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5. Group C⇤-algebras

Preview of Lecture: Today’s C⇤-lectures will discuss 3 classes of examples of C⇤-algebras: group C⇤-
algebras, AF algbras, and Cuntz–Krieger algebras. There’s a quick preview at the beginning of each section.

For the group C⇤-algebras, in lecture, we’ll discuss Proposition 5.7 and Example 5.9. We’ll save Proposition
5.10 for Wednesday.

Most of the steps of the proof of Proposition 5.17 are relatively straightforward; the one which re-

quires the most creativity is the fact that h(!) 2 \C⇤
r
(G) for all ! 2 bG so we’ll discuss that in lecture.

A useful source of examples and motivation for C⇤-theory are the group C⇤
-algebras. Indeed, one can view

a group C⇤-algebra as encoding the (infinite-dimensional) representations of the group. (See Exercise 5.12.)
Understanding these representations better was a main motivation for a lot of the early work on C⇤-algebras,
and group C⇤-algebras are still a fundamental source of examples and inspiration for research today.

Definition 5.1. Let G be a discrete group. The complex group algebra CG is the algebra generated by
{ug : g 2 G}, where uguh = ugh.

By definition, then, CG consists of all finite products of finite linear combinations of {ug : g 2 G}.
Observe that CG is always unital (what’s the unit?). Moreover, we have a natural involution on CG:

(agug)
⇤ := agug�1 .

(Check for yourself that this formula indeed gives an involution.)
Given two finite linear combinations of generators

P
g2G

agug,
P

g2G
bgug 2 CG, then the formula for the

multiplication of the generators {ug}g2G implies that
0

@
X

g2G

agug

1

A

0

@
X

g2G

bgug

1

A =
X

h2G

 
X

k2G

akbk�1h

!
uh.

This multiplication may look familiar if you’ve seen convolution multiplication or the Fourier transform
before. For functions �, on a discrete group G, their convolution product is

� ⇤  (g) :=
X

h2G

�(h) (h�1
g).

That is, if we think of the coe�cients (ag)g2G of an element
P

g2G
agug 2 CG as a function from G to C,

then the function associated to the product (
P

g2G
agug)(

P
g2G

bgug) is precisely the convolution product
of the functions (ag)g2G and (bg)g2G.

If we want to complete the ⇤-algebra CG into a C⇤-algebra, we first need a norm. In our case this will
come from a representation.

Definition 5.2. A representation of a ⇤-algebra A is a ⇤-preserving homomorphism ⇡ : A ! B(H) for some
Hilbert space H. If A is unital, we will assume ⇡ is unital in that it takes the unit of A to the unit of B(H).
If ⇡ is injective we say that it is faithful.

Note that if ⇡ is a representation of CG and a 2 CG, then the fact that B(H) is a C⇤-algebra implies that

k⇡(a⇤a)k = k⇡(a)⇤⇡(a)k = k⇡(a)k2.
In particular, the norm on A induced by ⇡, kak⇡ := k⇡(a)k, satisfies the C⇤-identity. Therefore,

C
⇤

⇡
(G) := ⇡(CG)

is a C⇤-algebra.

Exercise 5.3. If ⇡ is a representation of CG, what sort of operator will ⇡(ug) be? Can you say anything
about k⇡(ug)k?

There is a natural representation of CG on `2(G) = span{�g : g 2 G}, called the left regular representation
and often denoted by �: On the generators, we define

�(ug)(�h) = �gh,

and extend � to CG by requiring it to be a linear multiplicative map.



18 KRISTIN COURTNEY AND ELIZABETH GILLASPY

Exercise 5.4. What is the adjoint of �(ug)? Is � ⇤-preserving?

Observe (check!) that � is injective. So, we can think of CG as a subalgebra of B(`2(G)). The reduced

group C⇤
-algebra C⇤

r
(G) is defined to be

C⇤

r
(G) := �(CG).

So that we don’t always have to choose a specific representation (and for abstract-nonsense reasons) we
often want to work with the universal group C⇤

-algebra C⇤(G), which is defined to be the completion of CG
in the universal norm

kaku := sup{k⇡(a)k : ⇡ a representation of CG}. (5.1)

A reader who is familiar with set theory might notice that we have made no assertion about whether the
collection of all representations of CG is a set. How, then, do we know that we can take the supremum in
(5.1)? Recall that, for any a 2 CG and any representation ⇡ of CG, the quantity k⇡(a)k is a real number,
being the norm of an operator on some Hilbert space. So the collection in (5.1) is a subclass of the set of
all real numbers, and basic results from set theory guarantee that a subclass of a set is still a set. It follows
that the universal norm is well defined.

