall that in an abelian von Neumann algebra, projections are equivalent if and only if they are equal
(see Exercise 4.1.6). This implies abelian projections (and consequently minimal ones) are necessarily finite,
and all abelian von Neumann algebras are finite. We also have a number of implications that follow from
the above definitions:

finite =) semi-finite =) not purely infinite,

and
purely infinite =) properly infinite.

Also note that a factor is either finite or properly infinite.

Example 4.3.2. In each of the examples below, we consider M = B(H) and p 2 P(B(H)).

(1) If p is finite-rank then it is finite in the above sense. Suppose q  p. Then qH ⇢ pH and so q is
finite-rank. Suppose q ⇠ p and let v be partial isometry satisfying v

⇤
v = q and vv

⇤ = p. Then by
Exercise 3.1.9 we have

dim(qH) = Tr(q) = Tr(v⇤v) = Tr(vv⇤) = Tr(p) = dim(pH).

Thus qH = pH and q = p. If dim(H) < 1, then 1 2 B(H) is a finite-rank projection and hence finite,
so B(H) is finite.
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(2) If dim(pH) is infinite, then p is not finite. Let E ⇢ pH be an orthonormal basis. Since it is an infinite
set by assumption, we can partition it into disjoint subsets E1 and E2 so that |E| = |E1| = |E2|. If
q := [E1], then q ⇠ p (see Exercise 4.1.5), but q < p since p � q = [E2] 6= 0. Since B(H) is a factor,
these projections are also properly infinite.

(3) p is always semi-finite, and consequently never purely infinite. Let E ⇢ pH be an orthonormal basis.
Then

p =
X

⇠2E

⇠ ⌦ ⇠̄

and each ⇠⌦ ⇠̄ is finite by part (1). In particular, 1 2 B(H) is semi-finite and so B(H) is semi-finite. ⌅

You probably learned in linear algebra that a matrix A 2 Mn(C) is left (or right) invertible if and only if
it is invertible. In particular, any isometry in Mn(C) is necessarily a unitary. Not only does this latter fact
hold in any finite von Neumann algebra (which Mn(C) is by Example 4.3.2.(1)), it actually characterizes
them.

Proposition 4.3.3. A von Neumann algebra M ⇢ B(H) is finite if and only if all isometries are unitaries.

Proof. Suppose M is finite and let v 2 M be an isometry: v
⇤
v = 1. Then vv

⇤
 1 and so by finiteness

vv
⇤ = 1. That is, v is a unitary. Conversely, assume every isometry is a unitary, and suppose p  1 satisfies

p ⇠ 1. Let v 2 M satisfy v
⇤
v = 1 and vv

⇤ = p. Then v is an isometry and hence a unitary, and therefore
p = vv

⇤ = 1. Thus 1 is finite in M .

We will need the next two propositions in proving the type decomposition.

Proposition 4.3.4. Let M ⇢ B(H) be a von Neumann algebra. Let p, q 2 P(M) be non-zero projections
that satisfy p � q. If q is finite (resp. purely infinite), then p is also finite (resp. purely infinite).

Proof. Suppose q is finite, and further suppose p ⇠ q. Let v 2 M be such that v
⇤
v = p and vv

⇤ = q. If
u 2 M satisfies u⇤

u = p and uu
⇤
 p, then

(vuv⇤)⇤(vuv⇤) = vu
⇤
v
⇤
vuv

⇤ = vu
⇤
puv

⇤ = vu
⇤
uv

⇤ = vpv
⇤ = vv

⇤ = q

and
(vuv⇤)(vuv⇤)⇤ = vuv

⇤
vu

⇤
v
⇤ = vupu

⇤
v
⇤ = vuu

⇤
v
⇤
 vpv

⇤ = q.

Since q is finite, we must have (vuv⇤)(vuv⇤)⇤ = q. But then

uu
⇤ = pupu

⇤
p = v

⇤(vuv⇤)(vuv⇤)⇤v = v
⇤
qv = p.

Thus p is finite.
Now assume p  q. If u 2 M is such that u⇤

u = p and uu
⇤
 p, then for w = u+ (q � p) we have

w
⇤
w = u

⇤
u+ u

⇤(q � p) + (q � p)u+ (q � p) = p+ (q � p) = q,

and
ww

⇤ = uu
⇤ + u(q � p) + (q � p)u⇤ + (q � p) = uu

⇤ + (q � p)  q.

