
Chapter 1

Von Neumann Algebras

Lecture Preview: In the first leture, we will cover the Bicommutant Theorem (Theorem 1.2.6) in detail.
To prepare for this, you should familiarize yourself with the strong and weak operator topologies (Defini-
tion 1.1.2), and the commutant (Definition 1.2.1). The second lecture will focus on the structure of group
von Neumann algebras (Section 1.3.3).

1.1 Strong and Weak Operator Topologies

Let H be a Hilbert space. There is a natural (metrizable) topology on B(H) given by the operator norm.
Studying this topology amounts to studying C

⇤-algebras. To study von Neumann algebras, we will need to
consider two new topologies on B(H). There will be several others later on that are also important, but
these first two will su�ce to define a von Neumann algebra.

The formal definitions of these topologies are given below, but from an analytic perspective it is much
more important to understand what it means for a net to converge in these topologies. Let (xi)i2I ⇢ B(H)
be a net and let x 2 B(H). Then (xi)i2I converges to x in the strong operator topology (SOT ) if

lim
i!1

k(x� xi)⇠k = 0 8⇠ 2 H,

and (xi)i2I converges to x in the weak operator topology (WOT ) if

lim
i!1

h(x� xi)⇠, ⌘i = 0 8⇠, ⌘ 2 H.

Viewing H as a metric space under its norm, SOT convergence can be thought of as “pointwise convergence.”
Compare this to convergence under the operator norm, which should be thought of as “uniform convergence.”

Remark 1.1.1. Strong operator topology convergence and weak operator topology convergence are often
referred to in the literature as strong convergence and weak convergence, respectively, but in these notes we
will typically avoid this terminology.

Definition 1.1.2. The strong operator topology (SOT) on B(H) is the topology generated by the basis
consisting of sets of the form

U(x; ⇠1, . . . , ⇠n; ✏) := {y 2 B(H) : k(x� y)⇠jk < ✏, j = 1, . . . , n},

for x 2 B(H), ⇠1, . . . , ⇠n 2 H, and ✏ > 0.
The weak operator topology (WOT) on B(H) is the topology generated by the basis consisting of

sets of the form

U(x; ⇠1, . . . , ⇠n; ⌘1, . . . , ⌘n; ✏) := {y 2 B(H) : | h(x� y)⇠j , ⌘ji | < ✏, j = 1, . . . , n},

for x 2 B(H), ⇠1, . . . , ⇠n, ⌘1, . . . , ⌘n 2 H, and ✏ > 0.
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Operator norm convergence implies SOT convergence, which in turn implies WOT convergence (Exer-
cise 1.1.1), but the converses are not true. Here are some simple counter-examples:

Example 1.1.3. Let m be the Lebesgue measure on R. For a measurable subset S ⇢ R, let the character-
istic function 1S act on B(L2(R,m)) by pointwise multiplication. Then (1[�n,n])n2N SOT-converges to the
identity, but not in operator norm. Indeed, for any f 2 L

2(R,m) and any ✏, there exists N 2 N so that

 Z

R\[�N,N ]
|f |

2
dm

!1/2

< ✏.

Thus, for any n � N we have

��(1� 1[�n,n])f
��
2
=

 Z

R\[�n,n]
|f |

2
dm

!1/2

< ✏.

Thus this sequence of operators SOT-converges to 1. However, 1� 1[�n,n] = 1[�n,n]c is a projection and so
k1[�n,n] � 1k = 1 for all n. ⌅
Example 1.1.4. Consider the following unitary operator on `

2(Z):

(U⇠)(n) := ⇠(n+ 1) ⇠ 2 `
2
.

For n 2 N, let xn := U
n. Then we claim that (xn)n2N WOT-converges to the zero operator but does not

SOT-converge. Indeed, fix ⇠, ⌘ 2 `
2(Z). Let ✏ > 0, then there exists N 2 N su�ciently large so that

0

@
X

n�N

|⇠(n)|2

1

A
1/2

< ✏

 
X

n<�N

|⌘(n)|2
!1/2

< ✏

Then for m � 2N we have

| hxm⇠, ⌘i | 

X

n2Z
|⇠(n+m)||⌘(n)|

=
X

n<�N

|⇠(n+m)||⌘(n)|+
X

n�m�N

|⇠(n)||⌘(n�m)|

 k⇠k✏+ ✏k⌘k.

Thus (xn)n2N WOT-converges to zero. However, since U is a unitary,

kxn⇠k = kU
n
⇠k = k⇠k 8⇠ 2 `

2(Z),

thus (xn)n2N does not SOT-converge to zero. ⌅
You will explore how these topologies interact with the ⇤-algebra structure of B(H) in the exercises, but

let us summarize things here. First, addition and scalar multiplication are both continuous with respect
to both the SOT and WOT (see Exercise 1.1.5). Taking adjoints is continuous with respect to the WOT
but not the SOT (see Exercises 1.1.6 and 1.1.7), though it is SOT continuous on normal operators (see
Exercise 1.1.8). Finally, multiplication is not continuous with respect to either the WOT or the SOT, but
on bounded subsets it is SOT continuous (see Exercises 1.1.9 and 1.1.10).