In fact, the universal norm is bounded above by the `1 norm:

Proposition 5.5. If ⇡ is a representation of CG, then for any a =
P

g2F
agug 2 CG we have k⇡(a)k P

g2F
|ag|.

Proof. Since ⇡(ug) is a unitary for all g, and hence has norm 1, the triangle inequality tells us that

k⇡(a)k 
X

g2F

kagugk =
X

g2F

|ag|. ⇤

It follows that if a net in CG is Cauchy in the `1 norm, then that net is also Cauchy in C⇤(G) (and
C⇤

r
(G)). In other words, we could alternatively think of C⇤(G) and C⇤

r
(G) as completions in a C⇤-norm of

`
1(G). This will come in handy sometimes, for example in Section 5.1.

Proposition 5.6. CG is dense in both C⇤

r
(G) and C⇤(G).

Proof. The fact that CG is dense in C⇤

r
(G) follows from the injectivity of �. Similarly, to see that CG is

dense in C⇤(G), it will su�ce to show that if a 2 CG is nonzero, then kaku 6= 0. Since kaku � k�(a)k by the
definition of the universal norm, it follows that kaku = 0 implies a = 0. ⇤

The reason we call C⇤(G) the “universal group C⇤-algebra” is the following proposition. While the argu-
ment used in the proof is straightforward, it’s a very powerful technique for constructing ⇤-homomorphisms
out of many examples of C⇤-algebras, not just group C⇤-algebras.

Proposition 5.7. For any representation ⇡ of CG, there is an associated surjective ⇤-homomorphism ⇡̂ :
C⇤(G) ! C⇤

⇡
(G).

Proof. We define ⇡̂ first for a 2 CG ✓ C⇤(G):

⇡̂(a) := ⇡(a) 2 C⇤

⇡
(G).

As ⇡ is a representation of CG, in order to extend ⇡̂ to a ⇤-homomorphism on all of C⇤(G), I claim that it
su�ces to check that ⇡̂ is norm-decreasing on CG ✓ C⇤(G). Why? Well, once we know that k⇡̂(a)k  kaku
for all a 2 CG, then if x 2 C⇤(G) is a norm limit of elements in CG, x = limi ai, then in particular,
given any ✏ > 0, we can find I such that kai � ajku < ✏ whenever i, j � I. If ⇡̂ is norm-decreasing on
CG ✓ C⇤(G), then it follows that (⇡̂(ai))i is Cauchy in C⇤

⇡
(G). As C⇤

⇡
(G) is complete, limi(⇡̂(ai))i has a

limit, call it y. Defining ⇡̂(x) := y, one can check that ⇡̂(x) is independent of the approximating Cauchy
sequence (ai)i ✓ CG ✓ C⇤(G), and that this definition makes ⇡̂ into a ⇤-homomorphism.

Thus, it (essentially) su�ces to check that k⇡̂(a)k  kaku for all a 2 CG ✓ C⇤(G). However, the definition
of the universal norm makes this immediate:

k⇡̂(a)k = k⇡(a)k  kaku. ⇤

Exercise 5.8. Fill in the gaps in the proof of Proposition 5.7. (This includes checking that ⇡̂ is surjective.)



NOTES ON C⇤-ALGEBRAS 19

Example 5.9. Let G = Z (under addition). Observe that if u 2 B(H) is a unitary, then we obtain a
representation ⇡ : CZ ! B(H) given by defining ⇡(u0) = u. Conversely, any representation ⇡ of CZ arises
in this way.

It follows that, for any u 2 B(H), there is a surjective ⇤-homomorphism ⇡̂ : C⇤(Z) ! C⇤({u}). In other
words, C⇤(Z) is the universal C⇤

-algebra generated by a unitary.

Now, consider C⇤

r
(Z). The Fourier transform F gives us a unitary isomorphism F : `2(Z) ! L

2(T),

F(⇠)(z) =
X

n2Z
⇠nz

n
,

which takes convolution multiplication to pointwise multiplication. That is, if we define, for f 2 C(T), the
operator Mf 2 B(L2(T)) by

Mf⇠(z) = f(z)⇠(z),

then the Fourier transform implements an isomorphism

C⇤

r
(Z) ⇠= {Mf : f 2 C(T)} ✓ B(L2(T)).