Since q is finite, we have uu
⇤ + (q � p) = ww

⇤ = q or uu
⇤ = p. Thus p is finite. In general, if p � q, then

there exists q0 2 P(M) such that p ⇠ q0  q. By the two previous arguments we see that p is finite.
Finally, if q is purely infinite then it has no finite subprojections. If p � q had a finite subprojection

p0  p, then p0 � q. In particular, p0 ⇠ q0  q, which is finite by the above arguments, a contradiction.

Proposition 4.3.5. Let M ⇢ B(H) be a von Neumann algebra. A projection p 2 P(M) is semi-finite if
and only if it is a supremum of finite projections. In particular, the supremum of semi-finite projections is
again semi-finite. Moreover, any subprojection of a semi-finite projection is also semi-finite.
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Proof. If p 2 P(M) is semi-finite, then by definition it is the sum (hence supremum) of pairwise orthogonal
finite projections. Conversely, suppose p =

W
i pi for {pi}i2I ⇢ P(M) finite projections. Let {qj}j2J be a

maximal family of pairwise orthogonal finite subprojections of p. Suppose, towards a contradiction, that
q := p �

P
j2J qj 6= 0. Then, by definition of the supremum, there exists i 2 I so that q and pi are not

orthogonal. In particular, they are not centrally orthogonal and so by Proposition 4.1.9 there exists non-zero
q0  q so that q0 � pi. Thus q0 is finite by Proposition 4.3.4, which contradicts the maximality of {qj}j2J .
The final observation follows from the fact that the above argument also works if p 

W
i pi.

Definition 4.3.6. A von Neumann algebra M ⇢ B(H) is said to be

• type I if every non-zero projection has a non-zero abelian subprojection.

• type II if it is semi-finite and has no non-zero abelian projections.

• type III if it is purely infinite.

We can see immediately from the definition that any abelian von Neumann algebra is type I. We also
have B(H) is it type I, because a non-zero projection p has minimal (and hence abelian) subprojections of
the form ⇠⌦ ⇠̄ for any unit vector ⇠ 2 pH. On the other hand, group von Neumann algebras for i.c.c. groups
give type II von Neumann algebras (see Example 4.3.14). Unfortunately, type III von Neumann algebras are
beyond the scope of these notes. But Brent is a big fan and would love to tell you about them!

A von Neumann algebra need not be of any type. For example, ifM1 is type I andM2 is type II, then their
direct sum M1�M2 (see Exercise 1.2.8) has no type. Indeed, it is not type I because any non-zero projection
p 2 P(M2) yields a non-zero projection 0�p 2 P(M1�M2) lacking non-zero abelian subprojections. It is not
type II since any non-zero abelian projection p 2 M1 yields a non-zero abelian projection p�0 2 P(M1�M2).
Since p � 0 is finite by virtue of being abelian, we see that M1 �M2 also not type III. However, note that
z1 := 1 � 0 and z2 := 0 � 1 are central projections and the compressions (M1 � M2)z1 = M1 � 0 and
(M1 �M2)z2 = 0�M2 are type I and type II, respectively. The Type Decomposition tells us that this can
always be done.

Theorem 4.3.7 (Type Decomposition). Let M ⇢ B(H) be a von Neumann algebra. Then there exists
unique pairwise orthogonal central projections zI, zII, zIII 2 P(Z(M)) such that zI + zII + zIII = 1 and the
compression MzT is type T for each T 2 {I, II, III}.

Proof. Let zI be the supremum of all abelian projections in M . Conjugating an abelian projection in M

by a unitary in M yields another abelian projection in M . It follows that uzIu⇤ = zI or uzI = zIu for all
unitaries u 2 M . Since every element in M can be written as a linear combination of four unitaries, this
implies zI 2 M \M

0 = Z(M). To see that MzI is type I, suppose p  zI is non-zero. Then by definition
of the supremum there exists an abelian projection r 2 M so that pr 6= 0. Consequently, pMr 6= {0} and
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Proposition 4.1.9 tells us there exists non-zero p � p0 ⇠ r0  r. Proposition 4.2.7 implies that p0 is abelian
and so MzI is type I.

Next, let zII be the supremum of all finite p 2 P(M) such that p  1 � zI. By the same argument
as above, we have zII 2 Z(M). Also, zII is semi-finite by Proposition 4.3.5. Since zII  1 � zI, it has no
non-zero abelian subprojections. Thus MzII is type II.