We leave the proof of the next proposition as an exercise (see Exercise 1.1.11).

Proposition 1.1.5. Let {pi : i 2 I} ⇢ B(H) be a set of pairwise orthogonal projections. If F is the collection
of finite subsets of I ordered by inclusion, then then net

�P
i2F pi

�
F2F

converges in the SOT to a projection
which we denote by

P
i2I pi.
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Exercises

1.1.1. Show that if a net (xi)i2I ⇢ B(H) converges in operator norm to some x 2 B(H), then it converges
in the strong operator topology to x. Show that if a net (xi)i2I ⇢ B(H) converges in the strong operator
topology to some x 2 B(H), then it converges in the weak operator topology to x.

1.1.2. Suppose (xi)i2I ⇢ B(H) converges to x 2 B(H) in the strong operator topology. Show that

kxk  lim sup
i!1

kxik.

1.1.3. Show that (xi)2I ⇢ B(H) converges to x 2 B(H) in the strong operator topology if and only if
((x� xi)⇤(x� xi))i2I converges to zero in the weak operator topology.

1.1.4. Let (X,⌦, µ) be a �-finite measure space and let f 2 L
1(X,µ). Show that a net (fi)i2I ⇢ L

1(X,µ)
converges to f in the WOT as pointwise multiplication operators in B(L2(X,µ)) if and only if the net
converges to f as elements of the dual space L

1(X,µ)⇤.

1.1.5. Let (xi)i2I , (yi)i2I ⇢ B(H) be nets indexed by the same directed set and let x, y 2 B(H).

(a) Suppose (xi)i2I and (yi)2I converge to x and y, respectively, in the SOT. Show that for any ↵ 2 C,
the net (↵xi + yi)i2I converges to ↵x+ y in the SOT.

(b) Prove the corresponding statement for the WOT.

1.1.6. If (xi)i2I ⇢ B(H) converges to x 2 B(H) in the WOT, show that (x⇤

i )i2I converges to x
⇤ in the

WOT.

1.1.7. Consider the shift operator S on `
2(N):

S(x1, x2, . . .) = (0, x1, x2, . . .).

Show that ((S⇤)n)n2N converges to zero in the SOT, but (Sn)n2N does not.

1.1.8. In this exercise you will show that taking adjoints of normal operators is continuous with respect to
the strong operator topology.

(a) Show that y 2 B(H) is normal if and only if ky⇠k = ky
⇤
⇠k for all ⇠ 2 H.

(b) Suppose (xi)i2I ⇢ B(H) is a net of normal operators converging to x 2 B(H) in the strong operator
topology. Show that x is also normal.

(c) With (xi)i2I and x as in the previous part, show that (x⇤

i )i2I converges to x
⇤ in the strong operator

topology.

1.1.9. Let (xi)i2I , (yi)i2I ⇢ B(H) be nets indexed by the same directed set that converge in the strong
operator topology. Show that if supi2I kxik < 1, then (xiyi)i2I converges in the strong operator topology.

1.1.10. Find an example of bounded nets (xi)i2I , (yi)i2I ⇢ B(H) converging to x, y 2 B(H), respectively,
in the WOT but such that (xiyi)i2I does not converge to xy in the WOT. [Hint: consider Example 1.1.4.]

1.1.11. Prove Proposition 1.1.5: For each i 2 I let Ki := piH and define

K := span
[

i2I

Ki.

Letting p 2 B(H) be the projection onto K, show that the net (
P

i2F pi)F2F converges in the SOT to p.
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1.2 Bicommutant Theorem

Definition 1.2.1. Let H be a Hilbert space. For x, y 2 B(H), the commutator of x and y is denoted

[x, y] := xy � yx.

For a subset X ⇢ B(H), the commutant of X, denoted X
0, is the set

X
0 := {y 2 B(H) : [x, y] = 0 8x 2 X}.

The double commutant of X is the set
X

00 := (X 0)0

If X ⇢ Y ⇢ B(H) is an intermediate subset, we call X 0
\ Y the relative commutant of X in Y .

Observe that, regardless of the structure of X, X 0 is always a unital algebra. If X is closed under taking
adjoints, then X

0 is a ⇤-algebra. It also easily checked (algebraically) that:

X ⇢ X
00 = (X 00)00 = · · ·

X
0 = (X 0)00 = · · ·

Note that inclusions are reversed under the commutant: X ⇢ Y implies Y
0
⇢ X

0. Remarkably, the purely
algebraic definition of the commutant has analytic implications. This culminates in The Bicommutant
Theorem (Theorem 1.2.6).

Example 1.2.2. Let H be a Hilbert space. If 1 2 B(H) is the identity operator, then for any ↵ 2 C and
any x 2 B(H) one has [x,↵1] = 0. Consequently, {C1}0 = B(H).

