
Chapter 2

Borel Functional Calculus and

Abelian von Neumann Algebras

Let H be a Hilbert space and let x 2 B(H) be a normal operator: [x, x⇤] = 0. This implies that C[x, x⇤]—
the set of polynomials in x, x⇤, and 1—is an abelian ⇤-algebra and consequently its norm-closure, which we
denote by C

⇤(x), is an abelian C
⇤-algebra. The Gelfand transform then yields an isometric ⇤-isomorphism

� : C⇤(x) ! C(�(x)).

This gives us a way to apply continuous functions on �(x) to the operator x: for f 2 C(�(x)) define
f(x) := ��1(f). Since it is an isometric ⇤-isomorphism, this definition respects the ⇤-algebra structure and
norm of C(�(x)):

(f + g)(x) = f(x) + g(x) (f · g)(x) = f(x)g(x) kf(x)k = kfk1.

We call this the continuous functional calculus. In this chapter, we will extend this functional calculus to
bounded Borel functions on �(x). While f(x) 2 C

⇤(x) when f is continuous, it may not be the case if f is
only assumed to be bounded and Borel. However, we do always have f(x) 2 W

⇤(x), where

W
⇤(x) := C[x, x⇤]00

is the von Neumann algebra generated by x. Recall from the Bicommutant Theorem that W ⇤(x) is equiv-
alent to both the SOT and WOT closures of C[x, x⇤], and since norm-convergence implies SOT and WOT
convergence we have C

⇤(x) ⇢ W
⇤(x).

At the end of the chapter, we will then use the Borel functional calculus to produce a (partial) classification
of abelian von Neumann algebras.

Lecture Preview: In the first lecture, we will prove the Borel Functional Calculus (Theorem 2.1.3) in detail.
You should familiarize yourself with the following proof ingredients ahead of time: the Riesz Representation
Theorem (see [Theorem 2.16, GOALS Prerequisite Notes]), Proposition 2.1.1, and Lemma 2.1.2. In the
second lecture, we will give the classification of abelian von Neumann algebras (Theorem 2.2.6). It is
important to be comfortablw with Definitions 2.2.1 and 2.2.3 and Corollary 2.2.5. You might also find
Examples 2.2.8 and 2.2.9 illuminating.

2.1 Borel Functional Calculus

We will use Borel measures to extend from continuous functions to bounded Borel functions. Since �(x) for
x 2 B(H) is a compact subset of C, C(�(x)) falls under the scope of the Riesz Representation Theorem (see
[Theorem 2.16, GOALS Prerequisite Notes]), which gives us easy access to Borel measures, as seen in the
following proposition.
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Proposition 2.1.1. Let x 2 B(H) be a normal operator. For any ⇠, ⌘ 2 H, there exists a unique regular
Borel measure µ⇠,⌘ 2 M(�(x)) satisfying kµ⇠,⌘k  k⇠kk⌘k and

hf(x)⇠, ⌘i =

Z

�(x)
f dµ⇠,⌘ 8f 2 C(�(x)). (2.1)

Moreover, we have µ⇠,⌘ = µ⌘,⇠ for all ⇠, ⌘ 2 H and

µ↵⇠1+⇠2,⌘ = ↵µ⇠1,⌘ + µ⇠2,⌘ 8↵ 2 C, ⇠1, ⇠2, ⌘ 2 H

µ⇠,�⌘1+⌘2 = �̄µ⇠,⌘1 + µ⇠,⌘2 8� 2 C, ⇠, ⌘1, ⌘2 2 H.

Proof. Observe that for f 2 C(�(x))

| hf(x)⇠, ⌘i |  kf(x)kk⇠kk⌘k = kfk1k⇠kk⌘k.

Thus f 7! hf(x)⇠, ⌘i is a bounded linear functional on C(�(x)) with norm at most k⇠kk⌘k. The Riesz
Representation Theorem implies there exists µ⇠,⌘ 2 M(�(x)) satisfying kµ⇠,⌘k  k⇠kk⌘k and (2.1). Since
M(�(x)) = C(�(x))⇤, this measure is uniquely determined by (2.1). Using this uniqueness, one obtains
the remaining properties via the conjugate symmetry, linearity, and conjugate linearity (respectively) of the
inner product.

