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3. Positive elements

Preview of Lecture:

• Exercise 3.3 is a cornerstone of the theory of C⇤-algebras; see if you can figure out why it’s true
before lecture!

• In lecture, we will prove Proposition 3.6 and Example 3.9.
• We will not prove Corollary 3.7 in lecture.
• Theorem 3.10 is really important, and the proof uses all of the exercises that precede it in this

section, but it’s otherwise pretty straightforward. We won’t discuss the proof.
• We will discuss the proofs of Proposition 3.12 and Corollary 3.13 in lecture.

The Functional Calculus is an incredibly powerful tool for handling normal elements. Of course, not every
element in a C⇤-algebra is normal. Nonetheless, by associating to each element a 2 A the self-adjoint element
a
⇤
a 2 A, we have been able to spread the influence of the functional calculus to an entire non-commutative

C⇤-algebra. It turns out that elements of the form a
⇤
a take on an even more important structural role in

C⇤-algebras, which we will explore now.

Definition 3.1. A self-adjoint element a in a C⇤-algebra A is positive if �(a) ⇢ [0,1). We denote this by
a � 0.

This allows us to define a partial ordering on the self-adjoint elements of A: for a and b self-adjoint, we
say a  b if b� a � 0.

Example 3.2. The positive elements in C0((0, 1]) are exactly the ones whose range (i.e. spectrum) lies in
[0,1).

Let’s start with a few observations using the functional calculus:

Exercise 3.3. Each positive element in a C⇤-algebra has a unique positive square root.

Exercise 3.4. If a 2 A is a self-adjoint element, then there exist positive elements a+ and a� such that
a = a+ � a� and a+a� = a�a+ = 0.

Exercise 3.5. Let a 2 A be self-adjoint, a+ and a� its positive and negative parts as in Exercise 3.4, andp
a+ and

p
a� their respective unique positive square roots. Show that a+

p
a� = 0 and

p
a+

p
a� = 0.

The following proposition is mostly technically useful.

Proposition 3.6. Let a be a self-adjoint element in a unital C⇤
-algebra A. Then the following are equivalent.

(1) a � 0;
(2) a = b

2
for some self-adjoint b 2 A;

(3) k↵1� ak  ↵ for all ↵ � kak;
(4) k↵1� ak  ↵ for some ↵ � kak.

Proof. We assume A is unital or pass to its unitization.
That (1) ) (2) follows from the functional calculus, and that (3) ) (4) is clear.
Assume (2). Let f 2 C(�(b)) be given by f(z) = z

2. Then

kfksup = kb2k = kak,
and so 0  f  kak. Then 0  ↵ � f  ↵ for any ↵ � kak. Then (identifying ↵ with the constant function
on �(b) when appropriate), we compute

k↵1� ak = k↵(b)� f(b)k = k(↵� f)(b)k = k↵� fksup  ↵.

It remains to show (4) ) (1). Suppose ↵ � kak is such that k↵1 � ak  ↵. Let h(z) = z denote the
identity function on �(a). Then we have

↵ � k↵1� ak = k(↵� h)(a)k = k↵� hksup = sup
�2�(a)

|↵� �|.

It follows that �(a) ⇢ [0,1). Since a was assumed to be self-adjoint, this means a � 0. ⇤
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Some concluding notation: The collection of positive elements in a C⇤-algebra A is denoted by A+, and
the self-adjoints are often denoted by As.a.

Corollary 3.7. For a C⇤
-algebra A, the sets As.a. and A+ are both closed.

Proof. Suppose xn is a sequence in As.a. converging to x 2 A. Then

kx⇤

n
� x

⇤k = kxn � xk ! 0,

and so xn = x
⇤

n
! x

⇤. Hence x
⇤ = x. Now, suppose (an) 2 A+ converges to a 2 A. Then we know a = a

⇤

and kank ! kak. Assume A is unital or unitize. Let ↵ = sup
n
kank � kak. Then ↵1 � an ! ↵1 � a, and

k↵1 � ank  ↵ for all n by Proposition 3.6. It follows that k↵1 � ak  ↵, which again by Proposition 3.6
implies that a is positive. ⇤
Exercise 3.8. If a, b 2 A are positive, then so is a+ b. (Note that we are not assuming they commute – use
the previous exercise.) If a and b moreover commute, then ab � 0. Can you think of two positive elements
in a C⇤-algebra whose product is not positive? (Hint: For the first part, you can assume A is unital or work
in Ã (why?). Then use Proposition 3.6. For the second part consider operators in M2(C).)
Example 3.9. The positive operators in B(H) are exactly the positive semi-definite operators.