Finally, we let zIII = 1� zI � zII. Note that any finite projection in M lies under zI if it is also abelian
and otherwise lies under zII. Consequently, zIII has no finite subprojections and so MzIII is type III.

Towards showing this decomposition is unique, suppose pI, pII, pIII 2 P(Z(M)) are pairwise orthogonal
projections summing to one and satisfy MpR is type R for each R 2 {I, II, III}. Then pIIIzI and pIIIzII
are both finite and purely infinite by Proposition 4.3.4. That is, pIIIzI = pIIIzII = 0, and consequently
pIII  zIII. Reversing the roles of z and p yields pIII = zIII. Next, pIIzI is an abelian subprojection of pII by
Proposition 4.2.7. Since MpII is type II, we must therefore have pIIzI = 0. Thus pII  zII and by symmetry
we obtain pII = zII. Finally

pI = 1� pII � pIII = 1� zII � zIII = zI.

So the decomposition is unique.

Since zI, zII, zIII are all central projections, Exercise 4.2.2 tells that M ⇠= MzI �MzII �MzIII. So even
thoughh all von Neumann algebras need not have a type, they can all be written as a direct sums of type I,
type II, and type III von Neumann algebras.

If M is a factor, then the only central projections are 0 and 1. Consequently, in the type decomposition
for a factor the summation condition zI + zII + zIII = 1 implies zT = 1 for some T 2 {I, II, III} and the rest
are zero. This yields the following corollary.

Corollary 4.3.8. A factor is either type I, type II, or type III.

Remark 4.3.9. We remark here on some important (but non-trivial) facts whose proofs we have omitted
from these notes. Let M ⇢ B(H) be a von Neumann algebra and T 2 {I, II, III}. Then M is type T if and
only if M 0 is type T . Additionally, if M is type T then pMp is type T for any p 2 P(M). If z(p) = 1, then
the converse also holds.

Each of the three types can be further refined. We begin with type I.

Definition 4.3.10. Let M ⇢ B(H) be a type I von Neumann algebra. For n 2 N, we say M is type In
if there exists non-zero pairwise orthogonal and equivalent abelian projections p1, . . . , pn 2 P(M) satisfying
p1 + · · · pn = 1. We say M is type I1 if there is an infinite family of non-zero pairwise orthogonal and
equivalent abelian projections that sum to 1.

A von Neumann algebra can only be type In for one n 2 N [ {1}. Each type I von Neumann algebra
uniquely decomposes into a direct sum of type I1, type I2,. . ., and type I1 von Neumann algebras, and
consequently a type I factor is type In for exactly one n 2 N[{1}. The proofs of these facts are not terribly
di�cult, but we have omitted them from these notes.

Example 4.3.11. ,

(1) An abelian von Neumann algebra A ⇢ B(H) is type I1. Indeed, 1 2 A is an abelian projection
and this cannot be further decomposed into a sum of pairwise orthogonal and equivalent projections,
because in an abelian von Neumann algebra projections are eqiuvalent if and only if they are equal
(see Exercise 4.1.6).

(2) Mn(C) is type In. The projections E1,1, . . . , En,n 2 Mn(C) are non-zero pairwise orthogonal projections
that sum to one. They are pairwise equivalent via the partial isometries Ei,j , and they are minimal
(hence abelian) projections.

(3) B(H) for dim(H) = 1 is type I1. Let E ⇢ H be an orthonormal basis. Then the projections
{⇠ ⌦ ⇠̄ : ⇠ 2 E} are non-zero pairwise orthogonal projections that sum to one. They are pairwise
equivalent via the partial isometries ⇠ ⌦ ⌘̄ for ⇠, ⌘ 2 E , and they are minimal projections. ⌅

Theorem 4.3.12. If M ⇢ B(H) is a finite type I factor, then M ⇠= Mn(C) for some n 2 N.
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Proof. Since M is type I, 1 2 M has a non-zero abelian subprojection, and since M is a factor this abelian
projection is minimal by Exercise 4.2.5. Thus M has non-zero minimal projections.

Let {pi : i 2 I} ⇢ P(M) be a maximal family of pairwise orthogonal minimal projections (note I 6= ; by
the above). Consider

q := 1�
X

i2I

pi.