For a locally compact Hausdor↵ space X we denote by B(X) the collection of bounded Borel measurable
functions f : X ! C, which we equip with the supremum norm kfk1. Any f 2 B(X) is integrable with
respect to any µ 2 M(X). In particular, for any Borel measurable subset S ⇢ X, we have 1S 2 B(X) and
for any µ 2 M(X) we have

µ(S) =

Z

X
1S dµ.

In the context of the above proposition, any reasonable definition of f(x) 2 B(H) for f 2 B(�(x)) should
satisfy

hf(x)⇠, ⌘i =

Z

�(x)
f dµ⇠,⌘.

The above discussion tells us we can already make sense of the right-hand side, and the following lemma
tells us precisely how to produce f(x) 2 B(H) satisfying the above equation.

Lemma 2.1.2. Let H be a Hilbert space and suppose q : H⇥H ! C is linear in the first coordinate, conjugate
linear in the second coordinate, and there exists C > 0 such that |q(⇠, ⌘)|  Ck⇠kk⌘k for all ⇠, ⌘ 2 H. Then
there exists a unique x 2 B(H) satisfying

hx⇠, ⌘i = q(⇠, ⌘) 8⇠, ⌘ 2 H,

and kxk  C.

We leave the proof as an exercise (see Exercise 2.1.2), but remark that it is similar to the proof of
[Theorem 1.36, GOALS Prerequisite Notes]. The map q is called a bounded sesquilinear form, and the above
lemma is sometimes called the Riesz Representation Theorem (for Bounded Sesquilinear Forms).

Theorem 2.1.3 (Borel Functional Calculus). Let x 2 B(H) be a normal operator. There exists a contractive
⇤-homomorphism

B(�(x)) 3 f 7! f(x) 2 W
⇤(x).

In particular, for f 2 C(�(x)) the operator f(x) is the same operator given by the continuous functional
calculus.

Proof. Fix f 2 B(�(x)). For ⇠, ⌘ 2 H define

q(⇠, ⌘) :=

Z

�(x)
f dµ⇠,⌘,

15



where µ⇠,⌘ is as in Proposition 2.1.1. The same proposition implies q is linear in the first coordinate, conjugate
linear in the second coordinate, and satisfies

|q(⇠, ⌘)| 

Z

�(x)
|f | d|µ⇠,⌘|  kfk1kµ⇠,⌘k  kfk1k⇠kk⌘k.

Thus Lemma 2.1.2 implies there exists y 2 B(H) with kyk  kfk1 and

hy⇠, ⌘i = q(⇠, ⌘) =

Z

�(x)
f dµ⇠,⌘ 8⇠, ⌘ 2 H.

Define f(x) := y.
Thus B(�(x)) 3 f 7! f(x) is contractive. For all ⇠, ⌘ 2 H we have

h(f + g)(x)⇠, ⌘i =

Z

�(x)
f + g dµ⇠,⌘ =

Z

�(x)
f dµ⇠,⌘ +

Z

�(x)
g dµ⇠,⌘

= hf(x)⇠, ⌘i+ hg(x)⇠, ⌘i = h(f(x) + g(x))⇠, ⌘i ,

which implies (f + g)(x) = f(x) + g(x). It is similarly shown that (fg)(x) = f(x)g(x) and f̄(x) = f(x)⇤. So
f 7! f(x) is a contractive ⇤-homomorphism. Note that—by construction—if f 2 C(�(x)) then f(x) agrees
with the operator given by the continuous functional calculus.

It remains to show that this ⇤-homomorphism is valued in W
⇤(x) = C[x, x⇤]00. Observe that for y 2

C[x, x⇤]0, f 2 C(�(x)), and ⇠, ⌘ 2 H we have

0 = h(yf(x)� f(x)y)⇠, ⌘i = hf(x)⇠, y⇤⌘i � hf(x)y⇠, ⌘i =

Z

�(x)
f dµ⇠,y⇤⌘ �

Z

�(x)
f dµy⇠,⌘.

Since f 2 C(�(x)) was arbitrary and µ⇠,y⇤⌘, µy⇠,⌘ 2 M(�(x)) = C(�(x))⇤, we must have µ⇠,y⇤⌘ = µy⇠,⌘.
Consequently, for f 2 B(�(x)) we have

h(yf(x)� f(x)y)⇠, ⌘i =

Z

�(x)
f dµ⇠,y⇤⌘ �

Z

�(x)
f dµy⇠,⌘ = 0

for all y 2 C[x, x⇤]0 and all ⇠, ⌘ 2 H. It follows that yf(x) � f(x)y = 0 for all y 2 C[x, x⇤]0 so that
f(x) 2 C[x, x⇤]00 = W

⇤(x).

