- **C*.1** Show that any positive linear functional $\phi: A \to \mathbb{C}$ is *-preserving, i.e. $\phi(a^*) = \overline{\phi(a)}$ for all $a \in A$.
- C*.2 Show that for a unital C^* -algebra A, S(A) is a weak* closed convex subset of $A^*_{\leq 1}$. It follows from Alaoglu's theorem that it is weak*-compact. What does the Krein-Milman theorem say about S(A)?
- $C^*.3$ Show that if the C^* -algebra A is finite dimensional as a vector space, then we may take the Hilbert space \mathcal{H} of the GNS Theorem to be finite dimensional.

[Hint: Show that you only need finitely many states $\phi \in F$, and that H_{ϕ} is finite dimensional for all ϕ .]

- $W^*.1$ Let \mathcal{H} be a Hilbert space.
 - (a) For orthonormal sets $\{\xi_1,\ldots,\xi_n\}$, $\{\eta_1,\ldots,\eta_n\}\subset\mathcal{H}$, show that $\sum_{i=1}^n\xi_i\otimes\bar{\eta}_i$ is a partial isometry that implements the equivalence $(\sum_{i=1}^n\eta_i\otimes\bar{\eta}_i)\sim(\sum_{i=1}^n\xi_i\otimes\bar{\xi})$.
 - (b) For finite-rank projections $p, q \in B(\mathcal{H})$, show that $p \sim q$ if and only if Tr(p) = Tr(q).
 - (c) Let $\mathcal{E}, \mathcal{F} \subset \mathcal{H}$ be two orthonormal subsets with the same cardinality. Show that $[\mathcal{E}] \sim [\mathcal{F}]$. [**Hint:** start with a bijection from \mathcal{E} to \mathcal{F} (as sets).]
- **W*.2** Let $M \subset B(\mathcal{H})$ be a factor. Show any two minimal projections are equivalent.

[**Hint:** use the Comparison Theorem.]

- **W*.3** Let (X, μ) be a positive σ -finite measure space. We call a measurable subset $A \subset X$ an **atom** of if $\mu(A) > 0$ and for all measurable subsets $E \subset A$ one has $\mu(E) = \mu(A)$ or $\mu(E) = 0$.
 - (a) If $A_1, A_2 \subset X$ are atoms, show that either $1_{A_1 \cap A_2} = 0$ or $1_{A_1 \cap A_2} = 1_{A_1} = 1_{A_2}$.
 - (b) If $A \subset X$ is an atom, show that $f|_A$ is constant for all $f \in L^{\infty}(X, \mu)$.
 - (c) Show that 1_A is a minimal projection in $L^{\infty}(X,\mu)$ if and only if A is an atom.