Suppose q 6= 0. Then the Comparison Theorem and the factoriality of M imply either q � pi or pi � q for
i 2 I. The former implies q ⇠ pi since pi is minimal, but then q is minimal by Proposition 4.2.7 and this
contradicts the maximality of the {pi : i 2 I}. The latter implies pi ⇠ q0  q and the same argument shows
q0 contradicts the maximality of {pi : i 2 I}. So we must have q = 0, and therefore

X

2I

pi = 1

Now, the factoriality of M implies pi ⇠ pj for all i, j 2 I by Exercise 4.2.6. We claim that I is finite. If
not, then let I = I1 t I2 be a partition of I satisfying |I| = |I1| = |I2|, which implies there is a bijection
� : I ! I1. Setting qi := p�(i), we have pi ⇠ qi for all i 2 I and so by Lemma 4.1.10

X

i2I

qi ⇠

X

i2I

pi = 1.

But

1 =
X

i2I

pi =

 
X

i2I1

pi

!
+

 
X

i2I2

pi

!
=

 
X

i2I

qi

!
+

 
X

i2I2

pi

!
>

X

i2I

qi,

and so we have contradicted 1 being finite. Thus n := |I| < 1, and so we can relabel {pi : i 2 I} =:
{p1, p2, . . . , pn}. Since p1 ⇠ pi for each i = 1, . . . , n, we can find vi 2 M satisfying v

⇤

i vi = pi and viv
⇤

i = p1.
Using vi = p1vi for each i = 1, . . . , n we have for any x 2 M

x =

 
nX

i=1

pi

!
x

0

@
nX

j=1

pj

1

A =
nX

i,j=1

pixpj =
nX

i,j=1

v
⇤

i vixv
⇤

j vj =
nX

i,j=1

v
⇤

i pivixv
⇤

j p1vj =
nX

i,j=1

v
⇤

i (p1vixv
⇤

j p1)vj .

Because p1 is minimal there exists a scalar xi,j 2 C so that p1vixv⇤j p1 = xi,jp1. Thus we have

x =
nX

i,j=1

v
⇤

i xi,jp1vj =
nX

i,j=1

xi,jv
⇤

i p1vj =
nX

i,j=1

xi,j .

This computation shows that the map

⇡ : M 3 x 7!

0

B@
x1,1 · · · x1,n
...

. . .
...

xn,1 · · · xn,n

1

CA 2 Mn(C)

is injective. Since

p1vi(v
⇤

kv`)vjp1 = �i=k�j=`p1viv
⇤

i vjv
⇤

j p1 = �i=k�j=`p1p1p1p1 = �i=k�j=`p1,

we see that ⇡(v⇤kv`) = Ek,` 2 Mn(C). Thus ⇡ is a bijection, and we leave it for Exercise 4.3.5 to check that
it is also a ⇤-homomorphism.

While we only considered finite type I factors in the above theorem, a similar proof (see Exercise 4.3.6)
shows that properly infinite (i.e. non-finite) type I factors are of the form B(H) for H infinite dimensional.
Moreover, the form of any type I von Neumann algebra M ⇢ B(H) can be given by a tensor product (see
Exercise 4.3.7): M ⇠= Z(M)⌦̄B(K) for some Hilbert space K. Thus the theory of type I von Neumann
algebras reduces to measure theory and functional analysis, and consequently researchers today focus their
e↵orts on type II or type III von Neumann algebras.

We move on to the refinement of type II von Neumann algebras.
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Definition 4.3.13. A type II von Neumann algebra M ⇢ B(H) is said to be type II1 if it is finite, and is
said to be type II1 if M is properly infinite.

Equivalently, a von Neumann algebra if type II1 if it is finite but has no non-zero abelian projections,
and a von Neumann algebra is type II1 if it is properly infinite but semi-finite and has no non-zero abelian
projections. Each type II von Neumann algebra uniquely decomposes into a direct sum of type II1 and type
II1 von Neumann algebras, and consequently each type II factor is either type II1 or type II1.