For x 2 B(H) normal, let S ⇢ �(x) be Borel measurable. Then 1S 2 B(�(x)) and 1S = 1S = 12S imply
1S(x) = 1S(x)⇤ = 1S(x)2; that is, 1S(x) is a projection. Consequently, if f 2 B(�(x)) is a simple function,
then f(x) is a linear combination of projections. From this we can deduce that projections are ubiquitious
in von Neumann algebras:

Corollary 2.1.4. A von Neumann algebra is the norm closure of the span of its projections.

Proof. Let M ⇢ B(H) be a von Neumann algebra, and let x 2 M . By considering the real and imaginary
parts of x (Re (x) = 1

2 (x + x
⇤) and Im (x) = i

2 (x
⇤
� x)) we may assume x is self-adjoint. In particular,

x is normal and hence f(x) 2 W
⇤(x) ⇢ M for all f 2 B(�(x)) by the Borel functional calculus. Thus the

discussion preceding the statement of the corollary implies that approximating the identity function on �(x)
uniformly by simple functions gives, via the Borel functional calculus, a uniform approximation of x by linear
combinations of projections in M .

Contrast this result with the fact that there exist C
⇤-algebras with no non-trivial projections. Indeed,

if X is compact Hausdor↵ space, and X is connected, then C(X) has exactly two projections: 0 and 1.
Non-commutative examples exist as well.

It is not true in general that the ⇤-homomorphism in the Borel functional calculus is injective. For
example, if there exists a subset S 2 �(x) such that µ⇠,⌘(S) = 0 for all ⇠, ⌘ 2 H then we will have
f(x) = g(x) so long as f and g agree on �(x) \ S. This concept is explored further in Exercise 2.1.4.
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Exercises

2.1.1. Let x 2 B(H) be normal. For ⇠ 2 H, let µ⇠,⇠ be as in Proposition 2.1.1. Show that µ⇠,⇠ is a positive
measure.

2.1.2. Prove Lemma 2.1.2: First fix ⇠ 2 H and show for all ⌘ 2 H that q(⇠, ⌘) = h⇠1, ⌘i for some ⇠1 2 H.
Then show that x(⇠) := ⇠1 defines a bounded operator x 2 B(H).

2.1.3. Let x 2 B(H) be a normal operator and let ⌦ be the Borel �-algebra on �(x).

(a) Show that 1; = 0 and 1�(x) = 1.

(b) Show that 1S\T = 1S1T for all S, T 2 ⌦.

(c) Let {Sn 2 ⌦ : n 2 N} be a collection of pairwise disjoint subsets and let S :=
S

n=1 1Sn. Show that

1S =
1X

n=1

1Sn ,

where series is the SOT-limit of the net of partial sums (see Proposition 1.1.5).

(The map S 7! 1S is called a projection valued measure.)

2.1.4. Let x 2 B(H) be a normal operator. We say a Borel measurable subset S ⇢ �(x) is x-null if
1S(x) = 0. For f 2 B(�(x)), define

x.im(f) := {z 2 C : for all ✏ > 0, {w 2 �(x) : |f(w)� z|  ✏} is not x-null}.

and
kfk1,x := sup

z2x.im(f)
|z|.

(a) Show that S is x-null if and only if µ⇠,⌘(S) = 0 for all ⇠, ⌘ 2 H.

(b) Show that f(x) = 0 if and only if kfk1,x = 0.

(c) Show that kf(x)k = kfk1,x.

(d) Show that �(f(x)) ⇢ x.im(f).

2.2 Abelian von Neumann Algebras

In this section we will prove that abelian von Neumann algebras are of the form L
1(X,µ) for some mea-

sure space (X,⌦, µ). This result often inspires the following platitude: “Von Neumann algebras are non-
commutative measure spaces.” Nevertheless, this perspective is quite helpful in developing one’s intuition
for von Neumann algebras, and by the end of GOALS you will probably be like
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For the sake of simplicity, we will restrict ourselves the case when the Hilbert space contains a cyclic vector.

Definition 2.2.1. Let A ⇢ B(H) be a subalgebra. A vector ⇠ 2 H is said to be cyclic for A if the subspace
A⇠ is dense in H.