However, one easily checks that the ⇤-algebra structure on {Mf : f 2 C(T)} agrees with the ⇤-algebra
structure on C(T), and kMfk = kfk1, so {Mf : f 2 C(T)} ⇠= C(T) as C⇤-algebras.

Finally, consider the C⇤-algebra C(T). The Stone-Weierstrass Theorem (cf. [4, Theorem I.5.6]) tells us
that C(T) is generated, as a C⇤-algebra, by the function

f(z) = z.

It turns out that C(T) can also be described as the universal C⇤-algebra generated by a unitary. That is,

C⇤(Z) ⇠= C⇤

r
(Z) ⇠= C(T).

Proposition 5.10. If G  H then C⇤(G) is a norm-closed subalgebra of C⇤(H). The same is true for the

reduced C⇤
-algebras.

Proof. Let ◆ : CG ! CH denote the canonical inclusion. We first claim that if we view CG (respectively
CH) as a subalgebra of C⇤(G) (resp. C⇤(H)), then ◆ is norm-decreasing. It then follows (using the same
argument as in Proposition 5.7) that ◆ induces an ⇤-homomorphism ◆̃ : C⇤(G) ! C⇤(H).

To see that ◆ is norm-decreasing, observe that every representation of CH restricts to a representation of
CG. Thus, the set used in (5.1) to compute the universal norm for G contains the set

{k⇡(a)k : ⇡ a representation of CG which extends to a representation of CH}.

It follows that k◆(a)ku,H  kaku,G for all a 2 CG.
The proof that ◆̃ is injective will be relatively straightforward once we’ve proved the Gelfand-Naimark-

Segal Theorem, so we’ll come back to it. ⇤

Here are two more structural results about C⇤(G).

Proposition 5.11. ,

(1) C⇤(G) is never simple unless G = {e} is trivial.

(2) If |G| = n and G is abelian, then C⇤(G) ⇠= Cn
.

Proof. (1) For any group G, there is a representation ⇡ of CG on C, given by

⇡(ug) = 1, 8 g 2 G.

Observe that ⇡ is onto. If G 6= {e}, then we can choose g 6= h 2 G, and

ug � uh 2 ker⇡.

Thus, ker⇡ is a nontrivial ideal in C⇤(G).
(2) As a vector space, CG = C|G|

, which is already complete, so CG ⇠= C⇤(G) is a finite dimensional
vector space. Notice also (Exercise 5.14) that if G is abelian, so is CG and hence C⇤(G). Since every finite
dimensional C⇤-algebra is a direct sum of matrix algebras by Proposition 6.1 and any nontrivial matrix
algebra is nonabelian, the result follows. ⇤
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Exercise 5.12. Recall that the set U(H) of unitaries in B(H) is a group under multiplication. A unitary

representation of a group G is a group homomorphism ⇢ : G ! U(H). Show that representations of CG are
in bijection with unitary representations of G.

Remark 5.13. In this section we’ve focused on discrete groups and their C⇤-algebras. However, one can also
define the group C⇤-algebra for any group G which has a locally compact Hausdor↵ topology with respect to
which multiplication and inversion are continuous (for short, these are called locally compact groups). While
a lot of the theory of (discrete) group C⇤-algebras goes through smoothly in the locally compact setting,
Proposition 5.10 is a major exception: it is not true for locally compact groups. For example, consider R
under addition. It turns out that C⇤(R) = C0(R), and Z is a subgroup of R, but C⇤(Z) ⇠= C(T) is not
a subalgebra of C0(R). This example highlights the other major exception: Proposition 5.6. Notice that
C0(R) is not unital. In particular, it contains no units, let alone a copy of R– that’s right, C⇤(R) does not
contain R.

5.1. Abelian group C⇤-algebras. If G is abelian, then uguh = uhug for all g, h 2 G, and so CG is also
abelian.

Exercise 5.14. Show that any C⇤-completion of CG is an abelian C⇤-algebra.

By Exercise 5.14 and the Gelfand-Naimark Theorem (Theorem 2.11), it follows that C⇤

r
(G) = C0( bG) for

some locally compact Hausdor↵ space bG. In fact, bG must be compact since CG (hence C⇤

r
(G)) is unital. So

what is this space bG exactly?

From the Gelfand-Naimark Theorem, we know we have bG = \C⇤
r
(G), the spectrum of C⇤

r
(G). However,

I’ve used the new symbol bG deliberately.

Definition 5.15. For an abelian group G, bG denotes the Pontryagin dual of G:

bG = {! : G ! T group homomorphism}. (5.2)

Exercise 5.16. Show that bG is also a group, under pointwise multiplication. Do you need to assume G is
abelian?