Conversely, one also has B(H)0 = C1, which you will show in Exercise 1.2.1. As a special case of this,
consider H = Cn so that B(H) = Mn(C). To see that Mn(C)0 = C1, consider the matrices Ei,j 2 Mn(C)
for i, j = 1, . . . , n, where Ei,j is the matrix with a one in the (i, j)-entry and zeros elsewhere. Note that
Ei,jEk,` = �j=kEi,`. Also, observe that that for any A = (Ai,j)ni,j=1 2 Mn(C),

Ei,iAEj,j = Ai,jEi,j

Thus if A 2 Mn(C)0, then
Ai,jEi,j = Ei,iAEj,j = Ei,iEj,jA = �i=jEi,jA.

This implies Ai,j = 0 unless i = j; that is, A is diagonal. We also have for any i, j = 1, . . . , n

Ai,iEi,i = Ei,iAEi,i = Ei,jEj,iAEi,i = Ei,jAEj,i = Ei,jEj,jAEj,jEj,i = Aj,jEi,jEj,jEj,i = Aj,jEi,i.

So all the diagonal entries of A agree and so A = A1,11 2 C1. ⌅

Example 1.2.3. For (X,⌦, µ) a �-finite measure space, view L
1(X,µ) ⇢ B(L2(X,µ)) where f 2 L

1(X,µ)
acts by pointwise multiplication. Then L

1(X,µ)0 = L
1(X,µ), which you will show in Exercise 1.2.3. As

a special case of this, consider N equipped with the counting measure. For n 2 N, let en 2 `
2(N) be the

function defined by en(k) = �n=k. Note that en 2 `
1(N) as well, and that for f 2 `

2(N) one has

[enf ](k) = en(k)f(k) = �n=kf(n) = [f(n)en](k),

that is: enf = f(n)en. Now, if T 2 `
1(N)0 and f 2 `

2(N) we have

[T (f)](n) = en(n)[T (f)](n) = [enT (f)](n) = [T (enf)](n) = f(n)[T (en)](n).

So if we define g : N ! C by g(n) := [T (en)](n), then T (f) = gf . Also note that

|g(n)| = |[T (en)](n)|  kT (en)k2  kTkkenk2  kTk.

Thus g 2 `
1(N). ⌅
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Definition 1.2.4. Let K ⇢ H be a subspace. For x 2 B(H), we say K is invariant for x if xK ⇢ K. We
say K is reducing for x if it is invariant for x and x

⇤. For a subset X ⇢ B(H), we say K is invariant (resp.
reducing) for X if it is invariant (resp. reducing) for all x 2 X.

Note that if X is closed under taking adjoints, then a subspace is invariant for X if and only if it is
reducing for X.

Lemma 1.2.5. Let M ⇢ B(H) be a ⇤-subalgebra. Let K ⇢ H be a closed subspace with p 2 B(H) the
projection onto K. Then K is reducing for M if and only if p 2 M

0.

Proof. Assume K is reducing M . Let x 2 M and ⇠ 2 K. Then x⇠ 2 K so that

xp⇠ = x⇠ = px⇠.

If ⌘ 2 K
?, we have

hx⌘, ⇠i = h⌘, x
⇤
⇠i = 0,

since x
⇤
⇠ 2 K. Thus x⌘ 2 K

? and so xp⌘ = 0 = px⌘. It follows that xp = px so that p 2 M
0.

Conversely, suppose p 2 M
0. Let x 2 M and ⇠ 2 K. Then for ⌘ 2 K

? we have

0 = hx⇠, p⌘i = hpx⇠, ⌘i = hxp⇠, ⌘i = hx⇠, ⌘i .

Thus x⇠ 2 (K?)? = K. Hence MK ⇢ K so that K is reducing for M .

We have the following theorem due to von Neumann from 1929.

Theorem 1.2.6 (The Bicommutant Theorem). For a unital ⇤-subalgebra M ⇢ B(H), one has

M
SOT

= M
WOT

= M
00

Proof. We will show the following series of inclusions:

M
SOT

⇢ M
WOT

⇢ M
00
⇢ M

SOT
.

The first inclusion follows the fact that SOT-convergence implies WOT-convergence.

Now, suppose x 2 M
WOT

, say with a net (xi)i2I ⇢ M converging to x in the WOT. Let y 2 M
0, then

for any ⇠, ⌘ 2 H we have

hxy⇠, ⌘i = lim
i!1

hxiy⇠, ⌘i = lim
i!1

hyxi⇠, ⌘i = hyx⇠, ⌘i .

Since ⇠, ⌘ 2 H were arbitrary, we have xy = yx and thus x 2 M
00.

Finally, suppose x 2 M
00. Note that to show x 2 M

SOT
, it su�ces to show for all n 2 N, ⇠1, . . . , ⇠n 2 H,

and ✏ > 0 that there exists y 2 M with

k(x� y)⇠jk < ✏ j = 1, . . . , n.

Fix n 2 N, ⇠1, . . . , ⇠n 2 H, and ✏ > 0. For y 2 M , define ⇡(y) 2 B(H�n) by

⇡(y)(⌘1, . . . , ⌘n) := (y⌘1, . . . , y⌘n).