To motivate this definition, suppose x 2 B(H) is normal and ⇠0 2 H is cyclic for C[x, x⇤]. Let µ := µ⇠0,⇠0

be as in Proposition 2.1.1. Note that µ is a positive measure (see Exercise 2.1.1). For any a, b 2 C[x, x⇤] and
any S ⇢ �(x) have

µa⇠0,b⇠0(S) = h1S(x)a⇠0, b⇠0i = h(b⇤1S(x)a)⇠0, ⇠0i =

Z

X
q̄1Sp dµ

where p and q are polynomials such that p(x, x⇤) = a and q(x, x⇤) = b. Thus if µ(S) = 0, then the above
computation implies µa⇠0,b⇠0(S) = 0. That is, µa⇠0,b⇠0 ⌧ µ. Furthermore, since ⇠0 is cyclic for C[x, x⇤], given
any ⇠, ⌘ 2 H and any ✏ > 0 we can find a, b 2 C[x, x⇤] so that ka⇠0 � ⇠k, kb⇠0 � ⌘k < ✏. Proposition 2.1.1
implies

kµ⇠,⌘ � µa⇠0,b⇠0k  kµ⇠�a⇠0,⌘k+ kµa⇠0,⌘�b⇠0k < ✏k⌘k+ ka⇠0k✏ < ✏(k⌘k+ k⇠k+ ✏),

and it follows that µ⇠,⌘ ⌧ µ. One consequence of this is that 1S(x) = 0 for S ⇢ �(x) Borel if and only if µ(S)
(see Exercise 2.1.4.(a)). Another consequence (which we will prove below) is that W

⇤(x) can be identified
with L

1(�(x), µ), where a bounded Borel function f 2 L
1(�(x), µ) is identified with f(x).

Example 2.2.2. Let � be a discrete group and let �, ⇢ : � ! B(`2(�)) be the left and right regular repre-
sentations. Define algebras A := span�(�) and B := span⇢(�) Then �e 2 `

2(�) is cyclic for both A and B

since �(g)�e = �g = ⇢(g)�e for all g 2 �. Moreover since A and B commute, if a 2 A and a�e = 0 then a = 0.
Indeed, for any b 2 B we have

ab⇠0 = ba⇠0 = 0.

Since B⇠0 is dense in H, it must be that a = 0. ⌅
The previous example highlights a related concept:

Definition 2.2.3. Let A ⇢ B(H) be a subalgebra. A vector ⇠ 2 H is said to be separating for A if x⇠ = 0
for x 2 A implies x = 0.

The observation we made in Example 2.2.2 is an instance of a more general fact.

Proposition 2.2.4. Let A ⇢ B(H) be a subalgebra. If ⇠ 2 H is cyclic for A, then it is separating for its
commutant A0. If A is a unital ⇤-subalgebra and ⇠ is separating for A

0, then ⇠ is cyclic for A. Consequently,
for a von Neumann algebra M ⇢ B(H), a vector is cyclic (resp. separating) for M if and only if it is
separating (resp. cyclic) for M

0.
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Proof. Let ⇠ 2 H be cylic for A and suppose y 2 A
0 is such that y⇠ = 0. Then for all x 2 A we have

yx⇠ = xy⇠ = 0.

Since ⇠ is cyclic for A, {x⇠ : x 2 A} is dense in H. Thus y = 0, and so ⇠ is separating for A0.
Now suppose A is a unital ⇤-subalgebra and ⇠ is separating for A0. Let p 2 B(H) be the projection onto

K := (A⇠)?. To see that ⇠ is cyclic for A it su�ces to show p = 0. Indeed, p = 0 is equivalent to K = {0}
and therefore

A⇠ = ((A⇠)?)? = K
? = {0}? = H

(see [Exercise 1.18, GOALS Prerequisite Notes]). Now, for x1, x2 2 A and ⌘ 2 K we have

hx1⌘, x2⇠i = h⌘, x
⇤

1x2⇠i = 0,

since x⇤

1x2 2 A. Thus x1⌘ 2 K, and hence AK ⇢ K. That is, K is reducing for A and so Lemma 1.2.5 implies
p 2 A

0. Note that ⇠ 2 A⇠ since A is unital, and hence p⇠ = 0. Since ⇠ is separating for A0, this implies p = 0.
The final observations follow from M being a unital ⇤-subalgebra and M = (M 0)0.