Example 4.3.14. L(�) for a countable i.c.c. group � is type II1 factor. First note that L(�) is a factor by
Exercise 1.3.7. It is also finite by Exercise 4.3.1. So it remains to show it has no non-zero abelian projections.
Suppose, towards a contradiction, that p 2 P(L(�)) is non-zero and abelian. Then p is actually minimal by
Exercise 4.2.5. Let {pi}i2I ⇢ P(L(�)) is a maximal family of pairwise orthogonal minimal projections. Then
I 6= ; by the above and the exact same argument as in the proof of Theorem 4.3.12 shows n := |I| < 1 and
L(�) ⇠= Mn(C). Note that Mn(C) is finite dimensional as a vector space. On the other hand, � is necessarily
infinite as an i.c.c. group and so {�(g) : g 2 �} is an infinite linearly independent set (just apply any linear
combination to the vector �e). So L(�) ⇠= Mn(C) yields a contradiction and hence L(�) has no non-zero
abelian projections. ⌅

Example 4.3.15. In this example we will construct an important type II1 factor R called the hyperfinite
II1 factor. Observe that for any n 2 N we can embed Mn(C) into M2n(C) via

Mn(C) 3 A 7!

✓
A 0
0 A

◆
2 M2n(C).

These inclusions preserve the norm (since they are injective ⇤-homomorphisms) and the normalized trace:

1

2n
Tr

✓
A 0
0 A

◆
=

1

n
Tr(A) A 2 Mn(C).

Thus if we consider the sequence of inclusions

M2(C) ,! M22(C) ,! · · · ,! M2n(C) ,! · · · .

and define R0 :=
S

n�1 M2n(C), then R0 is a ⇤-algebra with a norm (although it is not complete) and a

linear functional ⌧0 : R0 ! C defined by ⌧0(x) = 1
2nTr(x) when x 2 M2n(C). From the properties of the

trace, it follows that ⌧0 is

• unital: ⌧0(1) = 1;

• positive: ⌧0(x⇤
x) � 0 for all x 2 R0;

• faithful: ⌧0(x⇤
x) = 0 if and only if x = 0;

• tracial: ⌧0(xy) = ⌧0(yx) for all x, y 2 R0.

We can therefore consider the GNS representation (H,⇡) for (R0, ⌧0), and R0 gives a dense subspace of H.
Define

R := ⇡(R0)
00
⇢ B(H).

We will show that R is a II1 factor. We must first show it admits a WOT continuous faithful tracial state.
Viewing 1 2 R0 as a vector in H, we see that it is cyclic for R by construction. It is also separating for R:

it is separating for ⇡(R0) since ⌧0 is faithful, so it is cyclic for ⇡(R0)0 and hence separating for ⇡(R0)00 = R

by Proposition 2.2.4. Thus the linear functional ⌧ : R ! C defined by ⌧(x) = hx1, 1i is faithful, and as a
vector state it WOT continuous. Using ⌧(⇡(x)) = ⌧0(x) for x 2 R0, it can be shown that ⌧ also tracial (see
Exercise 4.3.10).

Now, suppose z 2 Z(R)). Define ' : R ! C by '(x) := ⌧(xz), which is still tracial since z commutes
with everything in R. Consequently, restricting ' � ⇡ to M2n(C) gives a tracial linear functional, and thus
Exercise 1.3.2 implies

' � ⇡(x) = ' � ⇡(1)
1

2n
Tr(x) = ⌧(z)⌧(⇡(x))
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for all x 2 M2n(C). Since this holds for all n 2 N, we have '(x) = ⌧(z)⌧(x) for all x 2 ⇡(R0). The WOT
density of ⇡(R0) along with the WOT conintuity of ⌧ implies this holds for all x 2 R. Thus ⌧(xz) = ⌧(z)⌧(x),
or equivalently ⌧(x(z � ⌧(z))) = 0 for all x 2 R. In particular, letting x = (z � ⌧(z))⇤ we see that the
faithfulness of ⌧ implies z � ⌧(z) = 0 or z = ⌧(z) 2 C. Thus R is a factor.

To see that it is finite, suppose v 2 R is a partial isometry satisfying v
⇤
v = 1 and vv

⇤
 1, then

⌧((1� vv
⇤)⇤(1� vv

⇤)) = ⌧(1� vv
⇤) = ⌧(1)� ⌧(vv⇤) = ⌧(1)� ⌧(v⇤v) = ⌧(1)� ⌧(1) = 0.

Since ⌧ is faithful, we must have vv
⇤ = 1 and so R is finite.