If you view H
�n as column vectors over H of height n, then ⇡(y) corresponds to the matrix

0

B@
y 0
...

. . .
...

0 y

1

CA .

With this perspective, one can show that ⇡(M)0 consists of matrices of the form
0

B@
a1,1 · · · a1,n

. . .
an,1 · · · an,n

1

CA
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where ai,j 2 M
0 for i, j = 1, . . . , n, and that ⇡(x) commutes with all such matrices since x 2 M

00 (see
Exercise 1.2.6).

Now, let S denote the closure of the subspace {⇡(y)(⇠1, . . . , ⇠n) : y 2 M} ⇢ H
�n. Then S is reducing

for ⇡(M), and so if p 2 B(H�n) is the projection onto S, then Lemma 1.2.5 implies p 2 ⇡(M)0 and so
p⇡(x) = ⇡(x)p. Note that 1 2 M implies (⇠1, . . . , ⇠n) 2 S. Thus we have

⇡(x)(⇠1, . . . , ⇠n) = ⇡(x)p(⇠1, . . . , ⇠n) = p⇡(x)(⇠1, . . . , ⇠n) 2 S.

The definition of S then implies there exists y 2 M with

k⇡(x)(⇠1, . . . , ⇠n)� ⇡(y)(⇠1, . . . , ⇠n)k < ✏.

Unpacking our notation, we see that

k⇡(x)(⇠1, . . . , ⇠n)� ⇡(y)(⇠1, . . . , ⇠n)k = k((x� y)⇠1, . . . , (x� y)⇠n)k =

0

@
nX

j=1

k(x� y)⇠jk
2

1

A
1/2

.

Combining this with the previous inequality yields k(x� y)⇠jk < ✏ for each j = 1, . . . , n.

The double commutant is given by a purely algebraic definition, whereas the SOT and WOT closures
are purely analytic. Their equality in the above theorem tells us the following objects lie in the confluence
of algebra and analysis:

Definition 1.2.7. We say a unital ⇤-subalgebra 1 2 M ⇢ B(H) is a von Neumann algebra if M = M
00

(equivalently, M = M
SOT

or M = M
WOT

).

Recall from Example 1.2.2 that B(H)0 = C1 and that C10 = B(H). Hence B(H)00 = B(H) and C100 = C1
are examples of von Neumann algebras. Another example is L1(X,µ) for a �-finite measure space (X,⌦, µ),
since

L
1(X,µ)00 = L

1(X,µ)0 = L
1(X,µ)

by Example 1.2.3. We will explore these and other examples in greater detail in the next section, but first
we must define a few related concepts.

From the observation following Definition 1.2.1, we see that for M a von Neumann algebra, M 0 is also a
von Neumann algebra. Consequently, so is M \M

0 we which we give a name to here:

Definition 1.2.8. For M a von Neumann algebra, the center of M , denoted Z(M), is the von Neumann
subalgebra M \M

0. If Z(M) = C1, we say M is a factor. If Z(M) = M , we say M is abelian.

For a Hilbert space H, B(H) is a factor by Example 1.2.2, while for a �-finite measure space (X,⌦, µ),
L
1(X,µ) is abelian. There are examples where C1 ( Z(M) ( M , so factors and abelian von Neumann

algebras only represent the two extremes on how much commutativity a von Neumann algebra permits.
We conclude by presenting a notion of what it means for two von Neumann algebras to be isomorphic.

Definition 1.2.9. We say two von Neumann algebras M1 ⇢ B(H1) and M2 ⇢ B(H2) are spatially
isomorphic if there exists a unitary operator U : H1 ! H2 such that UM1U

⇤ = M2. In this case we call
M1 3 x 7! UxU

⇤
2 M2 a spatial isomorphism.

Exercises

1.2.1. Let H be a Hilbert space. Given ⇠, ⌘ 2 H, recall that the rank one operator ⇠ ⌦ ⌘̄ 2 B(H) is defined
by

(⇠ ⌦ ⌘̄)(⇣) := h⇣, ⌘i ⇠.

(a) Show that x 2 B(H) commutes with ⇠ ⌦ ⌘̄ if and only if there exists � 2 C with ⇠ 2 ker(x � �) and
⌘ 2 ker(x⇤

� �̄).

(b) Show that FR(H)0 = C and that B(H)0 = C.

7



1.2.2. For (X,⌦, µ) a �-finite measure space and f 2 L
1(X,µ), show that

L
2(X,µ) 3 g 7! fg

defines a bounded linear operator on L
2(X,µ) with norm equal to kfk1.

[Hint: for ✏ > 0 consider {x 2 X : |f(x)| � kfk1 � ✏}.]

1.2.3. For (X,⌦, µ) a �-finite measure space, view L
1(X,µ) ⇢ B(L2(X,µ)) where f 2 L

1(X,µ) acts by
pointwise multiplication. Then L

1(X,µ)0 = L
1(X,µ). [Hint: first consider the case when µ is finite.]