Corollary 2.2.5. If A ⇢ B(H) is an abelian algebra, then every cyclic vector for A is also separating for
A.

Proof. If ⇠ 2 H is cyclic for A, then by the proposition it is separating for A0. In particular, it is separating
for A ⇢ A

0.

Recall that for a an abelian C⇤-algebra A, the Gelfand transform gives an isometric ⇤-isomorphism

� : A ! C0(�(A)),

where �(A) is locally compact Hausdor↵ space formed by the spectrum of A: the set of all ⇤-homomorphims
from A to C. In particular, if A is unital then �(A) is compact and the image of the Gelfand transform is
C(�(A)).

Theorem 2.2.6. Let A ⇢ B(H) be an abelian von Neumann algebra with a cyclic vector ⇠0 2 H. For any
SOT dense unital C⇤-subalgebra A0 ⇢ A, there exists a positive regular Borel measure µ 2 M(�(A0)) and a
spatial isomorphism

�⇤ : A ! L
1(�(A0), µ)

satisfying

hx⇠0, ⇠0i =

Z

�(A0)
�⇤(x) dµ 8x 2 A.

Moreover, �⇤ extends the Gelfand transform � : A0 ! C(�(A0)).

Proof. Let � : A0 ! C(�(A0)) be the Gelfand transform. Define � : A ! C by �(x) = hx⇠0, ⇠0i for x 2 A.
For f 2 C(�(A0)) we have

|�(��1(f))| = |
⌦
��1(f)⇠0, ⇠0

↵
|  k��1(f)kk⇠0k

2 = kfk1k⇠0k
2
.

Thus � � ��1
2 C(�(A0))⇤, and so the Riesz Representation Theorem implies there exists a regular Borel

measure µ 2 M(�(A0)) so that

� � ��1(f) =

Z

�(A0)
f dµ.

Observe that for a positive function f 2 C(�(A0)), we have

Z

�(A0)
f dµ =

Z

�(A0)

p
f
2
dµ = � � ��1(

p
f
2
)) =

D
��1(

p
f
2
)⇠0, ⇠0

E
=

�����1(
p
f)⇠0

���
2
� 0.

Hence µ is a positive measure.
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Define U0 : A0⇠0 ! C(�(A0)) ⇢ L
2(�(A0), µ) by

U0(x⇠0) = �(x) x 2 A0.

Since ⇠0 is separating for A by Corollary 2.2.5, this is well-defined. Moreover, for x, y 2 A0

hU0(x⇠0), U0(y⇠0)iL2(�(A0),µ)
=

Z

�(A0)
�(x)�(y) dµ =

Z

�(A0)
�(y⇤x) dµ = �(y⇤x) = hy

⇤
x⇠0, ⇠0i = hx⇠0, y⇠0i .

Thus U0 is an isometry on A0⇠0. Note that ⇠0 is cyclic for A0 because it is cyclic for A and A0 is SOT
dense in A. Hence A0⇠0 is dense in H and so we can extend U0 to an isometry U : H ! L

2(�(A0), µ). Since
C(�(A0)) is dense in L

2(�(A0), µ), U is surjective and hence a unitary.
Define a spatial isomorphism �⇤ : A ! B(L2(�(A0), µ)) via �⇤(x) = UxU

⇤. For x 2 A0 and g 2 C(�(A0))
we have

�⇤(x)g = UxU
⇤
g = Ux

�
��1(g)⇠0

�
= U��1(�(x)g)⇠0 = �(x)g.

By the density of C(�(A0)) ⇢ L
2(�(A0), µ), it follows that �⇤(x) = �(x) (where we are viewing �(x 2

B(L2(�(A0), µ)) as a pointwise multiplication operator). Thus �⇤ extends the Gelfand transform.

Finally, towards proving �⇤(A) = L
1(�(A0), µ) we first observe L

1(�(A0), µ) = �⇤(A0)
WOT

. Indeed,

�⇤(A0) = �(A0) = C(�(A0)) ⇢ L
1(�(A0), µ),

so that �⇤(A0)
WOT

= C(�(A0)
WOT

. Recall that by Exercise 1.1.4, the WOT on L
1(�(A0), µ) corresponds

to the weak* topology induced by L
1(�(A0), µ)⇤ = L

1(�(A0), µ), and C(�(A0)) is dense in this topology
by Exercise 2.2.2. Thus

�⇤(A0)
WOT

= C(�(A0)
WOT

= L
1(�(A0), µ).