It remains to show that R has no non-zero abelian projections. Proceeding exactly as in Example 4.3.14,
we see that if this is not the case then R ⇠= Mn(C) for some n 2 N. This is a contradiction because Mn(C)
is finite dimensional while R is infinite dimensional since ⇡(R0) is infinite dimensional. Thus R is a type II1
factor. ⌅

The term hyperfinite refers to the fact that R is generated by the finite dimensional algebras ⇡⌧ (M2n(C)).
Alain Connes showed in 1976 that R is the unique II1 factor with this property. Moreover, this same work,
as mentioned back in Section 1.3.3, shows that the two previous examples coincide when � is an amenable
i.c.c. group.

Example 4.3.16. Let (X,⌦, µ) be a probability space and let � be a countable discrete group. Suppose there
is a homomorphism ↵ : � ! Aut(L1(X,µ)), where Aut(L1(X,µ)) is the set of (normal) ⇤-isomorphisms.

In this case we call ↵ an action of � on L
1(X,µ) and write �

↵y L
1(X,µ). We say the action is

• probability measure preserving (p.m.p.) if
R
X ↵g(f) dµ =

R
X f dµ for all g 2 � and f 2 L

1(X,µ).

• free if f 2 L
1(X,µ) is such that f↵g(h) = fh for all g 2 � and h 2 L

1(X,µ) then f = 0.

• ergodic if f 2 L
1(X,µ) is such that ↵g(f) = f for all g 2 � then f = c for some c 2 C.

For f 2 L
1(X,µ), define a linear operator ⇡↵(f) on `

2(�)⌦ L
2(X,µ) by

⇡↵(f)

0

@
X

g2�

�g ⌦ fg

1

A =
X

g2�

�g ⌦ [↵g�1(f)fg] fg 2 L
2(X,µ).

Then one can show that ⇡↵(f) 2 B(`2(�)⌦L
2(X,µ)) and ⇡↵ : L1(X,µ) ! B(`2(�)⌦L

2(X,µ)) is a normal
unital injective ⇤-homomorphism (Exercise 4.3.11). For g 2 �, we define

�(g)

 
X

h2�

�h ⌦ fh

!
=
X

h2�

�gh ⌦ fh fh 2 L
2(X,µ).

Note that �(g)⇡↵(f)�(g�1) = ⇡↵(↵(f)) (Exercise 4.3.11.(c)). This implies the ⇤-algebra generated by
⇡↵(L1(X,µ)) and �(�) is the set

C h⇡↵(L
1(X,µ)),�(�)i :=

8
<

:

dX

j=1

⇡↵(fj)�(gj) : d 2 N, f1, . . . , fd 2 L
1(X,µ), g1, . . . , gd 2 �

9
=

; .

Note that C h⇡↵(L1(X,µ)),�(�)i is unital. The von Neumann algebra

L
1(X,µ)o↵ � := C h⇡↵(L

1(X,µ)),�(�)i00

is called the crossed product of L1(X,µ) by �. You should think of it as a von Neumann algebra containing

both L
1(X,µ) and L(�) with the action �

↵y L
1(X,µ) encoded via commutation relations. Consider the

normal linear functional ⌧ : L1(X,µ)o↵ � ! C defined by ⌧(x) = hx(�e ⌦ 1), �e ⌦ 1i. Since �e ⌦ 1 is a unit
vector and separating for L1(X,µ)o↵ � (see Exercise 4.3.13), ⌧ is a unital and faithful.

Assume �
↵y L

1(X,µ) is a free ergodic p.m.p. action and that � is an infinite group. The freeness
and ergodicity imply L

1(X,µ) o↵ � is a factor by Exercise 4.3.15, while the action being p.m.p implies ⌧
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is tracial by Exercise 4.3.16. Consequently, by the same arguement as in the previous two examples we see
that L1(X,µ)o↵ � is finite and therefore either a type In or type II1 factor. Since L(�) ⇢ L

1(X,µ)o↵ �
and � is infinite, we see that the crossed product is not finite dimensional. Thus L

1(X,µ) o↵ � is a type
II1 factor. ⌅

We only considered type II1 factors in the examples above, but for any type II1 von Neuman algebra M

the tensor product M⌦̄B(H) for H infinite dimensional yields a type II1 von Neumann algebra. In fact, all
type II1 factors are of this form.

The class of type III factors can also be further decomposed into types III� for � 2 [0, 1]. This classifi-
cation is achieved via some very beautiful mathematics known as Tomita–Takesaki theory. Essentially, von
Neumann algebras of this type have intrinsic dynamical systems which determine the parameter � 2 [0, 1].