1.2.4. Let H be a Hilbert space, K ⇢ H a closed subspace, and p 2 B(H) the projection onto K.

(a) Show that K is invariant for x 2 B(H) if and only if pxp = xp.

(b) Show that K is reducing for x 2 B(H) if and only if xp = px.

1.2.5. Let H be a Hilbert space and fix n 2 N. For all T 2 B(H�n), show that there exist Ti,j 2 B(H) for
i, j = 1, . . . , n such that

T (⇠1, . . . , ⇠n) =

0

B@
T1,1 · · · T1,n
...

. . .
...

Tn,1 · · · Tn,n

1

CA

0

B@
⇠1
...
⇠n

1

CA

(In the above we are not distinguishing between row and column vectors.) Thus B(H�n) can be identified
with n⇥ n matrices with entries in B(H).

1.2.6. For x 2 B(H) and A = (Ai,j)ni,j=1 2 Mn(C), define x⌦A 2 B(H�n) by

x⌦A :=

0

B@
A1,1x · · · A1,nx

...
. . .

...
An,1x · · · An,nx

1

CA .

Let X ⇢ B(H), and for each i, j = 1, . . . , n let Ei,j 2 Mn(C) be the matrix with a one in the (i, j)-entry and
zeros elsewhere.

(a) Show that

{x⌦ In : x 2 X}
0 =

8
<

:

nX

i,j=1

yi,j ⌦ Ei,j : yi,j 2 X
0
i, j = 1, . . . , n

9
=

; .

(b) Show that 8
<

:

nX

i,j=1

yi,j ⌦ Ei,j : yi,j 2 X
0
i, j = 1, . . . , n

9
=

;

0

= {x 2 ⌦In : x 2 X
00
}.

1.2.7. Let H1, . . . ,Hn be Hilbert spaces, and for each j = 1, . . . , n define ⇡j : B(Hj) ! B(H1 � · · · �Hn)
by

⇡j(x)(⇠1, . . . , ⇠n) = (0, . . . , 0, x⇠j , 0, . . . , 0) (⇠1, . . . , ⇠n) 2 H1 � · · ·�Hn.

(You can also think of ⇡j(x) as an n⇥ n matrix with x in the (j, j)-entry and zeros elsewhere).

(a) Show that ⇡j is an isometric ⇤-homomorphism for each j = 1, . . . , n.

(b) Let Mj ⇢ B(Hj) be a von Neumann algebra for each j = 1, . . . , n. Show that

M1 � · · ·�Mn =

8
<

:

nX

j=1

⇡j(xj) : xj 2 Mj , j = 1, . . . , n

9
=

;

is a von Neumann algebra. (It called the direct sum of M1, . . . ,Mn.)
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(c) Show that Z(M1 � · · ·�Mn) = Z(M1)� · · ·� Z(Mn).

(d) Show that M1 � · · ·�Mn is not a factor for n � 2.

1.2.8. Show that a von Neumann algebra M is abelian if and only if M ⇢ M
0.

1.2.9. An abelian von Neumann algebra A ⇢ B(H) is called maximal abelian if A ⇢ B ⇢ B(H) for
another abelian von Neumann algebra B implies A = B. Show that an abelian von Neumann algebra A is
maximal abelian if and only if A0 = A.

1.3 First Examples

1.3.1 B(H) and Matrix Algebras

For any Hilbert space H, we saw above that B(H) is always a von Neumann algebra and a factor. In
particular, if H is finite dimensional with d := dim(H), then B(H) is simply the matrix algebra Md(C).
Though an elementary example, Md(C) will eventually inform a great deal of our intuition about von
Neumann algebras. We highlight a few important features below.

As factors, matrix algebras are as noncommutative as a von Neumann algebra can be. They also contain
a lot of projections. For each pair i, j = 1, . . . , d let Ei,j 2 Md(C) be the matrix with a one in the (i, j)-entry
and zeros elsewhere. Then Ei,i is projection for each i = 1, . . . , n and so is any sum of these matrices (see
also Exercise 1.3.1).

Recall that the unnormalized trace on Md(C) is a linear functional Tr: Md(C) ! C defined as

Tr(A) =
dX

i=1

Ai,i.

The trace is invariant under cyclic permutation: Tr(AB) = Tr(BA) for all A,B 2 Md(C). In fact, up to
a scalar, it is the unique linear functional on Md(C) with this property (see Exercise 1.3.2). Note that if
{e1, . . . , ed} is the standard basis for Cd, then

Tr(A) =
dX

i=1

hAei, eii .

In fact, the standard basis in the above formula can be replaced with any orthonormal basis {f1, . . . , fd}

for Cd. This is because if U is the unitary matrix whose columns are f1, . . . , fd, then Uei = fi for each
i = 1, . . . , d. Consequently

dX

i=1

hAfi, fii =
dX

i=1

hAUei, Ueii =
dX

i=1

hU
⇤
AUei, eii = Tr(U⇤

AU) = Tr(AUU
⇤) = Tr(A).