Hence, to finish the proof it su�ces to prove the following inclusions:

�⇤(A0)
WOT

⇢ �⇤(A) ⇢ �⇤(A0)
WOT

.

To see the first inclusion, suppose (�⇤(xi))i2I ⇢ �⇤(A0) WOT-converges to some T 2 B(L2(�(A0), µ)). Then
for all ⇠, ⌘ 2 H we have

hU
⇤
TU⇠, ⌘i = hTU⇠, U⌘i = lim

i!1

hUxiU
⇤
U⇠, U⌘i = lim

i!1

hxi⇠, ⌘i .

Thus (xi)i2I WOT-converges to U⇤
TU 2 B(H). Since A = A0

W0T
, x := U

⇤
TU 2 A and �⇤(x) = UxU

⇤ = T .
So the first inclusion holds. To see the second inclusion, observe that if (xi)i2I 2 A is a net WOT-converging
to x 2 A, then for any f, g 2 L

2(�(A0), µ) we have

h(�⇤(x)� �⇤(xi))f, giL2(�(A0),µ)
= hU(x� xi)U

⇤
f, giL2(�(A0),µ)

= h(x� xi)U
⇤
f, U

⇤
gi ! 0.

Since A0
WOT

= A (by the Bicommutant Theorem), this implies �⇤(A) = �⇤(A0
WOT

) ⇢ �⇤(A0)
WOT

.

Remark 2.2.7. Observe that if we take A0 = A in the proof of the previous theorem, then it follows that

L
1(�(A), µ) = �⇤(A) = �(A) = C(�(A)).

That is, the µ-measurable essentially bounded functions coincide with the continuous functions on �(A). This
should be taken as an indication that the spectrum of a commutative C

⇤-algebra A is strange when A is
also a von Neumann algebra. Indeed, these are Stonean spaces and are examples of extremally disconnected
spaces.

Let us explore Theorem 2.2.6 when A = W
⇤(x) for x 2 B(H) a normal operator and relate it to the

Borel functional calculus. A natural choice for A0 is C
⇤(x) (the unital C⇤-algebra generated by x), which
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is SOT dense in W
⇤(x) because C[x, x⇤] ⇢ C

⇤(x) is SOT dense. Recall that in this case, �(C⇤(x)) = �(x).
Suppose ⇠0 2 H is a cyclic vector for W ⇤(x), and let µ 2 M(�(x)) be as in Theorem 2.2.6. Note that since

Z

�(x)
f dµ = hf(x)⇠0, ⇠0i 8f 2 C(�(x)),

we have µ = µ⇠0,⇠0 where µ⇠0,⇠0 is defined as in Proposition 2.1.1. Now, since µ is a Borel measure,
L
1(�(x), µ) = B(�(x))/ ⇠ where the equivalence relation is µ-almost everywhere equivalence. We claim

that for f 2 B(�(x)) with [f ] 2 L
1(X,µ), the operator f(x) defined by the Borel functional calculus equals

(�⇤)�1([f ]) where �⇤ is as in Theorem 2.2.6. Indeed, for all g 2 C(�(x)) we have

⌦
(f(x)� (�⇤)�1([f ]))⇠0, g(x)⇠0

↵
=

Z

�(x)
fḡ dµ⇠0,⇠0 �

Z

�(x)
[f ]ḡ dµ =

Z

�(x)
(f � [f ])ḡ dµ = 0.

The above computation implies (f(x)� (�⇤)�1([f ]))⇠0 = 0 because ⇠0 is cyclic for C⇤(x) = ��1(C(�(x)) (by
virtue of C⇤(x) being SOT dense in W

⇤(x)). But ⇠0 is separating for W ⇤(x) by Corollary 2.2.5, so we have
f(x) = (�⇤)�s([f ]) as claimed. All of which is to say, when A = W

⇤(x) and A0 = C
⇤(x) the ⇤-isomorphism

in Theorem 2.2.6 respects the Borel functional calculus.
Theorem 2.2.6 also allows us to better understand group von Neumann algebras for commutative groups.

We consider a few examples below.

Example 2.2.8. For n 2 N with n � 2, let

� := Z/nZ = {0, 1, 2, . . . , n� 1}.