Our next main goal is to prove Proposition 5.17, which shows that bG and \C⇤
r
(G) are homeomorphic. In

order to do that, we need to identify the topology on bG.
The topology on bG (when G is discrete) is the point-norm topology: a net (!i)i2⇤ ✓ bG is Cauchy i↵, for

all g 2 G, the nets (!i(g))i2⇤ ✓ T are Cauchy.3 Equivalently, a basis for the topology on bG consists of the
sets

B✏,F (!) := {⌘ 2 bG : |⌘(g)� !(g)| < ✏ 8 g 2 F finite}.

Proposition 5.17. The map h : bG ! \C⇤
r
(G) given by, for ! 2 bG and a =

P
g2F

agug 2 CG,

h(!)(a) =
X

g2G

ag!(g), (5.3)

is a homeomorphism of topological spaces.

Proof. We first need to show that the formula for h(!) given in Equation (5.3) does indeed define an element

of \C⇤
r
(G). We begin by showing that h(!) is a ⇤-algebra homomorphism. If b =

P
g2G

bgug is another element
of CG,

h(!)(ab) =
X

g2G

 
X

h2G

ahbh�1g

!
!(g),

whereas the fact that ! is a group homomorphism implies that

h(!)(a) · h(!)(b) =

0

@
X

g2G

ag!(g)

1

A
 
X

h2G

bh!(h)

!
=
X

k2G

 
X

h2G

akh�1bh

!
!(k).

3If G abelian but not discrete, its Pontryagin dual still exists, but the topology is that of uniform convergence on compact
sets. For discrete groups, these are the same.
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Making the change of variable h 7! h
�1

k, we see that h(!)(ab) = h(!)(a) · h(!)(b) as claimed. Similarly,
since !(g�1) = !(g)�1 = !(g),

h(!)(a⇤) =
X

g2G

ag!(g
�1) =

X

g2G

ag!(g) = (h(!)(a))⇤.

To see that our formula for h(!) extends to a bounded linear functional on C⇤

r
(G), we need to show that

|h(!)a|  kakr for all a 2 CG. To that end, we first observe that for any � 2 \C⇤
r
(G), if we define

ã =
X

g2G

ag!(g)�(ug)ug,

then h(!)(a) = �(ã). Since the Gelfand transform is isometric, it follows that

kãkr = sup{|⌘(ã)| : ⌘ 2 \C⇤
r
(G)} � |�(ã)| = |h(!)(a)|.

We will therefore show that kãkr = kakr. To that end, given ⇠ 2 `
2(G), define ⇠̃ by

⇠̃h = �(u�1
h

)!(h).

Since uh is a unitary for each h 2 G, and � is a ⇤-homomorphism, it follows that k�̃k22 = k⇠k22. Moreover,

�(ã)⇠̃(g) =
X

k2G

ak!(k)�(uk)⇠̃k�1g =
X

k

ak!(k)�(uk)�(ug�1k)!(k�1g)⇠k�1g,

and since both � and ! are multiplicative, we see that

�(ã)⇠̃(g) = !(g)�(u�1
g

)
X

k

ak⇠k�1g = !(g)�(u�1
g

)(�(a)⇠)(g).

As |!(g)| = |�(u�1
g

)| = 1, we have k�(ã)⇠̃k22 = k�(a)⇠k22. It follows that

kãkr  sup{k�(ã)⇠̃k2 : k⇠k2 = 1} = sup{k�(a)⇠k2 : k⇠k2 = 1} = kakr.

(A symmetric argument shows the other inequality, so that kãkr = kakr.) In other words,

|h(!)a|  kãkr = kakr,

so our formula for h(!) determines an element of \C⇤
r
(G) as claimed.

The fact that h is continuous is a fairly straightforward argument using the definition of the weak-⇤
topology. Suppose (!i)i2⇤ ✓ bG is Cauchy. We need to see that (h(!i))i2⇤ is Cauchy, i.e. we need to show
that for any a 2 C⇤(G) the net (h(!i)(a))i2⇤ ✓ C is Cauchy. If a 2 CG, so that a =

P
g2G

agug and ag = 0
for all but finitely many g, choose

✏ <
1

|{g : ag 6= 0}| min{ 1

|ag|
: ag 6= 0}.

Since (!i)i2⇤ is Cauchy, and ag 6= 0 for only finitely many g, we can choose I such that if i, j � I then

|!i(g)� !j(g)| < ✏ wheneverag 6= 0.