Suppose T 2 B(H). By the preceeding proposition, if T � 0, then there exists a self-adjoint S 2 B(H)
such that T = S

2 = S
⇤
S. Then for any x 2 H, we have

hTx, xi = hS⇤
Sx, xi = hSx, Sxi = kSxk2 � 0.

Now, suppose hTx, xi � 0 for all x 2 H. By Exercise 7.42 from Day 1 lecture notes, T = T
⇤ and so

�(T ) ⇢ R. So, given � < 0 we want to show that T � �I is invertible. If � < 0, then for every nonzero
x 2 H,

k(T � �I)xk2 = |h(T � �I)x, (T � �I)xi|
= |kTxk2 + 2|�|hTx, xi+ |�|2kxk2|
= kTxk2 + 2|�|hTx, xi+ |�|2kxk2

� |�|2kxk2.
That means that for every x 2 H, k(T � �I)xk � |�|kxk. In other words, the operator T � �I is bounded
below, which means it is injective (Exercise 7.46 from Day 1 lecture notes). So, by the Open Mapping
Theorem, to show that T � �I is invertible, it remains to show that it is surjective.

For any operator S 2 B(H), ker(S) = (S⇤(H))? (Exercise 7.44 from Day 1 lecture notes). Since (T��I) =
(T��I)⇤, the above argument shows that ker(T��I) = 0 = ((T��I)(H))?, which means T�� is surjective
and thus invertible.

Theorem 3.10. For any a 2 A, the element a
⇤
a is positive.

Proof. Suppose b = a
⇤
a 2 A. Then b is self-adjoint, and hence by Exercise 3.4, we can write it as b = b+�b�

for some b+, b� � 0 with b+b� = 0. We want to show that b� = 0. Since it is self-adjoint, we know
kb�k = r(�(b�)), and so it su�ces to show that �(b�) = {0}. Now, for notational ease, we write c = a

p
b�,

where
p

b� is its unique positive square root. By Exercise 3.5, we have that
p
b�b+ = 0, and so we compute

�c
⇤
c = �

p
b�a

⇤
a

p
b� = �

p
b�b

p
b� = �

p
b�(b+ � b�)

p
b� = b

2
�
.

Then �c
⇤
c = b

2
�
� 0, which means �(�c

⇤
c) ⇢ [0,1).

Write c = Re(c) + iIm(c) as in (1.1). Then we compute

cc
⇤ = [c⇤c+ cc

⇤]� c
⇤
c

= [(Re(c) + iIm(c))⇤(Re(c) + iIm(c)) + (Re(c) + iIm(c))(Re(c) + iIm(c))⇤]� c
⇤
c

= 2(Re(c)2 + Im(c)2) + b
2
�
.

Then cc
⇤ is the sum of positive elements, and hence is positive. Since2 �(cc⇤)[ {0} = �(cc⇤)[ {0}, it follows

that both cc
⇤ and c

⇤
c have non-negative spectra, which means both are positive. But then we’ve shown that

2This is a more general ring theoretic fact that �(xy) [ {0} = �(yx) [ {0} for any x, y in a complex unital ring. Indeed, if
0 6= � /2 �(xy), then there exists z such that z(� � xy) = 1 = (� � xy)z. Then �

�1(� + yzx) is the inverse of � � yx. Check
this if you haven’t seen it before!
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±c
⇤
c are both positive. It follows that �(c⇤c) = {0}. Since c

⇤
c is self-adjoint, its norm is its spectral radius,

and so
0 = kc⇤ck = k � c

⇤
ck = kb2

�
k = kb�k2,

and we are done. ⇤

Exercise 3.11. Let A be a C⇤-algebra. Show the following:

(1) If a, b 2 A are self-adjoint and c 2 A, then c
⇤
ac  c

⇤
bc. (Hint: Take a square root and use the

previous theorem.)
(2) Assuming A is a unital C⇤-algebra and a 2 A positive, show that a  kak1. Moreover, kak  1 i↵

a  1. In this case we also have 1� a  1 and k1� ak  1.
(3) If A is unital and a 2 A is invertible, then so is a

⇤, a⇤a, and
p
a⇤a. Moreover, the inverses are in

C⇤(a).

3.1. Polar decomposition. For each a 2 A, we define the positive operator |a| to be the unique positive
square root of a⇤a, i.e.

|a| =
p
a⇤a.

Proposition 3.12. For each operator T 2 B(H), there is a unique partial isometry U 2 B(H) with ker(U) =
ker(T ) and U |T | = T . Moreover |T | 2 C⇤(T ) and U 2 C⇤(T )00. If T is invertible, then U is a unitary.

The description T = U |T | is called the polar decomposition of T , in analogy with the fact that every
complex number z can be written as a norm-1 element eit, times a non-negative real number r.

Proof. Note that for all ⇠ 2 H, we have

kT ⇠k2 = hT ⇠, T ⇠i = hT ⇤
T ⇠, ⇠i = h|T |2⇠, ⇠i = h|T |⇠, |T |⇠i = k|T |⇠k2. (3.1)

It follows that the linear map U0 : |T |H ! TH given by |T |x 7! Tx is isometric, and hence extends to an
isometry |T |H ! TH (also denoted U0). We define U 2 B(H) to be U0 on |T |H and 0 on (|T |H)?. It
follows from Exercise 7.39 from the Day 1 Lecture Notes that U is a partial isometry with U

⇤|
TH

= U
�1
0

and ker(U⇤) = (TH)?, and by definition U |T | = T . Moreover, we have from (3.1) and Exercise 7.44 from
the Day 1 Lecture Notes that ker(U) = |T |(H)? = ker(|T |) = ker(T ). For uniqueness, suppose V 2 B(H)
is another partial isometry with ker(V ) = ker(T ) and V |T | = T . Since V ||T |H = U ||T |H, it follows from

continuity that they also agree on |T |H. As ker(V ) = ker(T ) = ker(U) = (|T |(H))? by construction, the
fact that H = |T |H� (|T |H)? implies that V ⇠ = U⇠ for any ⇠ 2 H.

It follows from the functional calculus that |T | 2 C⇤(T ). Now, suppose S 2 C⇤(T )0. If ⇠ 2 ker(T ) =
ker(U), then TS⇠ = ST ⇠ = 0 and so S⇠ 2 ker(T ) = ker(U). Then US⇠ = 0 = SU⇠ for every ⇠ 2 ker(T ) =
(|T |H)?. For ⇠ = |T |⌘ 2 |T |H, we have

US⇠ = US|T |⌘ = U |T |S⌘ = TS⌘ = ST⌘ = SU |T |⌘ = SU⇠.

Since |T |H is dense in |T |H, it follows that US = SU on |T |H and on (|T |H)?. Then it follows by a linearity
argument as above that S and U commute. Hence U 2 C⇤(T )00.

Finally, if T is invertible, then so is
p
T ⇤T . Then we have

U = T (T ⇤
T )�1/2

,

and one checks that U⇤
U = UU

⇤ = I. ⇤

As the range space of U is TH, and U is a partial isometry, it follows that UU
⇤ = proj

TH
. Similarly, the

source projection of U is U⇤
U = proj

|T |H
.

Corollary 3.13. Let T 2 B(H) with polar decomposition T = U |T |. Then |T ⇤| = U |T |U⇤
and T

⇤ = U
⇤|T ⇤|.

Proof. Observe that U |T |U⇤ is positive, and since T
⇤ = (U |T |)⇤ = |T |U⇤

(U |T |U⇤)(U |T |U⇤) = U |T |2U⇤ = TT
⇤
.