Since � is an abelian group, L(�) is an abelian von Neumann algebra and from Example 2.2.2 we know that
�0 is a cyclic vector for L(�). Let x 2 L(�) be the unitary operator corresponding to the group generator
1 2 Z/nZ, so that L(�) = W

⇤(x). Since xx
⇤ = 1 = x

⇤
x (i.e. x is normal), from the above discussion we

know
L(�) ⇠= L

1(�(x), µ)

for a regular Borel measure µ 2 M(�(x)). Observe that the matrix representation of x with respect to the
basis �0, �1, . . . , �n�1 is the permutation matrix

0

BBB@

0 · · · 0 1
1 0 0

. . .
...

0 1 0

1

CCCA
.

So [Example 3.15.(1), GOALS Prerequisite Notes] implies �(x) is the set of eigenvalues of the above matrix:
{exp( 2⇡ikn ) : k = 0, 1, . . . , n � 1} (Exercise: confirm this). Denote ⇣k = exp( 2⇡ikn ) for k = 0, 1, . . . , n � 1,
then

ek :=
1
p
n

⇣
�0 + ⇣

�1
k �1 + · · ·+ ⇣

�(n�1)
k �n�1

⌘

is a unit eigenvector of x with eigenvalue ⇣k. Since z1{⇣k}(z) = ⇣k1{⇣k}(z) for z 2 C, the Borel functional
calculus implies x1{⇣k}(x) = ⇣k1{⇣k}(x). That is, 1{⇣k}(x) is the projection onto the ⇣k eigenspace. As this
space is spanned by the unit vector ek, we have 1{⇣k}(x) = ek ⌦ ek. Thus we have

µ({⇣k}) =

Z

�(x)
1{⇣k} dµ =

⌦
1{⇣k}(x)�0, �0

↵
= hek ⌦ ek�0, �0i = hh�0, eki ek, �0i = | h�0, eki |

2 =
1

n
.

Hence µ is the uniform probability distribution on {⇣k : k = 0, 1, . . . , n� 1}. ⌅

Example 2.2.9. Consider the abelian von Neumann algebra L(Z). As in the previous example, �0 2 `
2(Z) is

a cyclic vector for L(Z). Let x 2 L(Z) be the unitary operator corresponding to 1 2 Z, so that L(Z) = W
⇤(x).

Let
T = {⇣ 2 C : |⇣| = 1},
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then Z and T are Pontryagin duals to each other via

Z⇥ T 3 (n, ⇣) 7! ⇣
n
.

This duality allows us to define a unitary U : `2(Z) ! L
2(T,m) (wherem is the normalized Lebesgue measure

on T) via
[U(⇠)](⇣) =

X

n2Z
⇠(n)⇣n ⇠ 2 `

2(Z), ⇣ 2 T.

If f : L1(T,m) is the identity function f(⇣) = ⇣, we have

[Ux⇠](⇣) =
X

n2Z
[x⇠](n)⇣n =

X

n2Z
⇠(n� 1)⇣n = ⇣

X

n2Z
⇠(n� 1)⇣n�1

f(z)[U⇠](⇣).

Hence UxU
⇤ = f . Using an argument similar to the on Theorem 2.2.6, one then obtains L(Z) ⇠= L

1(T,m).
We leave the details for you to check in Exercise 2.2.3. ⌅

Exercises

2.2.1. Let H be a Hilbert space and let p 2 B(H) be a non-trivial projection: p 6= 0 and p 6= 1. Show that
the algebra A := pB(H)p has no cyclic vectors.

2.2.2. Let X be a compact Hausdor↵ space and let µ 2 M(X) be a positive regular Borel measure. Show
that C(X) is weak* dense in L

1(X,µ) by showing that if f 2 L
1(X,µ) satisfies

Z

X
fg dµ = 0 8g 2 C(X)

then f = 0.

2.2.3. Fill in the remaining details of Example 2.2.9: first show that UL(Z)U⇤ = C[f, f̄ ]
WOT

= C[f, f̄ ]
wk⇤

,
then argue that C[f, f̄ ] (i.e. the set of polynomials) is weak* dense in L

1(T,m) = L
1(T,m)⇤.

2.2.4. Let � be a discrete abelian group and let b� be its Pontryagin dual group, which is a compact abelian
group and hence has a finite Haar measure µ. Show that L(�) ⇠= L

1(b�, µ).
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