For i, j � I, we have |h(!i)(a)� h(!j)(a)| < ✏.
If a 2 C⇤(G) is the limit of a sequence (an)n2N ✓ CG, then an ✏/3 argument and the fact that each h(!i)

is norm-decreasing will tell us that again, (h(!i)(a))i2⇤ is Cauchy. It follows that (h(!i))i2⇤ is Cauchy, as
desired.

Checking that h is bijective is also straightforward. Given � 2 \C⇤
r
(G), define !� : G ! C by

!�(g) := �(ug).

Observe first that since � is a ⇤-homomorphism, �(ug) 2 T for all g, so in order to show that ! 2 bG we only
need to show that ! is multiplicative. But this follows immediately from the fact that � is a ⇤-homomorphism:

!�(g)!�(h) = �(ug)�(uh) = �(uguh) = �(ugh) = !�(gh).

It is similarly immediate to check that for a fixed ! 2 bG, !h(!) = !, and that h(!�) = �. It follows that
! 7! h(!) is a bijection.
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Finally, we conclude the proof by showing that the inverse function h
�1 : \C⇤

r
(G) ! bG, given by h

�1(�) =

!�, is continuous. Suppose that (�i)i ✓ \C⇤
r
(G) is Cauchy – that is, for any a 2 C⇤

r
(G) the net (�i(a))i ✓ C

is Cauchy. In particular, the net
(�i(ug))i = (!�i(g))i ✓ T

is Cauchy for each g 2 G. By definition, then, h�1 is continuous. ⇤

6. AF algebras

Preview of Lecture: By definition, AF algebras are inductive limits. So, before reading this section, it
would probably be a very good idea to review the section about inductive limits from the Prerequisite Notes.

The first page of this section will be touched on very lightly in lecture – which is to say, you should work
through this material for yourself, and ask questions in o�ce hours or lecture about any points where you
get stuck.

We will talk about Bratteli diagrams in lecture, probably via Example 6.9.
The last three paragraphs of this section are meant to provide inspiration for future reading or research;

no need to read them now (unless you’re bored) and we won’t discuss them in lecture.

Proposition 6.1. If A is a C⇤
-algebra which is finite dimensional as a vector space, then

A ⇠=
jM

s=1

Mn(s)(C)

is a finite direct sum of matrix algebras.

This proof is surprisingly intricate, and relies on the Gelfand-Naimark-Segal Theorem, which we’ll see on
Wednesday. So we’ll postpone the proof for now.

Definition 6.2. A C⇤-algebra A is an AF algebra or approximately finite dimensional C⇤
-algebra if A is the

inductive limit of a sequence of finite-dimensional C⇤-algebras.

The following Proposition was mentioned in the Prerequisite Notes, but not proved there.

Proposition 6.3. If A =
S

n
An is the norm closure of an increasing union of subalgebras An ✓ An+1 ✓

· · · ✓ A, then A is the inductive limit of the directed system (An, ◆mn) where ◆mn : An ! Am is the inclusion

map.

Proof. It su�ces to check that A satisfies the universal property of the inductive limit. So, suppose that B
is a C⇤-algebra and that we have ⇤-homomorphisms  n : An ! B such that  m � ◆mn =  n whenever n  m.

Given a 2 A, write a = limn!1 an where an 2 An. The fact that our connecting maps are inclusions means
that if m � n, an = ◆mn(an) 2 Am. Thus, if N is large enough that kam � ank < ✏ if m � n � N, then

k m(◆mnan)�  m(am)k = k m(an � am)k < ✏.

As  m � ◆mn =  n, it follows that ( n(an))n is Cauchy in B. We define  : A ! B by  (a) = limn  n(an)
if a = limn an with an 2 An. ⇤
Exercise 6.4. Complete the proof of Proposition 6.3 by showing that  is well-defined (independent of the
choice of sequence (an)n); ⇤-preserving; and multiplicative.

Example 6.5 (cf. Example 6.2 from the Prerequisite Notes). K(`2) is an AF algebra. To see this, write
Pn for the projection onto span{e1, . . . , en} and observe that Mn

⇠= PnK(`2)Pn. Since
S

n
PnK(`2)Pn =

FR(`2) = K(`2), the result follows by applying the previous Proposition.