By the uniqueness of the square root, we have U |T |U⇤ = (TT ⇤)1/2 = |T ⇤|. From this we further deduce

U
⇤|T ⇤| = U

⇤
U |T |U⇤ = |T |U⇤ = (U |T |)⇤ = T

⇤
. ⇤
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Exercise 3.14. Where possible, give geometric as well as algebraic explanations for the following statements
about the polar decomposition:

(1) U
⇤
U |T | = |T |,

(2) U
⇤
T = |T |, and

(3) UU
⇤
T = T .

Exercise 3.15. Show that T is compact i↵ |T | is compact.

Exercise 3.16. Describe the projections in C0(X) where X is

(1) (0, 1],
(2) [0, 1],
(3) [0, 1/3] [ [1/3, 1].

Exercise 3.17. Let ⇡ : A ! B be a surjective ⇤-homomorphism between C⇤-algebras and b 2 B a positive
element. Show that b lifts to a positive element a 2 A – that is, there is a 2 A with ⇡(a) = b – such that
kak = kbk.

4. Ideals, Approximate Units, and ⇤-homomorphisms

Preview of Lecture: To help guide your reading, we indicate here which of the following material we will
address in lecture and which we will assume familiarity with:

The lecture for this section will focus on Theorem 4.11. The techniques in the proofs of Lemma 4.6 and
Theorem 4.9 do not translate well to lecture, but that does not detract from their importance. In fact, they
showcase a powerful yet technical tool: an approximate unit. Many C⇤-algebraists (guilty!) are intimidated
by these at first. But the first time you use them in your own research, you’ll love them for life.

Definition 4.1. An approximate identity in a C⇤-algebra A is an increasing net (e�)�2⇤ of positive contrac-
tive elements (i.e. 0  e�  e� and ke�k  1 for all �, � 2 ⇤ with � � �) such that

lim
�

ke�a� ak = lim
�

kae� � ak = lim
�

ke�ae� � ak = 0.

Theorem 4.2. Every C⇤
-algebra has an approximate identity. Moreover, if the C⇤

-algebra is separable, the

identity can be chosen to be countable.

The proof relies heavily on the functional calculus. We will not give it here, though it is not too sophisti-
cated. Instead, we point to the proofs given in [4, Theorem 1.4.8] or [6, Theorem 3.1.1].

Remark 4.3. A C⇤-algebra with a countable approximate identity is called �-unital. Any separable C⇤-
algebra is �-unital, but there exist non-separable �-unital C⇤-algebras. A silly example is B(`2) since it’s
actually unital; a non-silly example is C0(X) where X is a locally compact but not �-compact Hausdor↵
space. Many results that hold in the separable setting can be generalized to the �-unital setting.

There are a few interesting characterizations of a �-unital C⇤-algebra, such as containing a strictly positive

element, which is an element h 2 A such that �(h) > 0 for every nonzero positive � 2 A
⇤. For more on this,

see [9, Section 3.10].

Example 4.4. In K(`2), the projections

Pn : (⇠n)n 7! (⇠1, ..., ⇠n, 0, 0, ...),

form an approximate identity.
For a general Hilbert space, we form the approximate identity for the compact operators by nets of

projections with finite rank where the order is given by the natural order on the projections, i.e. p  q i↵
pq = qp = p.

Exercise 4.5. Determine an approximate identity for C0((0, 1]). (A sketch will do.)

Here is a quick application of approximate units.

Lemma 4.6. Every closed two-sided ideal in a C⇤
-algebra is self-adjoint.
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Proof. Let J be a closed two-sided ideal in A. Then B = J\J⇤ is a C⇤-subalgebra of A such that x⇤
x, xx

⇤ 2 B

for all x 2 J . Let (e�) be an approximate identity for B. Then for any x 2 J , we have x
⇤
x� xx

⇤
e� 2 J and

hence

lim
�

kx⇤ � x
⇤
e�k2 = lim

�

k(x� e�x)(x
⇤ � x

⇤
e�)k

= lim
�

k(xx⇤ � xx
⇤
e�)� e�(xx

⇤ � xx
⇤
e�)k = 0.

