
2 KRISTIN COURTNEY AND ELIZABETH GILLASPY

1. A first look at C⇤-algebras

Preview of Lecture: To help guide your reading, we indicate here which of the following material we will
address in lecture and which we will assume familiarity with:

The main goal in this lecture is proving the Gelfand-Naimark theorem for commutative C⇤-algebras
(Theorem 2.1) and introducing the Functional Calculus (Corollary 2.18).

To that end, we will use without proof all of the results in Section 1. We will introduce the unitization
from Section 1, but with more focus on the intuition in Remark 1.17.

From Section 3, we use without proof the correspondence between maximal ideals and characters estab-
lished in Definition 2.2 - Corollary 2.6. We will also use without proof the fact (Proposition 2.7) that the
character space (i.e. spectrum) of a C⇤-algebra is a weak⇤-compact subset of the unit ball of the dual of the
C⇤-algebra.

We will prove Lemma 2.12 and assume its corollary, Lemma 2.13, to complete the proof of Theorem 2.1.
However, the proof in the lecture will look a little di↵erent from the notes. In particular, we will consider
the theory in the unital setting first and then explain how to get to the non-unital setting at the end.

Proposition 2.16 and Corollary 2.17 establish the important fact that the spectrum of an element in a
C⇤-algebra is independent of the ambient unital C⇤-algebra. However, we will bypass this argument in lecture
and go straight for a description of the correspondence in the Functional Calculus (Corollary 2.18).

In a Banach space, there is often additional algebraic structure, in particular multiplication.

Definition 1.1. A Banach ⇤-algebra A is a multiplicative involutive Banach space whose norm satisfies the
following:

kabk  kakkbk
for all a, b 2 A.

Ideally, we’d like involution to also be isometric. This and other magical results follow from the additional
assumption that the norm k · k on A satisfies the C⇤

-identity:

ka⇤ak = kak2

for all a 2 A. It follows from this that

kak2 = ka⇤ak  ka⇤kkak,

and hence that kak  ka⇤k  ka⇤⇤k = kak.

Definition 1.2. A C⇤
-algebra is a Banach ⇤-algebra whose norm satisfies the C⇤-identity.

Remark 1.3. Calling these C⇤-algebras is already highly suggestive. In fact, when they were first introduced,
they were called B

⇤-algebras, and the notion of C⇤-algebra was reserved for norm closed ⇤-subalgebras of
B(H). In the coming days, we shall justify calling these C⇤-algebras, but for the sake of not encouraging
archaic terminology, we take the privilege before we earn it.

Recall from Exercise 7.32 in the Day 1 lectures that the norm on B(H) satisfies the C⇤-identity, meaning
any closed self-adjoint subspace of B(H) is a C⇤-algebra. These are known as concrete C⇤

-algebras.

Example 1.4. Recall the unilaterial shift S 2 B(`2(N)) from Example 7.19 in the Prerequisite Notes. The
norm closure of the ⇤-algebra generated by S in B(`2(N)) is a C⇤-algebra often called the Toeplitz algebra.

Exercise 1.5. Let X be a locally compact Hausdor↵ topological space. We denote by C0(X) the space
of all continuous functions on X vanishing at infinity. Show this is a C⇤-algebra with involution given by
complex conjugation and norm given by the sup norm.

Example 1.6. Consider the C⇤-algebra C(T) consisting of all continuous functions on the compact Hausdor↵
space T = {� 2 C : |�| = 1} (sometimes denoted S

1). (Why don’t we say C0(T)?) It follows from the
Stone-Weierstraß approximation theorem ([3, I.5,6]) that Laurent polynomials, i.e. polynomials of the formP

n

k=�n
↵nz

n, are dense in C(T). So, C(R) is actually the C⇤-algebra generated by the function f 2 C(R)
given by f(z) = z.
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As is often the case, C⇤-algebras are a little more friendly to work with when they have an identity element
(also called a unit). If 1 2 A is the identity, then

(1) 1⇤ = 1⇤1 = 11⇤ = 1, and
(2) k1k = 1.

