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8. The Gelfand-Naimark-Segal (GNS) Theorem

Preview of Lecture: In lecture, we won’t discuss the proofs of the technical results we’ll need about states
for this lecture (eg Lemmas 8.8 and 8.11). However, these are important both for von Neumann algebraic
applications and for C⇤-algebras, so you should read the proofs carefully and ask questions in o�ce hours if
you’re confused.

We will prove Theorem 8.9 in lecture as well as Theorem 8.1. We’ll discuss irreducible representations
but, depending on time, perhaps not the proof of Proposition 6.1. We will, however, discuss the proof of
Proposition 5.10.

There are a lot of exercises in this section! If there’s time, we’ll discuss a few in lecture (so please let us
know if there are any that you’d particularly like to see).

The main goal of this section is the following theorem:

Theorem 8.1 (Gelfand-Naimark). Every C⇤
-algebra A admits a faithful nondegenerate representation ⇡ :

A ! B(H). If A is separable, ⇡ can be chosen to be separable.

As an immediate corollary, every C⇤-algebra A is isomorphic to a norm-closed ⇤-subalgebra of B(H) for
some Hilbert space H. (It can be useful to take this as the definition of a C⇤-algebra, which justified our
using the term “C⇤-algebra” for abstract (not concretely represented) C⇤-algebras.)

Throughout this section, we generally assume A is unital, for simplicity; the arguments can all be made
in general, by taking some care with approximate identities. See Exercise 8.15 below (and Remark 8.16 for
why we can’t just unitize our way out of this one).

Our first step on the road to proving Theorem 8.1 has to do with states.

Definition 8.2. A state on a C⇤-algebra A is a linear functional � : A ! C which is positive in that �(a) � 0
whenever a � 0, and such that

k�k := sup{|�(a)| : kak = 1} = 1.

The closed convex (exercise) subset S(A) ⇢ A
⇤

1 consisting of states is called the state space.

Example 8.3. If ⇡ is a representation of A on H, and h 2 H has norm 1, the function

�(a) := h⇡(a)h, hi

is a state on A.

Exercise 8.4. If ⇡ : A ! C is a character, then it is a representation (by 2.15). What is the state
corresponding to a character ⇡?

Exercise 8.5. Show that any positive linear functional � : A ! C is ⇤-preserving, i.e. �(a⇤) = �(a) for all
a 2 A.

Exercise 8.6. Show that S(A) is a closed convex subset of A⇤

1. It follows from Alaoglu’s theorem that it
is weak⇤-compact. What does the Krein-Milman theorem say about S(A)?

Given a state5 � on A, if we define [a, b]� := �(b⇤a), then this form on A is sesquilinear (linear in the first
variable, conjugate linear in the second variable) and satisfies the Cauchy-Schwarz inequality:

Exercise 8.7. Show that |[a, b]�|  [a, a]� [b, b]� = �(a⇤a)�(b⇤b).

Here are a few facts about states that we will need later.

Lemma 8.8. Let A be a unital C⇤
-algebra.

(1) If � is a state on A, then �(1) = 1.
(2) If � is a bounded linear functional on A which satisfies 1 = k�k = �(1), then � is a state.

5Actually, all you need is a positive linear functional for the following assertions and exercise.
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Proof. If � is a state, then |�(1)| = �(1)  k�k = 1. For the other inequality, Exercise 8.7 tells us that

|�(a)|2  �(1)�(a⇤a).

Moreover, since ka⇤ak � a
⇤
a by the functional calculus, we have �(a⇤a)  ka⇤ak�(1). It follows that for any

a 2 A with kak = 1,
|�(a)|2  �(1)2,

and hence k�k  �(1). We conclude that 1 = k�k = �(1).
If 1 = �(1) = k�k, then once we know that � is positive, � must be a state. Pick a 2 A+ and write

�(a) = ↵+ i�. If necessary, replace a with �a to ensure that � � 0. We begin by showing that � = 0. Fix
n 2 N and observe that, since a

⇤ = a,

kn� iak2 = k(n+ ia
⇤)(n� ia)k = kn2 + in(a⇤ � a) + a

2k  n
2 + kak2.

On the other hand, |�(n� ia)|2 = |n�(1)� i↵+ �|2 = (n+ �)2 + ↵
2
. So,

(n2 + kak2) = k�k2(n2 + kak2) � k�k2 kn� iak2 � |�(n� ia)|2 = n
2 + 2n� + �

2 + ↵
2
.