Remark 6.6. In the above example, we were discussing the compact operators on a fixed H = `
2
. However,

(cf. Exercise 7.54 from Day 1) if two Hilbert spaces H,K have the same dimension, with orthonormal bases
{⇠n}n, {⌘n}n respectively, then the map U : H ! K given by U(⇠n) = ⌘n is a unitary. In particular (this is
another exercise) the map Ad(U) : B(H) ! B(K) given by

Ad(U)(T ) = UTU
⇤
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is a C⇤-algebra isomorphism. In particular, it takes FR(H) to FR(K) and K(H) to K(K).
So, if H is any Hilbert space with a countable orthonormal basis, then K(H) is isomorphic to K(`2) (and

in particular is an AF algebra). Because of this, and the fact that algebras of compact operators are (as
we’ll see) both ubiquitous and indispensable, we often talk about “the compact operators” as shorthand for
K(`2), or K(H) for any separable Hilbert space H. In the literature, the Hilbert space is often dropped
altogether, and the compact operators are denoted K (not to be confused with the Hilbert space K that we
have occasionally used in these notes).

By construction, Example 6.3 of the Prerequisite Notes describes an AF algebra. Here it is again.

Example. Let An = M2n(C) be the algebra of 2n ⇥ 2n matrices with maps �n,n+1 : M2n(C) ! M2n+1(C)
defined by

x 7!
✓
x 0
0 x

◆
.

Letting �n,m := �m,m�1 � · · · � �n,n+1 whenever m > n, we see that by construction this forms a directed
system. Since these are inclusions, one can identify the inductive limit with

S
n2N An. ⌅

This is a particularly important one, known as M21 or the CAR algebra. In fact, it’s an example of a
UHF algebra.

Definition 6.7. An AF algebra A is a UHF or uniformly hyperfinite algebra if A is the inductive limit of a
sequence of full matrix algebras, where the connecting maps are unital embeddings.

Exercise 6.8. Is K(`2) a UHF algebra?

Example 6.9. [5, Example III.3.7] One can obtain quite di↵erent C⇤-algebras from the same sequence of
finite-dimensional C⇤-algebras (An), if one uses di↵erent connecting maps.

For example, let An = C2n
. On the one hand, let X denote the standard middle-third Cantor set, so that

X =
T

n
Cn, where Cn ✓ [0, 1] is the collection of 2n intervals that remain after step n in the construction

of X. We can construct C(X) as an inductive limit of the algebras An, by identifying An with the set of
functions on Cn that are locally constant.

In this case, since Cn ◆ Cn+1, the connecting maps ◆n : An ! An+1, and the structure maps �n : An !
C(X), are given by restriction. It follows that the connecting maps are injective, so lim�!(An, ◆n) =

S
n
An by

Proposition 6.3. And a straightforward ✏�� proof will show you that the set of functions which are constant
on some Cn is dense in C(X) – that is, C(X) =

S
n
An = lim�!(An, ◆n).

On the other hand, consider the space Y = {0}[{1/n : n 2 Z>0}.Write Bn ✓ C(Y ) for the set of functions
which are constant on [0, 2�n]. Then Bn

⇠= C({1/k : 1  k  2n}) ⇠= C2n ⇠= An. Again, the connecting maps
⌘n : Bn ! Bn+1 are given by inclusion, and

S
n
Bn is dense in C(Y ), so C(Y ) = lim�!(Bn, ⌘n). But clearly

C(Y ) 6⇠= C(X).

What do the connecting maps ◆n, ⌘n look like when we identify both An and Bn with C2n? We have

◆n(f)(z1, . . . , z2n+1) = f(z1, z3, . . . , z2n+1�1), and ⌘n(f)(z1, . . . , z2n+1) = f(z1, . . . , z2n).

In other words, ◆n(z1, z2, . . . , z2n) = (z1, z1, z2, z2, . . . , z2n , z2n) and ⌘n(z1, . . . , z2n) = (z1, z2, . . . , z2n , z2n , . . . , z2n).
One sees the di↵erence even more clearly via the Bratteli diagram of the AF algebras. If A = lim�!(An,�n),

with An =
L

k(n)
j=1 Mr(j), and the connecting maps �n : An ! An+1 are inclusions, the Bratteli diagram

consists of N levels, with k(n) nodes at each level, and an edge from a node v at level n to a node w at level
n + 1 if �n maps the vth matrix algebra into the wth matrix algebra. For example, below are the Bratteli
diagrams for lim�!(An, ◆n) and lim�!(Bn, ⌘n).
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Exercise 6.10. Show that any AF algebra has an approximate identity which consists of an increasing
sequence of projections.

Exercise 6.11. Show that any AF algebra is isomorphic to a direct limit of finite-dimensional C⇤-algebras
with injective connecting maps.