Analogously with elements in B(H) (in fact, we will see soon that it is more than an analogy), we call an
element a in a C⇤-algebra A

• Normal if a⇤a = aa
⇤,

• Self-Adjoint if a = a
⇤,

• a Projection if a = a
⇤ = a

2,
• a Unitary if a⇤a = aa

⇤ = 1,
• an Isometry if a⇤a = 1,
• a partial isometry if a = aa

⇤
a.

Note (Check) that for any element a in a C⇤-algebra is the sum of two self-adjoint operators, its real and
imaginary parts:

Re(a) =
1

2
(a+ a

⇤) Im(a) =
1

2i
(a� a

⇤). (1.1)

This useful decomposition lets us reduce many questions to the case of self-adjoint operators.

Proposition 1.7. A linear map between C⇤
-algebras is ⇤-preserving i↵ it maps self adjoint elements to self

adjoint elements.

Proof. Let � : A ! B be a linear map and a 2 A, and write a = Re(a) + iIm(a) and a
⇤ = Re(a) � iIm(a).

By linearity,

�(a) = �(Re(a)) + i�(Im(a))

�(a⇤) = �(Re(a))� i�(Im(a)).

Since Re(a) and Im(a) are self-adjoint, �(Re(a)) and �(Im(a)) are self adjoint by assumption. So the above
computation shows that

�(a⇤) = �(Re(a) + iIm(a)) ⇤ .

⇤

1.1. Unitizations and Spectra. Let us briefly recap and expand on some facts about the spectrum of an
operator in a Banach algebra– now with C⇤-algebras.

An element a in a unital algebra is invertible when there exitst another element b in the algebra that acts
as a left and right inverse, i.e. ab = ba = 1. Sometimes, when you have a left inverse, it is automatically a
right inverse. In particular, this is the case for matrix algebras. In fact, a matrix T 2 Mn(C) is invertible
if and only if it is injective, i.e. if and only if ker(T ) = {0}. In infinite dimensions, this is certainly still a
necessary condition, but it is no longer su�cient alone.

Exercise 1.8. Give an example of an operator on B(`2(N)) that is injective but not invertible.

Fortunately, the Open Mapping Theorem gives us some guidance on what needs to be satisfied:

Corollary 1.9 (to OMT/Inverse Function Theorem). For a Hilbert space H, T 2 B(H) is invertible i↵ T

is bijective.

Example 1.10. Unitary operators are important classes of invertible operators. In fact, the group of
unitaries in a C⇤-algebra A forms a subgroup U(A) of the group of invertible elements, GL(A).

With the notion of invertibility, we can define the spectrum of a given element a in a unital C⇤-algebra A.

�(a) := {� 2 C : �1� a /2 GL(A)}

Remark 1.11. Unlike when A = Mn(C), these are not all eigenvalues.
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Example 1.12. If A is a unital C⇤-algebra and u 2 A is a unitary, then �(u) ⇢ T.
Indeed, first note that for any invertible operator a 2 A, the spectrum of the inverse is the inverse of the

spectrum. To see this, fix an invertible a, so that � = 0 is not in �(a). For � 6= 0, if �� a is invertible, then
so is ��1

a
�1(�� a) = a

�1 � �
�1 and vice versa.

Then for any � 2 �(u), we have that ��1 2 �(u�1) = �(u⇤). Since u
⇤ is also a unitary, we know

kuk = ku⇤k = 1, which means |�|  1 and |��1|  1, which means |�| = 1.

Exercise 1.13. Recall (Example 3.12 in Prerequisite Material) that continuous function f on a X locally
compact and Hausdor↵ space X is invertible if 1/f is continuous on X. What is the spectrum of f(z) = z

in C(T)?
But not all C⇤-algebras have units. One important example is K(H), and another important class of

examples comes from spaces of continuous functions.