In order for this inequality to hold for all n 2 N we must have � = 0, as claimed.
To complete the proof that � is positive, fix a positive a 2 A+ with kak  1. Then Proposition 3.6 implies

that k1� ak  1. Since k�k = 1 by hypothesis,

1 � k1� ak � �(1� a) = �(1)� �(a) = 1� �(a).

It follows that �(a) � 0 for any positive a. ⇤
The next theorem is the cornerstone of our proof of Theorem 8.1.

Theorem 8.9 (GNS construction). If � is any state on a unital C⇤
-algebra A, there is a nondegenerate

representation ⇡� : A ! B(H) and a unit vector h 2 H such that �(a) = h⇡�(a)h, hi for any a 2 A.

Such a vector h is called a cyclic vector for the representation ⇡.

Proof. We will build H out of A itself. Let N� = {a 2 A : [a, a]� = 0}. Observe (check!) that N� is a vector
subspace of A, which is closed in norm. (The fact that N� is closed under addition follows from Exercise
8.7. Proving that N� is closed in norm is also a good exercise.)

In fact, Exercise 8.7 actually proves that N� is a left ideal in A: if x 2 N� and a 2 A then

|[ax, ax]�| = |�(x⇤(a⇤ax))|  �(x⇤
x)�(x⇤(a⇤a)2x) = 0,

so ax 2 N�.
Therefore, let X be the vector space quotient X = A/N�, and define an inner product on X by

ha+N�, b+N�i� := �(b⇤a).

The fact that N� is a left ideal means that h·, ·i� is well defined.
Take H� to be the completion of X with respect to the norm induced by h·, ·i�. Then our representation

⇡� : A ! B(H�) is given by left multiplication: ⇡�(a)(b+N�) = ab+N�.

To see that ⇡� is actually a representation, we need to check that ⇡�(a) is a bounded linear operator for
all a, and also check that ⇡� is linear, multiplicative and ⇤-preserving. In checking that ⇡� is ⇤-preserving,
you will see why we defined h·, ·i� as we did.

We use the functional calculus to show that ⇡�(a) is a bounded operator. Since a
⇤
a 2 A is positive, we

have ka⇤ak1� a
⇤
a � 0 is a positive element of A. Thus, for any x 2 A, Exercise 3.11 tells us that

0  x
⇤(ka⇤ak1� a

⇤
a)x = ka⇤akx⇤

x� x
⇤
a
⇤
ax,

so (ax)⇤ax  ka⇤akx⇤
x. In particular,

k⇡�(a)k2 = sup{h⇡�(a)(x+N�),⇡�(a)(x+N�)i� : �(x⇤
x) = 1}

= sup{�((ax)⇤(ax)) : �(x⇤
x) = 1}

 ka⇤ak = kak2.
So, we conclude that ⇡� is a representation of A on a Hilbert space H�. To see that ⇡� is nondegenerate,

suppose that ⇡�(a)(x+N�) = 0 for all a. In particular, taking a = 1,

0 = k⇡�(1)(x+N�)k2 = hx+N�, x+N�i� = �(x⇤
x),
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so we must have x 2 N�.
Finally, note that the unit vector h such that �(a) = h⇡(a)h, hi is h = 1 +N�. ⇤

Remark 8.10. If you ever see in some proof in the literature a representation unceremoniously associated to
some state (in particular for a trace that is moreover a state), it’s assumed to be the GNS representation
constructed as above.

To prove Theorem 8.1, we will take the direct sum of a lot of the representations whose existence we have
just established.

Lemma 8.11. Let A be a C⇤
-algebra and a a nonzero normal element of A. Then there is a state ⌧ on A

such that |⌧(a)| = kak.

Proof. Let B = C
⇤({a, 1}) ✓ eA. Fix � 2 �(a) with |�| = r(a) maximal, and let g� : C(�(a)) ! C be given

by evaluation at �. Observe that g� is a positive linear functional, and g�(1) = 1, so g� is a state on C(�(a)).
Because g� can be viewed as a linear functional on the closed subspace B of eA, the Hahn-Banach Theorem

tells us there is a norm one linear functional ⌧ on A which extends g�. As ⌧(1) = g�(1) = 1, Lemma 8.8 tells

us that ⌧ is also a state. Furthermore, as the Gelfand transform � : B
⇠=! C(�(a)) takes a to the function

f(z) = z, it follows that |⌧(a)| = |�| = r(a), which equals kak by the fact that the Gelfand transform is
isometric. ⇤

Corollary 8.12. If F ✓ S(A) is a subset of the states of A which is dense in the weak-⇤ topology, then for

any a 2 A,

sup{|�(a)| : � 2 F} = kak.