Because AF algebras are quite tractable, it’s natural to ask which C⇤-algebras are subalgebras of AF
algebras. That is, given a C⇤-algebra A, when can we find an injective ⇤-homomorphism � : A ! B for
some AF algebra B? This simple-seeming question was only answered recently [Schafhauser 2018], under
mild assumptions on A.

Exercise 6.12. ,

(1) Prove that C([0, 1]) is not an AF algebra.
(2) If X is the Cantor set, show that C(X) is AF.
(3) Show that a subalgebra of an AF algebra needn’t be AF, by constructing an embedding of C([0, 1])

into C(X).

However, despite the intricacy of the structure of the subalgebras of AF algebras, the lattice of ideals of
an AF algebra is easy to describe: [5, Theorem III.4.2] the ideals of an AF algebra are in bijection with
directed hereditary subsets of its Bratteli diagram.

One can have two di↵erent directed systems that give rise to the same C⇤-algebra. An example is the
UHF algebra M2131 = lim�!(An, ◆n) = lim�!(Bn, ◆n), where

An =

(
M2n/23n/2 , n even

M2(n+1)/23(n�1)/2 , n odd;
Bn =

(
M2n/23n/2 , n even

M2(n�1)/23(n+1)/2 , n odd.

The nodes at odd levels in the Bratteli diagrams of lim�!(An, ◆n) and lim�!(Bn, ◆n) are not isomorphic, nor is
the number of edges between levels.

Fortunately, there is a complete invariant for AF algebras – a way to tell whether or not two AF algebras
are isomorphic. G. Elliott proved in 1978 that the ordered K-theory (K0(A),K0(A)+, [1]) of an AF algebra is
a classifying invariant for A, in that given two AF algebras A,B, their K-theory groups are order isomorphic
– (K0(A),K0(A)+, [1A]) ⇠= (K0(B),K0(B)+, [1B ]) – if and only if A ⇠= B. You’ll hear about K-theory from
Mark Tomforde next week, and [5, Chapter IV] has a proof of Elliott’s classification theorem for AF algebras.

7. Cuntz–Krieger Algebras

Preview of Lecture: This section is a quick introduction to a class of (I think) fascinating C⇤-algebras.
Unfortunately, a lot of what makes them so fascinating is beyond the scope of GOALS, but if you want to
learn more, I’d recommend picking up Raeburn’s book [11] on graph algebras.

For today, try to get a feel for the algebraic consequences of the relations (7.1) defining a Cuntz–Krieger
algebra; you may want to pick a (small-ish) matrix B and think about what the associated C⇤-algebra might
look like. Infinite and purely infinite C⇤-algebras show up in a lot of places, so it’s also a good idea to build
an understanding of these by playing with some examples and non-examples (cf. Exercise 7.4.)

Again, the last five paragraphs of this section are in there to inspire you to dig deeper into these Cuntz–
Krieger algebras in the future;4 don’t worry too much about them now.

4A word of warning, though: in the literature, Cuntz–Krieger algebras are usually denoted OA. I broke with tradition in
these notes because we wanted to continue to reserve the letter A for C⇤-algebras.
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In this section, B will denote an n ⇥ n matrix with entries from {0, 1}. The Cuntz–Krieger algebra OB

[Cuntz-Krieger 1981] associated to B is the universal C⇤-algebra generated by n partial isometries s1, . . . , sn
such that, for each 1  i  n, we have

s
⇤

i
si =

nX

j=1

Bijsjs
⇤

j
and s

⇤

i
sj = 0 if i 6= j. (7.1)

What do I mean by the “universal C⇤-algebra”? As with the group C⇤-algebra, OB is the “largest”
C⇤-algebra generated by n partial isometries which satisfy (7.1). That is, if S1, . . . , Sn are partial isometries
in a C⇤-algebra A which satisfy Equation (7.1), then there is a surjective ⇤-homomorphism ⇡S : OB !
C⇤({S1, . . . , Sn}) such that ⇡S(si) = Si. One can prove (cf. [11, Proposition 1.21] or [2, II.8.3]) that this
universal object exists.

Proposition 7.1. If B is a finite matrix, the Cuntz–Krieger algebra OB is unital.

Proof. Let S =
P

n

i=1 sis
⇤

i
. Observe that, for any i,

Ssi = si +
X

j 6=i

sjs
⇤

j
si = si, siS = sis

⇤

i
siS = si

0

@
nX

j=1

Bijsjs
⇤

j

1

A
 

nX

k=1

sks
⇤

k

!
= si

0

@
nX

j=1

Bijsjs
⇤

j

1

A = si.