Exercise 1.14. For a locally compact topological Hausdor↵ space X, when is the C⇤-algebra C0(X) unital?
What is the unit? Can you think of interesting classes of non-unital algebras? For the C⇤-algebra C(T),
what type of operator is the generator f(z) = z?

So, how can we make sense of a spectrum in this setting? We just add a unit! Well, technically, we embed
A into a unital C⇤-algebra.

The “smallest” unital C⇤-algebra containing A is called its unitization, Ã. We define Ã as follows:

Ã := A� C
with algebraic operations given by

(a,↵)(b,�) = (ab+ ↵b+ �a,↵�)

(a,↵)⇤ = (a⇤, �̄)

k(a,↵)k = sup
b2A,b1

kab+ ↵bk

This definition does not feel intuitive the first time around. To get an idea of where this came from,
consider the following examples.

Example 1.15. ,

(1) If A ⇢ B(H) is a C⇤-subalgebra of B(H) that does not contain a unit, you can “unitize” it by just
taking the C⇤-algbra generated by A and 1H.

C⇤(A, 1H) = {a+ �1H : � 2 C, a 2 A}.
What would multiplication/ scalar addition look like here? For the norm, it will turn out that
k(a,↵)k = ka+ ↵1Hk, but the argument is faster after a little more theory.

(2) Identify
C0((0, 1]) := {f 2 C([0, 1]) : f(0) = 0}.

By taking the closure of the algebra generated by C0((0, 1]) and the constant function 1, we get its
unitization C([0, 1]). For f 2 C0((0, 1]) and a 2 C, what is the norm of f + a in the sup norm for
C([0, 1])?

Because of the example from B(H), even in an abstract setting, elements of Ã are often written as a+�1
Ã

as opposed to (a,�).

Proposition 1.16. Any C⇤
-algebra A embeds into the unital C⇤

-algebra Ã as an ideal of codimension 1, i.e.
no other proper ideal of Ã contains A and Ã/A = C.

Proof. That Ã is a unital ⇤-algebra is readily verified. To see that the norm is a Banach algebra norm, notice
that it is exactly the norm induced from B(A) where we identify a 2 A with the left multiplication operator
La 2 B(A) given by La(b) = ab, and we identify (a,↵) with La + ↵idA. In other words, the norm on Ã is
the norm induced from B(A) on the ⇤-subalgebra of operators {La + ↵ida : a 2 A,↵ 2 C}. Moreover, note
that the identification a 7! La is isometric. Indeed, using the C⇤-identity, we have for any nonzero a 2 A,

kak = ka
✓

a
⇤

kak

◆
k  sup

kbk1
kabk  kak.
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So, k(a, 0)k = kak, and the embedding of A into Ã is isometric. Since A is complete, {La+↵idA : a 2 A,↵ 2
C} is complete, and so Ã is a Banach algebra. By design, A is an ideal of codimension 1.

It remains to show that the given norm satisfies the C⇤-identity. To that end, we compute for a 2 A and
↵ 2 C

k(a,↵)k2 = sup
kbk1

kab+ ↵bk2

= sup
kbk1

kb⇤(a⇤ab+ ↵a
⇤
b+ ↵̄ab+ |↵|2b)k

 sup
kbk1

ka⇤ab+ ↵a
⇤
b+ ↵̄ab+ |↵|2bk

= k(a,↵)⇤(a,↵)k  k(a,↵)⇤kk(a,↵)k.

So k(a,↵)k  k(a,↵)⇤k, and a symmetric argument yields k(a,↵)⇤k = k(a,↵)k. Then the above inequality
gives

k(a,↵)k2  k(a,↵)⇤(a,↵)k  k(a,↵)k2.
⇤

Therefore, if a is an element of a non-unital C⇤-algebra A, then we define its spectrum to be the spectrum
of a as an element of Ã.

This fits well with what we’ve already seen in B(H). If x 2 B(H), then its spectrum is defined with
respect to the unit in B(H), regardless to what closed ⇤-subalgebra x belongs to.