We are finally ready to prove our main theorem.

Proof of Theorem 8.1. Choose a subset F of S(A) which is dense in the weak-⇤ topology on S(A) ✓ A
⇤.

Define ⇡ :=
L

�2F
⇡�, where ⇡� is the representation arising from the state � as in the previous Theorem.

Fix a 2 A. Since �(1) = 1,

k⇡(a)k2 = sup
�2F

k⇡�(a)k2 = sup{h⇡�(a⇤a)⇠, ⇠i : � 2 F, ⇠ 2 H�} � sup
�2F

h⇡�(a⇤a)1, 1i = sup
�2F

�(a⇤a) = kak2.

As ⇡ is a ⇤-homomorphism and therefore norm-decreasing, it follows that k⇡(a)k = kak for all a 2 A. The
fact that ⇡ is nondegenerate follows from the fact that each ⇡� is nondegenerate, which in turn follows from
our construction of H� as a completion of (a quotient of) A.

If A is separable, then [4, Theorem V.5.1] implies that A⇤ ◆ S(A) is too, so we can take the set F to be
countable. The separability of A implies the separability of H� for each �,6 so H is separable. ⇤

Definition 8.13. The representation

⇡u :=
M

�2S(A)

⇡� : A ! B

0

@
M

�2S(A)

H�

1

A =: B(Hu)

is called the universal representation of A.
Equivalently, we could form the direct sum over a weak*-dense subset of S(A).

Remark 8.14. This representation has a special extra property in that the associated von Neumann algebra
⇡u(A)00 is isometrically isomorphic to A

⇤⇤ (ask Roy). Both are often called the enveloping von Neumann

algebra of A.

Exercise 8.15. Generalize the results in this section to non-unital C⇤-algebras. (In particular, you will have
to show that an approximate unit (e�)� becomes Cauchy in A/N� for any state �, and hence gives rise to a
cyclic vector in any GNS representation ⇡�.)

6There is something to check here, since the norm on H� is not the same as the norm on A. Exercise: How do they relate?
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Remark 8.16. Why can’t we just unitize in Exercise 8.15? Well, as easy as it was to always guarantee a
unique extension of a ⇤-homomorphism to the unitization, it is no longer true in general for positive linear
maps. (We’ll return to this in Proposition 9.20.) In fact, the non-unital version of Theorem 8.9 is required
to prove this for states because it allows us to borrow from this fact for representations. The proof of this
fact takes us a little o↵ course, so we will state it here with reference:

[5, Corollary 1.9.7] Every state on a nonunital C⇤-algebra A extends uniquely to a state on Ã.

What does Theorem 8.1 say about Abelian C⇤-algebras? In this case, the Riesz-Markov-Kakutani rep-
resentation theorem tells us that states on C0(X) are in bijection with probability measures on X, so that
�(f) =

R
X
f dµ�. Note that N� consists of the set of C0 functions on X which are 0 o↵ a µ�-null set. Thus,

H� = C0(X)/N�
⇠= L

2(X,µ�), and ⇡� represents C0(X) on L
2(X,µ�) as multiplication operators:

⇡�(f)⇠ = x 7! f(x)⇠(x).

To me at least, this is reminiscent of the link between the continuous and the Borel functional calculus.

Exercise 8.17. What does the universal representation of an Abelian C⇤-algebra look like?

Exercise 8.18. Let A be a C⇤-algebra.

(1) Show that for any self-adjoint element a 2 A, there exists a state � on A so that |�(a)| = kak.
(Hint: Assume A is unital (or unitize). Then recall exercise 8.4 for the C⇤-algebra C⇤(a, 1). You’ll
need the Hahn-Banach theorem (specifically Corollary 4.4 from the Prerequisite Notes) to finish up.)

(2) Show that for any b 2 A, there exists a representation ⇡ : A ! B(H) and unit vector h 2 H so that
k⇡(b)xk = kbk. (Hint: Apply the first part to a = b

⇤
b.)

(3) Use Exercise 4.16 to give a di↵erent argument for the last claim in Theorem 8.1, i.e. that any
separable C⇤-algebra has a faithful separable representation.