The fact that S is a projection (Exercise: check this!) implies that we consequently have, for any word w

in the generators si and their adjoints, Sw = wS. In other words, S is the unit of OB . ⇤
One can define a Cuntz–Krieger algebra for an infinite matrix, too, as long as the matrix is row-finite –

for each i, the entries in row i of B have a finite sum. We need B to be row-finite because otherwise the first
equation in (7.1) would involve an infinite sum of projections, which are mutually orthogonal by the second
condition of (7.1). But an infinite sum of mutually orthogonal projections cannot converge in norm, yet the
first equation in (7.1) requires that.

Example 7.2. If B is the n⇥n matrix of all 1s, then s
⇤

i
si = S for all i. That is, each si is an isometry, not

merely a partial isometry, and
P

n

i=1 sis
⇤

i
= 1. In this case, OB is the Cuntz algebra On.

The Cuntz algebras were introduced by J. Cuntz in 1977 as the first explicit examples of separable simple
infinite C⇤-algebras.

Definition 7.3. A unital C⇤-algebra A is infinite if there exists a 2 A with a
⇤
a = 1 but aa⇤ 6= 1.

Exercise 7.4. ,

(1) Is B(`2) infinite? What about K(`2)?
(2) If a unital C⇤-algebra A is infinite, when can it have a trace?

Cuntz showed that, moreover, the algebras On are all purely infinite: for any nonzero x 2 On, there exist
a, b 2 On with axb = 1. (Observe that any unital purely infinite C⇤-algebra is a fortiori simple.)

In addition to being separable and purely infinite, the algebras On have a lot of other intriguing properties
that you’ll learn about in the coming weeks (or in your future classes on C⇤-algebras): they’re nuclear, they
can be realized as a crossed product of a UHF algebra, they’re not inductive limits of type I C⇤-algebras.
O2 and O1 (defined to be the universal C⇤-algebra generated by infinitely many isometries si, i 2 N, such
that for any n we have

P
n

i=1 sis
⇤

i
 1) behave particularly nicely with respect to tensor products.

Some of above properties are shared by general Cuntz–Krieger algebras OB . They are again nuclear, for
example – the proof of this is based on the description of OB as a groupoid C⇤-algebra. (You’ll see more
about groupoid C⇤-algebras in Robin Deeley’s expository talk next week.) The groupoid picture of OB

arises from a certain type of dynamical system, called a shift of finite type, associated to B, and it turns
out [Cuntz-Krieger 1981; Franks 1984; Rørdam 1995] that the K-theory of OB is a classifying invariant for
these shifts of finite type. That is, the shifts of finite type associated to matrices B1, B2 are flow equivalent
i↵ K0(OB1) ⇠= K0(OB2).

Another useful perspective on OB is as a graph C⇤
-algebra. One can think of B as being the adjacency

matrix of a directed graph EB on n vertices: in EB , there is an edge from vertex i to vertex j i↵ Bij 6= 0.
The graph C⇤-algebra (cf. [11]) C⇤(EB) is isomorphic to OB .
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It turns out [11, Theorem 4.9], as for AF algebras, the ideals in a Cuntz–Krieger algebra OB are in
bijection with hereditary saturated subsets of the vertices of EB .

Cuntz–Krieger algebras, graph C⇤-algebras, and generalizations such as higher-rank graph algebras and
groupoid C⇤-algebras, are very active areas of current research.


	1. A first look at C*-algebras
	1.1. Unitizations and Spectra

	2. Commutative C*-algebras
	3. Positive elements
	3.1. Polar decomposition

	4. Ideals, Approximate Units, and *-homomorphisms
	5. Group C*-algebras
	5.1. Abelian group C*-algebras

	6. AF algebras
	7. Cuntz–Krieger Algebras
	8. The Gelfand-Naimark-Segal (GNS) Theorem
	8.1. Applications

	9. Completely Positive Maps
	9.1. Preliminary results on cp maps
	9.2. Stinespring's Dilation Theorem
	9.3. Arveson's Extension Theorem

	10. Completely Positive Approximations
	10.1. Nuclear Maps
	10.2. Completely Positive Approximation Property

	11. Tensor Products of C*-algebras
	11.1. Facts about algebraic tensor products
	11.2. Tensor Products of Hilbert Space Operators
	11.3. C*-norms on tensor products
	11.4. Nuclearity
	11.5. Examples: C0(X,A) as tensor products
	11.6. Continuous linear maps on tensor products

	12. Amenability
	References