One can even define a trace for B(H) when H is infinite dimensional, but it will only be well-defined on the
trace-class operators, which we revisit in Section 3.1.

1.3.2 Measure Spaces

For (X,⌦, µ) a �-finite measure space, we saw above that L
1(X,µ) ⇢ B(L2(X,µ)) is an abelian von

Neumann algebra. In fact, it is maximal abelian in the sense that if L1(X,µ) ⇢ A ⇢ B(H) for an abelian
von Neumann algebra A, then A = L

1(X,µ) (see Exercises 1.2.3 and 1.2.9). As with matrix algebras,
L
1(X,µ) will also eventually inform a great deal of our intuition. Indeed, it turns out that all abelian von

Neumann algebras are of this form and we will see a partial proof of this in Section 2.2.
Despite the fact that L1(X,µ) and Md(C) are radically di↵erent in terms of commutativity, there are still

important similarities. L1(X,µ) also has an abundence of projections. Indeed, for any measurable E ⇢ X,
1E 2 L

1(X,µ) is a projection. In fact any projection in L
1(X,µ) is of this form (see Exercise 1.3.3).

Consequently, the linear span of projections is exactly the set of µ-measurable simple functions, which we
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know from measure theory are k · k1 norm dense in L
1(X,µ). Using Exercise 1.2.2, we can then deduce

that the linear span of projections is actually operator norm dense in L
1(X,µ). Additionally, when µ is a

finite measure, L1(X,µ) ⇢ L
1(X,µ) and so

L
1(X,µ) 3 f 7!

Z

X
f dµ

is a natural linear functional on this von Neumann algebra, similar to the trace on Md(C).

1.3.3 Group von Neumann Algebras

Let � be a countable discrete group, which we can use to define a Hilbert space `
2(�). Consider the left

regular representation � : � ! B(H):

[�(g)⇠](h) = ⇠(g�1
h) ⇠ 2 `

2(�), h 2 �

Equivalently, if for g 2 � we let �g 2 `
2(�) be the function �g(h) = �g=h, then �(g)�h = �gh for all h 2 �. The

operators �(g) are in fact unitary operators with �(g)⇤ = �(g�1), and in particular if e 2 � is the identity
then �(e) = 1. Denote C[�(�)] := span�(�), which we note is a unital ⇤-subalgebra of B(`2(�)).

Definition 1.3.1. The group von Neumann algebra for � is L(�) := C[�(�)]00.

These von Neumann algebras can be abelian, factors, or something in between. If � is an abelian group,
then C[�(�)] and consequently L(�) are abelian. To understand when L(�) is a factor, we require a definition:

Definition 1.3.2. We say that � is an infinite conjugacy class (i.c.c.) group if the conjugacy class
{h

�1
gh : h 2 h 2 �} is infinite for all g 2 � \ {e}.

Example 1.3.3. ,

(1) For n 2 N, the free group with n generators, Fn = ha1, . . . , ani, is an i.c.c. group.

(2) Let S1 denote the group of bijections ⇡ : N ! N such that ⇡(n) = n for all but finitely many n 2 N.
This group can be viewed as the union of all permutation groups Sn, n 2 N, where Sn ,! Sn+1 by
fixing n+ 1. Then S1 is an i.c.c. group.

(3) Any finite or abelian group is not an i.c.c. group. ⌅

You will show in Exercise 1.3.7 that L(�) is a factor if and only if � is an i.c.c. group.
As with our previous examples, L(�) admits a natural linear functional ⌧ : L(�) ! C defined by

⌧(x) = hx�e, �ei .

Since ⌧(�(g)) = �g=e, ⌧ encodes the group relations; that is, g1g2 · · · gn = e for g1, . . . , gn 2 � if and only if
⌧(�(g1) · · ·�(gn)) = 1. Also, like the trace onMd(C), ⌧ is invariant under cyclic permutations: ⌧(xy) = ⌧(yx)
for all x, y 2 L(�) (see Exercise 1.3.8). Because if this we call ⌧ the trace on L(�).

In constructing the group von Neumann algebra, one could instead use the right regular representation:

[⇢(g)⇠](h) = ⇠(hg) ⇠ 2 `
2(�), h 2 �,

in which case one denotes by R(�) := C[⇢(�)]00. There is a very natural relationship between L(�) and
R(�) (see Theorem 1.3.7), but in order to witness it we require some additional terminology. Recall that for
⇠, ⌘ 2 `

2(�) their convolution is defined by

(⇠ ⇤ ⌘)(g) =
X

h2�

⇠(h)⌘(h�1
g).