Since x
⇤
e� 2 J, it follows that x⇤ 2 J and so J = J

⇤. ⇤
This means that every ideal in a C⇤-algebra is a C⇤-subalgebra, which means that each ideal has an

approximate unit. In fact, more is true. We say a net (a�) in a C⇤-algebra A is quasi-central if lim� ka�b�
ba�k = 0 for every b 2 A. We have the following extension of the above theorem ([4, Theorem I.9.16]).

Theorem 4.7. Every ideal of a C⇤
-algebra has a quasi-central approximate unit.

Exercise 4.8. Suppose A is a C⇤-algebra with closed two-sided ideal J / A and C⇤-subalgebra I ⇢ A such
that I / J . Show that I /A.

An approximate identity will also enable us to prove that the quotient of any C⇤-algebra by a closed
two-sided ideal is again a C⇤-algebra.

Theorem 4.9. Let A be a C⇤
-algebra and J /A. Then A/J is a C⇤

-algebra.

Proof. Since J ⇢ A is a Banach subalgebra, a basic result from functional analysis (cf. [3, Theorems III.4.2
and VII.2.6]) implies that A/J is a Banach algebra under the norm ka + Jk = infx2J ka + xk. (Exercise:
Prove it!) Moreover, from the fact that kbk = kb⇤k for all b 2 A, a two-line calculation shows that ka+Jk =
ka⇤ + Jk for all a 2 A. So, we just check the C⇤-identity for ka+ Jk = infx2J ka+ xk. Let a 2 A and (e�)
an approximate identity for J . First, we claim that ka + Jk = lim� ka � ae�k. Since ae� 2 J for each �,
the  inequality is clear. For the other direction, let ✏ > 0 and x 2 J such that ka+ Jk+ ✏ > ka� xk. By
possibly passing to Ã, we assume A is unital. Then by Exercise 3.11, k1� e�k  1, and

lim
�

ka� ae�k  lim
�

k(a� x)(1� e�)k+ kx� xe�k

 lim
�

ka� xk+ kx� xe�k

 ka� xk < ka+ Jk+ ✏.

Now, we can check the C⇤-norm:

k(a+ J)⇤(a+ J)k = ka⇤a+ Jk = lim
�

ka⇤a(1� e�)k � lim
�

k1� e�kka⇤a(1� e�)k

� lim
�

k(1� e�)aa
⇤(1� e�)k = lim

�

ka(1� e�)k2 = ka+ Jk2

= ka⇤ + Jkka+ Jk � k(a+ J)⇤(a+ J)k.
⇤

Exercise 4.10. Let ⇡ : A ! B be a ⇤-homomorphism between C⇤-algebras. Check that ker(⇡) is a closed
two-sided ideal in A and the quotient map q : A ! A/ ker(⇡) is a ⇤-homomorphism.

Now, we are ready to build on Proposition 1.21 to get a very powerful theorem for ⇤-homomorphisms.

Theorem 4.11. An injective ⇤-homomorphism between C⇤
-algebras is isometric. The image of any ⇤-

homomorphism between C⇤
-algebras is a C⇤

-algebra (in particular, the range of any ⇤-homomorphism between

C⇤
-algebras is closed.

Proof. Recall from Proposition 1.21 that a ⇤-homomorphism � : A ! B between C⇤-algebras is contractive
and for any a 2 A, �(�(a)) ⇢ �(a). We give the proof under the assumption that our C⇤-algebras and our
maps are all unital and leave the adaption to the non-unital setting as an exercise.

Let � : A ! B be an injective ⇤-homomorphism. Note that for any a 2 A, kak2 = ka⇤ak and k�(a)k2 =
k�(a)⇤�(a)k2, so by Theorem 3.10, it su�ces to prove that k�(a)k = kak for a 2 A positive. Suppose
k�(a)k < kak for some positive a 2 A. Note that �(a) � 0 since a = b

⇤
b for some b 2 A, and so

�(a) = �(b)⇤�(b). So, the assumption that k�(a)k < kak is equivalent to the assumption that r(a) := ↵ >

� := r(�(a)). Using the continuous functional calculus, we identify C⇤(a) = C0(�(a)) ⇢ C0((0,↵]) and
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C⇤(�(a)) = C0(�(�(a))) ⇢ C((0,�]). Now, define f 2 C((0,↵]) so that f |(0,�] = 0, f(↵) = 1, and f is a�ne
on [�,↵].