We conclude this chapter with a summary of types for factors. Recall that factor is either finite or
properly infinite. We will also say a factor is atomic if it contains a minimal projection, and otherwise say
it is di↵use.

atomic di↵use

finite

properly infinite

type In, n 2 N type II1
type I1 type II1 type III

semi-finite purely infinite

Exercises

4.3.1. Let � be a countable discrete group. Show that all projections in L(�) are finite. [Hint: use the
trace.]

4.3.2. Let M ⇢ B(H) be a von Neumann algebra and let p, q 2 P(M) satisfy p � q. Show that if q is
semi-finite then p is semi-finite.

4.3.3. Let ⇡ : M ! N be a ⇤-isomorphism between von Neumann algebras and let p 2 P(M).

(a) Show p is finite in M if and only if ⇡(p) is finite in N .

(b) Assuming ⇡ is normal, show p is semi-finite in M if and only if ⇡(p) is finite in N .

(c) Show p is purely infinite in M if and only if ⇡(p) is finite in N .

(d) Show p is properly infinite in M if and only if ⇡(p) is finite in N .

4.3.4. Let ⇡ : M ! N be a normal ⇤-isomorphis between von Neumann algebras. Show that M has type T

for T 2 {I, II, III} if and only if N has type T .

4.3.5. Let ⇡ : M ! Mn(C) be the map defined at the end of the proof of Theorem 4.3.12. Show that ⇡ is a
unital ⇤-homomorphism.

4.3.6. Let M ⇢ B(H) be properly infinite type I factor. In this exercise, you will show that M ⇠= B(K) for
some infinite dimensional Hilbert space K.

(a) Show that M admits an infinite family {pi : i 2 I} of pairwise orthogonal and equivalent minimal
projections satisfying X

i2I

pi = 1.

(b) Fix i0 2 I and let vi 2 M be a partial isometry satisfying v
⇤

i vi = pi and viv
⇤

i = pi0 . For each x 2 M

and i, j 2 I, show that there is a scalar xi,j 2 C so that pixpj = xi,jv
⇤

i vj .

(c) Denote K0 := span{pi : i 2 I}. Show
*

mX

k=1

↵kpik ,

nX

`=1

�`pj`

+
:=

mX

k=1

nX

`=1

↵k�̄`�ik=j`

defines an inner product on K0.
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(d) Let K be the completion of K0 with respect to this inner product. For each x 2 M show that

⇡(x) :=
X

i,j2I

xi,jpi ⌦ p̄j 2 B(K),

where here we are viewing pi, pj 2 K so that pi ⌦ p̄j 2 FR(K).

(e) Show that ⇡ : M ! B(K) is normal ⇤-isomorphism.

4.3.7. Let H1, . . . ,Hn be Hilbert spaces, and for each j = 1, . . . , n and x 2 B(Hj) define a a linear operator
⇡j(x) on H1 � · · ·�Hn by

⇡j(x)(⇠1 ⌦ · · ·⌦ ⇠j ⌦ · · ·⌦ ⇠n) := ⇠1 ⌦ · · ·⌦ (x⇠j)⌦ · · ·⌦ ⇠n ⇠1 2 H1, . . . , ⇠n 2 Hn.

(a) For j = 1, . . . , n and x 2 B(Hj), show that ⇡j(x) extends to a bounded operator on H1 ⌦ · · · ⌦ Hn

with k⇡j(x)k = kxk.

(b) Show that ⇡j : B(Hj) ! B(H1 ⌦ · · ·⌦Hn) is a unital ⇤-homomorphism for each j = 1, . . . , n.

(c) Show that ⇡j(B(Hj)) and ⇡k(B(Hk)) commute for j 6= k.

(d) Let Mj ⇢ B(Hj) be a von Neumann algebra for each j = 1, . . . , n. Show that

M1 ⌦ · · ·⌦Mn := span {⇡1(x1) · · ·⇡n(xn) : x1 2 M1, . . . , xn 2 Mn} .

is a unital ⇤-algebra.

(e) The tensor product of M1, . . . ,Mn is the von Neumann algebra

M1⌦̄ · · · ⌦̄Mn := (M1 ⌦ · · ·Mn)
00

Show that if M2 = · · · = Mn = C, then M1⌦̄ · · · ⌦̄Mn
⇠= M1.

4.3.8. Using the notation from Example 4.3.15, show that R0 can be viewed as an inductive limit (see
[Definition 6.1, GOALS Prerequisite Notes]).