8.1. Applications. We’ve already seen the GNS theorem invoked several times, for structural results about
C⇤-algebras. Here are some of those delayed proofs.

Exercise 8.19. Show that if 0  a  b, then kak  kbk, without assuming a and b commute.

Exercise 8.20. Show that if the C⇤-algebra A is finite dimensional as a vector space, then we may take
the Hilbert space H of Theorem 8.1 to be finite dimensional. Hint: Show that you only need finitely many
states � 2 F , and that H� is finite dimensional for all �.

Exercise 8.21. Use the GNS theorem to give a very quick proof of Theorem 3.10.

Exercise 8.22. For a commutative C⇤-algebra A, what would a weak⇤-dense subspace of S(A) look like?

The following should rightfully be called a Definition/Theorem. The proof uses results that take us a
little far afield, so we give it as a definition and refer you to [5, Lemma 1.9.1-Theorem 1.9.4] for a proof.

Definition 8.23. A ⇤-representation ⇡ : A ! B(H) of a C⇤-algebra A is irreducible if one of the following
equivalent conditions hold:

(1) ⇡ has no proper invariant subspaces, i.e. no subspace V ( H so that ⇡(a)V ⇢ V for all a 2 A.
(2) ⇡ has no proper invariant manifolds (i.e. subspaces which may or may not be closed).
(3) ⇡(A)0 = C1H.

Under the additional assumption that ⇡ has a cyclic unit vector h 2 H, these are also equivalent to

(4) The state a 7! h⇡(a)h, hi is pure, i.e. it is an extreme point in the state space S(A).

Remark 8.24. We have a couple remarks on irreducible representations:

(1) First, it’s sometimes helpful to see a non-example: Let ⇡i : A ! B(Hi), i = 1, 2 be two nondegenerate
representations of A. Then ⇡1�⇡2 : A ! B(H1�H2) is not irreducible. (Evidently we don’t bother
with calling things “reducible”.)

(2) Notice that a character on a C⇤-algebra is a pure state. (Indeed, for any states �1,�2 and ↵1,↵2 2
(0, 1) with ↵1 + ↵2 = 1, the map ↵1�1 + ↵2�2 will not be multiplicative.) It turns out ([5, Lemma
1.9.10]) that you can use a Krein-Milman argument to strengthen parts (1) and (2) of Exercise 8.18
to hold for pure states/irreducible representations. Then an argument like part (3) will allow you to
prove the conclusion of Corollary 8.12 where F consists of all pure states of A.
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(3) Not every C⇤-algebra has a faithful irreducibe representation. Such C⇤-algebras are called primitive.

Exercise 8.25. If ⇡ : A ! B(H) is irreducible, what does that say about the von Neumann algebra ⇡(A)00?
(Looking for a one word answer.)

Proof of Proposition 6.1. Suppose that A is a finite dimensional C⇤-algebra. By GNS, view A as a subalgebra
of B(H), where H is finite dimensional. Thus, A is an algebra of compact operators.

It turns out [5, Corollary I.10.6] that every irreducible representation of K(H) is unitarily equivalent to
the identity representation. Thus, decompose the (identity) representation of A on H into a direct sum of
irreducible representations ⇡i : A ! B(Hi) where H =

L
i
Hi. Then each Hi must be finite dimensional,

and we must have only finitely many terms in this direct sum decomposition, since H is finite dimensional.
In other words, if Hi

⇠= Cni , then ⇡i(A) ⇠= Mni . Thus,

A =
M

i

⇡i(A) ⇠=
M

i

Mni

as desired. ⇤
The proof of Proposition 5.10 relies on positive definite functions on groups, and their connection with

states on C⇤(G).

Definition 8.26. Let G be a discrete group. A function  : G ! C is positive definite if, for any finite
subset F ✓ G, the matrix M

 in MF (C) given by

M
 

s,t
=  (s�1

t)

is positive.

Proposition 8.27. If � is a state on C⇤(G), then the function  
�(g) = h⇡�(ug)1, 1i� is positive definite.

Conversely, every positive definite function defines a state on C⇤(G).

Proof. If � is a state on C⇤(G), we compute that

M
 
�

s,t
= h⇡�(us�1t)1, 1i = h⇡�(ut)1,⇡�(us)1i = �(ut)�(us).