From the Cauchy–Scwarz inequality, we have |(⇠ ⇤ ⌘)(g)|  k⇠k2k⌘k2 for all g 2 �. So ⇠ ⇤ ⌘ 2 `
1(G) with

k⇠ ⇤ ⌘k1  k⇠k2k⌘k2.
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Definition 1.3.4. We say ⇠ 2 `
2(�) is a left (resp. right) convolver if ⇠ ⇤ ⌘ 2 `

2(�) (resp. ⌘ ⇤ ⇠ 2 `
2(�))

for all ⌘ 2 `
2(�). Denote the linear operator ⌘ 7! ⇠ ⇤ ⌘ (resp. ⌘ 7! ⌘ ⇤ ⇠) by �(⇠) (resp. ⇢(⇠)). Denote

LC(�) := {�(⇠) : ⇠ is a left convolver} and RC(�) := {⇢(⇠) : ⇠ is a right convolver}.

Observe that �(�g) = �(g) and ⇢(�g) = ⇢(g). We claim that �(⇠) is bounded for any left convolver ⇠. By
the Closed Graph Theorem, it su�ces to show that if (⌘n)n2N ⇢ `

2(�) satisfies ⌘n ! 0 and �(⇠)(⌘n) ! ⇣,
then ⇣ = 0. Since the k · k2 norm dominates the k · k1 norm, we see

k⇣k1 = lim
n!1

k�(⇠)(⌘n)k1 = lim
n!1

k⇠ ⇤ ⌘nk1  lim sup
n!1

k⇠k2k⌘nk2 = 0.

Thus ⇣ = 0 and so �(⇠) is bounded. A similar argument shows that ⇢(⇠) is bounded for any right convolver.
Hence LC(�), RC(�) ⇢ B(`2(�)).

Lemma 1.3.5. ⇠ 2 `
2(�) is left (resp. right) convolver if and only if there exists c > 0 so that k⇠⇤k2  ckk2

(resp. k ⇤ ⇠k2  ckk2) for all finitely supported  2 `
2(�).

Proof. We will consider only left convolvers, since the proof for right convolvers is similar. The “only if”
direction follows from the discussion preceding the lemma, where c = k�(⇠)k.

Conversely, define for finitely supported  2 `
2(�) define x := ⇠ ⇤ . The hypothesis implies that x can

be extended to a bounded operator on `
2(�), which we also denote by x. Fix ⌘ 2 `

2(�). Given ✏ > 0 there
is a finite subset F ⇢ � satisfying X

g2�\F

|⌘(g)|2 < ✏
2
.

In other words, if  := ⌘1F , then k⌘ � k2 < ✏. Since  is finitely supported, we have x = ⇠ ⇤  and so we
estimate

k⇠ ⇤ ⌘ � x⌘k1  k⇠ ⇤ ⌘ � xk1 + kx(� ⌘)k1

 k⇠ ⇤ (⌘ � )k1 + kx(� ⌘)k2

 k⇠k2k⌘ � k2 + kxkk� ⇠k2 < (k⇠k2 + kxk)✏.

Since ✏ was arbitrary, we have ⇠ ⇤ ⌘ = x⌘ 2 `
2(�). Hence ⇠ is a left convolver.

Proposition 1.3.6. LC(�) and RC(�) are von Neumann algebras.

Proof. We will only consider LC(�), the proof for RC(�) being similar. We also leave checking that LC(�)
is a unital ⇤-algebra as an exercise (see Exercise 1.3.9). By the Bicommutant Theorem, it su�ces to show
LC(�) is SOT closed. Let (⇠i)i2I ⇢ `

2(�) be a net of left convolvers such that (�(⇠i))i2I converges to some
x 2 B(`2(�)) in the SOT. Observe that �(⇠i)�e = ⇠i, so if we set ⇠ := x�e then ⇠i = �(⇠i)�e ! x�e = ⇠.
Using this and the SOT convergence of (�(⇠i))i2I to x, we have for any ⌘ 2 `

2(�) that

k⇠ ⇤ ⌘ � x⌘k1  k⇠ ⇤ ⌘ � ⇠i ⇤ ⌘k1 + k⇠i ⇤ ⌘ � x⌘k1  k⇠ � ⇠ik2k⌘k2 + k(�(⇠i)� x)⌘k2 ! 0.

Thus ⇠ ⇤ ⌘ = x⌘ 2 `
2(�), which implies ⇠ is a left convolver and that �(⇠) = x. Hence x 2 LC(�) and LC(�)

is SOT closed.

Theorem 1.3.7. R(�) = L(�)0 and L(�) = R(�)0.

Proof. We begin by showing

L(�) ⇢ LC(�) ⇢ RC(�)0 ⇢ R(�)0 ⇢ LC(�).

For any g 2 �, �(g) = �(�g) 2 LC(�). Hence L(�) ⇢ LC(�)00 = LC(�) by Proposition 1.3.6, which gives the
first inclusion. Note that a symmetric argument implies R(�) ⇢ RC(�), and so taking commutants yields
the third inclusion. The second inclusion follows from Exercise 1.3.10. Let x 2 R(�)0 and set ⇠ := x�e. Then
for any g 2 � we have

x�g = x(⇢(g)�e) = ⇢(g)(x�e) = ⇢(g)⇠ = ⇠ ⇤ �g,
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where the last equality follows from a direct computation. Consequently, for any finitely supported  2 `
2(�)

we have k⇠ ⇤ k2 = kxk2  kxkkk2. Lemma 1.3.5 therefore implies that ⇠ is a left convolver. The above
computation shows x�g = ⇠ ⇤ �g = �(⇠)�g, and since such vectors densely span `

2(�) we have x = �(⇠). This
gives the last inclusion.