Then
kf(a)k = sup

�2�(a)
|f(�)| = 1,

but
kf(�(a))k = sup

�2�(�(a))
|f(�)| = 0.

In particular, f(a) 6= 0 and f(a) 2 ker�, contradicting � being injective.
Now, suppose ⇡ : A ! B is a ⇤-homomorphism with kernel J = ker(⇡). Then A/J is a C⇤-algebra by

Theorem 4.9. Let q : A ! A/J be the quotient map. Then q is a ⇤-homomorphism and ⇡ factors through
the quotient A/J , i.e. there exists a bijective ⇤-homomorphism ⇢ : A/J ! ⇡(A) given by ⇢(q(a)) = ⇡(a).
(Indeed, this is just the first isomorphism theorem for algebras. The map ⇢ is ⇤-preserving because q and ⇡

are: ⇢(q(a)⇤) = ⇢(q(a⇤)) = ⇡(a⇤) = ⇡(a)⇤ = ⇢(q(a))⇤.)
So, it follows that ⇢ : A/J ! B is an injective ⇤-homomorphism between C⇤-algebras, which by the first

part of this theorem, means that it is isometric. It follows from this that its image ⇡(A) is closed in B. ⇤
Exercise 4.12. Extend this to the general case where the assumptions that A, B, and � are not unital.
Here’s an idea of what to check. If A is not unital, then we can extend � to Ã as we did in Proposition 1.18
to map 1 2 Ã to 1 2 B or 1 2 B̃ depending on whether or not B is unital. If A is unital, then check that
�(1) is the unit in the C⇤-subalgebra C⇤(�(A)) ⇢ B, and we can just replace B with this C⇤-subalgebra in
the proof.

Remark 4.13. There is a class of C⇤-subalgebras called hereditary subalgebras, which generalizes the notion
of ideal. A C⇤-subalgebra A ⇢ B is hereditary if for any positive elements a 2 A and b 2 B, if b  a, then
b 2 A. It turns out that ideals are always hereditary ([?, Theorem 1.5.3]).

Definition 4.14. A representation of a C⇤-algebra A is a ⇤-homomorphism ⇡ : A ! B(H) for some Hilbert
space H. We say a representation ⇡ is non-degenerate if ⇡(A)H is dense in H.

A paradigm example of a degenerate representation is where H decomposes as a nontrivial direct sum
H1 � H2 and ⇡(A) can be realized as a ⇤-subalgebra of operators on B(H1) identified with the operators
whose kernels contain H2.

Remark 4.15. Non-degeneracy is a regular assumption, which avoids some obnoxious pitfalls. Many times
theorems which are phrased for non-degenerate representations still hold without this assumption. The trick
usually amounts to taking a degenerate representation ⇡ : A ! B(H) and to define its restriction to the
closure of ⇡(A)H. Though some delicacy may be required after this, depending on what statement you are
trying to prove. We will point out an example later. (Theorem 11.13)

Exercise 4.16. We say a family of representations {⇡i : A ! B(Hi)}i2I for a C⇤-algebra A is separating

if for any a, b 2 A, there exists i 2 I such that ⇡i(a) 6= ⇡i(b). Define ⇡ : A ! B(�iHi) by ⇡(a) = �i⇡i(a).
Show that ⇡ is a faithful representation, i.e. an isometric ⇤-representation, if the family {⇡i}i2I is separating.

Now, suppose {aj}j2J is a dense subset of A. We cannot conclude from knowing that {⇡i}i2I is separating
for {ai}i2I that ⇡ is faithful (why?). However, if we know that for each j 2 J , there exists i 2 I such that
k⇡i(aj)k = kajk, then we can conclude that ⇡ is faithful (why?).
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