In other words, if T is the matrix with entries indexed by elements of G, such that the first column consists
of the entry �(us) in the sth row, and T is zero in all other columns, then M

 
�

= T
⇤
T is positive. So  � is

positive definite, as claimed.
For the converse, given a positive definite function  , define � (

P
g
agug) := 1

 (e)

P
g
ag (g). By con-

struction, � is a linear functional on CG. Considering the set F = {e} tells us that  (e) > 0, so � is well
defined, and moreover that

� (ue) =
 (e)

 (e)
= 1. (8.1)

Moreover, � is bounded with respect to k · ku, because

|� (
X

g

agug)| = |h⇡� (
X

g

agug)1, 1i|  k⇡⇡ (
X

g

agug)k  k
X

g

agugku. (8.2)

It now follows that k� k = 1: equation (8.1) implies that k� k = sup{|� (f)| : kfku = 1} � |� (ue)| = 1,
and equation (8.2) implies that k� k  1. Thus, Lemma 8.8(2) tells us that � extends to a state on
C⇤(G). ⇤
Proof of Proposition 5.10. We first address the case of the reduced C⇤-algebras. Suppose G  H are dis-
crete groups, and decompose `2(H) =

L
h
`
2(Gh) via the right cosets of G. Notice that the left regular

representation of CG ✓ CH on `
2(H) preserves this decomposition, and `

2(Gh) ⇠= `
2(G) (via a canonical

isomorphism) for any h 2 H. As the operator norm of a direct sum satisfies

kf � gk = max{kfk, kgk},
it follows that the norm induced on CG by the left regular representation �

H is the same as the norm
induced by �G. In other words, the inclusion CG ✓ CH is isometric with respect to the reduced norm, so
C⇤

r
(G) ✓ C⇤

r
(H).

Now, we show that if G  H (and G is countable) then C⇤(G)  C⇤(H). The fact that G countable
implies that C⇤(G) is separable. In this case,C⇤(G)⇤ is also separable, so there exists a faithful state � on
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C⇤(G): namely, for a weak-⇤ dense subset {!n}n2N of S(A), take � =
P

n
2�n

!n. It is straightforward to
check that, thanks to the density of {!n}n, �(a) = 0 implies a = 0, so � is indeed faithful.

Consider the positive definite function  � on G which Proposition 8.27 associates to �. Extend it to  
on H by setting  (h) = 0 whenever h 62 G. To see that  is positive definite, note first that if s, t 2 H and
sG 6= tG, then s

�1
t 62 G and therefore M

 

s,t
= 0. In other words, for any finite set F , M is block diagonal,

where each block is indexed by F \ sG for a single left coset sG of G. Block diagonal matrices are positive
precisely when each block is positive, so to see that  is positive definite it su�ces to consider the matrices
M

 associated to finite sets F ✓ sG which are contained in a single coset. For any g, h 2 G,

M
 

sg,sh
=  (g�1

h) =  
�(g�1

h) = M
 
�

g,h
,

so the fact that  � is positive definite implies that  is as well.
Now, consider the GNS representation ⇡ associated to � . As � and � agree on C⇤(G), it follows that

for any f 2 C⇤(G),
k◆̃(f)ku,H � k⇡ (f)k = k⇡�(f)k.

The fact that � is faithful means that ⇡� is injective and therefore isometric, by Theorem 4.11: if ⇡�(f) = 0
then

0 = k⇡�(f)k2 = sup{k⇡�(f)[a]k2 : [a] 2 H� = C⇤(G)
k·k�

, k[a]k = 1}
= sup{�(a⇤f⇤

fa) : �(a⇤a) = 1} � |�(f⇤
f)| = |�(f)|2

by Exercise 8.5. The fact that � is faithful then implies that f = 0. In other words, k⇡�(f)k = kfku,G
for any f 2 C⇤(G). So k◆̃(f)ku,H � kfku,G. As we saw in Monday’s notes that ◆̃ : C⇤(G) ! C⇤(H) is
norm-decreasing, it now follows that k◆̃(f)ku,H = kfku,G. Consequently, ◆̃ must be injective: if ◆̃(f) = 0 then
f = 0. ⇤
Remark 8.28. For those that are wondering whether all of this rigamarole about positive definite functions
is really necessary: If you try to extend a state from C⇤(G) to C⇤(H) by just making it zero on all elements
not coming from C⇤(G), it’s hard to prove directly that this extension is still a state.
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