The inclusions established above show, LC(�) = RC(�)0 = R(�)0. A symmetric argument yields
RC(�) = LC(�)0 = L(�)0. Using the Bicommutant Theorem, these equalities imply

R(�) = (R(�)0)0 = LC(�)0 = L(�)0.

Taking commutants then gives R(�)0 = L(�).

Remark 1.3.8. If G is a locally compact group (e.g. R), it is still possible to define L(G) using the left
regular representation of G on L

2(G,µ), where µ the left-invariant Haar measure on G. However, in the
mini-courses we will restrict ourselves to the discrete case.

Group von Neumann algebras remain far from fully understood. On the one hand, by a deep result of
Alain Connes, all amenable i.c.c. groups yield the same group von Neumann algebra. This von Neumann
algebra (which we will define by other means in a later chapter) is called the hyperfinite II1 factor, but we
will not have time in the mini-course to delve into Connes’ proof.

On the other hand, the famous Free Group Factor Isomorphism Problem, which is still open, asks whether or
not L(Fn) ⇠= L(Fm) for n 6= m, where Fk is the free group with k generators. A very active area of research
in von Neumann algebras is focused on how much of � is “rememebered” by L(�). The best results to date
have relied on a collection of techniques known as Popa’s deformation/ridigity theory.

Exercises

1.3.1. Consider the following 2⇥ 2 matrices:
✓

1 0
0 0

◆
,

✓
0 0
0 1

◆
,

1
p
2

✓
1 1
1 1

◆
,

1
p
2

✓
1 �i

i 1

◆
.

Show that they are all projections and that their span is all of M2(C). Can you find 9 projections in M3(C)
that span?

1.3.2. Suppose ' : Md(C) ! C is a linear functional satisfying '(AB) = '(BA) for all A,B 2 Md(C). Show
that ' = '(1) 1nTr. [Hint: show that '(Ei,j) = 0 for i 6= j and that '(Ei,i) does not depend on i = 1, . . . , n.]

1.3.3. For f 2 L
1(X,µ) ⇢ B( L2(X,µ)), show that f is a projection if and only if f = 1E for some

measurable E ⇢ X. [Hint: show that µ{x 2 X : f(x) 62 {0, 1}} = 0.]

1.3.4. Let � be a discrete group with left regular representation � : � ! B(`2�). For g 2 �, show that �(g)
is a unitary operator with �(g)⇤ = �(g�1).

12

https://www.jstor.org/stable/1971057?seq=1
https://www.jstor.org/stable/1971057?seq=1
https://en.wikipedia.org/wiki/Amenable_group


1.3.5. Verify the claims in Example 1.3.3.

1.3.6. Let � be an infinite countable discrete group. Let (gn)n2N ⇢ � be a sequence that never repeats.
Show that the sequence of unitaries (�(gn))n2N converges to zero in the WOT.

1.3.7. Let � be a countable discrete group.

(a) For x 2 L(�) and g 2 �, show that
� 3 h 7!

⌦
x�g�1h, �h

↵

is a constant map.

(b) Denote the value of the constant map in the previous part by cg(x). Show that

x�e =
X

g2�

cg(x)�g,

and hence
P

g |cg(x)|
2
< 1.

(c) For x 2 Z(L(�)), show that cg(x) = ch�1gh(x) for all g, h 2 �, and that cg(x) = 0 whenever
{h

�1
gh : h 2 �} is infinite.

(d) Prove that L(�) is a factor if and only if � is an i.c.c. group.

1.3.8. Let � be a countable discrete group and let ⌧ be the trace on L(�).

(a) Show that ⌧(�(g)�(h)) = ⌧(�(h)�(g)) for all g, h 2 �.

(b) Show that ⌧ is WOT continuous.

(c) Prove that ⌧(xy) = ⌧(yx) for all x, y 2 L(�).

1.3.9. Let � be a countable discrete group. In this exercise, you will show that LC(�) and RC(�) are
⇤-algebras.

(a) Show that 1 = �(e) 2 LC(�) \RC(�) where e 2 � is the identity.

(b) If ⇠, ⌘ 2 `
2(�) are left (resp.) convolvers, show that ⇠ ⇤ ⌘ is a left (resp.) convolver.

(c) For �(⇠),�(⌘) 2 LC(�), show that �(⇠)�(⌘) = �(⇠ ⇤ ⌘) 2 LC(�).

(d) For ⇢(⇠), ⇢(⌘) 2 RC(�), show that ⇢(⇠)⇢(⌘) = ⇢(⇠ ⇤ ⌘) 2 RC(�).

1.3.10. For a left convolver ⇠ and a right convolver ⌘, show that �(⇠)⇢(⌘) = ⇢(⌘)�(⇠).
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