4.3.9. Using the notation from Example 4.3.15, show that for verify that ⌧0 is unital, positive, faithful, and
tracial.

4.3.10. Using the notation from Example 4.3.15, show that ⌧ is tracial. [Hint: first show ⌧(xy) = ⌧(yx)
for x 2 R and y 2 ⇡(R0) using the SOT density of ⇡(R0).]

4.3.11. Suppose �
↵y L

1(X,µ) for a countable discrete group � and a probability space (X,µ).

(a) For f 2 L
1(X,µ), show that ⇡↵(f) is a bounded operator on `

2(�)⌦L
2(X,µ) with k⇡↵(f)k = kfk1.

(b) Show that ⇡↵ : L1(X,µ) ! B(`2(�)⌦ L
2(X,µ)) is a unital ⇤-homomorphism.

(c) Show that �(g)⇡↵(f)�(g�1) = ⇡↵(↵(f)) for all g 2 � and f 2 L
1(X,µ).

4.3.12. Suppose �
↵y L

1(X,µ) for a countable discrete group � and a probability space (X,µ). For
f 2 L

1(X,µ), define �↵(f) 2 B(`2(�)⌦ L
2(X,µ)) by

�↵(f)

0

@
X

g2�

�g ⌦ fg

1

A =
X

g2�

�g ⌦ ffg fg 2 L
2(X,µ),

and define ⇢(g) for g 2 � by

⇢(g)

 
X

h2�

�h ⌦ fh

!
=
X

h2�

�hg�1 ⌦ ↵g(fh) fh 2 L
2(X,µ).

Show that �↵(L1(X,µ)) [ ⇢(�) ⇢ (L1(X,µ)o↵ �)0.
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4.3.13. Suppose �
↵y L

1(X,µ) for a countable discrete group � and a probability space (X,µ).

(a) Show that �e ⌦ 1 is a cyclic vector for L1(X,µ)o↵ �.

(b) Show that �e ⌦ 1 is a separating vector for L1(X,µ)o↵ �.

[Hint: use Exercise 4.3.12.]

4.3.14. Suppose �
↵y L

1(X,µ) for a countable discrete group � and a probability space (X,µ). For
x 2 L

1(X,µ)o↵ �, define a linear operator xg on L
2(X,µ) by

xg(f) = [x(�g�1 ⌦ f)](e).

Show that xg 2 L
1(X,µ). [Hint: show that xg 2 L

1(X,µ)0 by using �↵ as in Exercise 4.3.12.]

4.3.15. Suppose �
↵y L

1(X,µ) for a countable discrete group � and a probability space (X,µ).

(a) Show that L1(X,µ)0 \ L
1(X,µ)o↵ � = L

1(X,µ) if and only if the action is free.

[Hint: using the notation from Exercise 4.3.14, compare (xf)g and (fx)g for x 2 L
1(X,µ)0 \

L
1(X,µ)o↵ � and f 2 L

1(X,µ).]

(b) Assuming the action is free, show that L1(X,µ)o↵ � is a factor if and only if the action is ergodic.

4.3.16. Suppose �
↵y L

1(X,µ) for a countable discrete group � and a probability space (X,µ). Let
⌧ : L1(X,µ)o↵ � ! C be as in Example 4.3.16.

(a) Show that ⌧(�(g)) = �g=e for g 2 �.

(b) Show that ⌧(⇡↵(f)) =
R
X f dµ for f 2 L

1(X,µ).

(c) Assume that the action is probability measure preserving. Show that ⌧ is a tracial.

4.3.17. In this exercise, you will show that Mn(C) can be realized via a crossed-product construction.
Consider � := Zn, the countable cyclic group of order n, and also set X := Zn which we view as simply a
space and equip with the counting (probability) measure.

(a) Show that ↵g(f) := f( · � g) for g 2 � defines an action �
↵y L

1(X,µ).

(b) Show that �
↵y L

1(X,µ) is free, ergodic, and probability measure preserving.

(c) Show that 1{1}, . . . , 1{n} 2 L
1(X,µ) are pairwise orthogonal and equivalent minimal projections.

(d) Show that L1(X,µ)o↵ � ⇠= Mn(C). What is the preimage of Ei,j under this isomorphism?

(e) Explain why there does not exist a discrete group � such that L(�) ⇠= Mn(C).
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