Remark 1.17. Suppose A is a non-unital C⇤-subalgebra of a unital C⇤-algebra B. Then there is a clear
⇤-preserving bijective homomorphism between Ã and C⇤(A, 1) given by (a,↵) 7! a+↵. By appealing to the
same subspace {La + ↵idA : a 2 A,↵ 2 C} ⇢ B(A), one can show that this is isometric. That means that,
when a unit is available in an ambient C⇤-algebra, the unitization of A is just adjoining that unit. Of course,
there is now the problem that for any a 2 A, its spectrum in A might be larger than its spectrum in B (an
element has more potential inverses in B). We will see later that this is not the case.

Remark 1.18. There are two conventions you will see in the literature for Ã when A is already unital. The
first is to assume that A = Ã when A is unital, and the second is to have a “forced unitization” where A

is still embedded as a maximal ideal in A � C, and the unit of A becomes just the projection 1A � 0. The
choice in a given paper is often due to technical considerations (e.g. when you just want to make sure your
C⇤-algebra has a unit vs. when you want to control where a map sends the unit) and is (hopefully) addressed
somewhere in the preliminaries.

One thing that makes unitizations nice to work with is that a ⇤-homomorphism always has a unique and
natural extension to the unitization.

Proposition 1.19. Let A,B be C⇤
-algebras with B unital and A non-unital and ⇡ : A ! B a ⇤-homomorphism.

Then there is a unique extension of ⇡ to a unital ⇤-homomorphism ⇡̃ : Ã ! B given by ⇡̃(a + �1
Ã
) =

⇡(a) + �1B.

Note that this works also when we have ⇡ : A ! B with B non-unital but identified with its copy inside
B̃.

Proof. We just need to check that this is a ⇤-homomorphism. Linearity and ⇤-preserving are immediate. For
a, b 2 A and �, ⌘ 2 C, we compute

⇡̃(a+ �1
Ã
)⇡̃(b+ ⌘1

Ã
) = (⇡(a) + �1B)(⇡(b) + ⌘1B)

= ⇡(ab) + �⇡(b) + ⌘⇡(a) + �⌘1B = ⇡̃(ab+ �b+ ⌘a+ �⌘1
Ã
).

The uniqueness is forced by the fact that we require ⇡̃ to be linear and 1
Ã
7! 1B . Indeed, if  : Ã ! B is

another unital extension of ⇡, then for each a+ �1
Ã
2 Ã, we have

 (a+ �1
Ã
) =  (a) +  (�1

Ã
) = ⇡(a) + �1B = ⇡̃(a+ �1

Ã
).

⇤
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Now that we have a notion of spectra for unital and nonunital C⇤-algebras, we are ready to see two
consequences of the C⇤-identity that are, quite frankly, magic.

First we recall Theorems 3.16 and 3.20 from the pre-requisite material:

Theorem. For any element a in Banach algebra A, �(a) is a nonempty compact subset of C. Moreover, the

spectrum of a is contained in the closed ball {x 2 A : kxk  kak}. In particular, this means that r(a)  kak
where r(a) = sup

�2�(a) |�| is the spectral radius of a.

Remark 1.20. This implies the very useful fact that for any element a in a unital Banach algebra with
kak < 1, the element 1� a is invertible with inverse

P
n�0 a

n.

Theorem. For any element a in Banach algebra A,

r(a) = lim
n!1

kank1/n.

When our Banach algebra A is a C⇤-algebra, it turns out the norm of any normal element is its spectral
radius.

Lemma 1.21. For any normal element a in a C⇤
-algebra A,

kak = r(a).

Proof. First, we assume that a = a
⇤. Then repeated use of the C⇤-identity for a, i.e. kak2 = ka2k, tells us

that
r(a) = lim

n

ka2
n

k2
�n

= kak.

Now, suppose a is normal. Then a
⇤
a is self-adjoint, and so

r(a)2 = kak2 = ka⇤ak = r(a⇤a)

= lim
n

k(a⇤a)nk1/n = lim
n

k(an)⇤ank1/n = lim
n

kank2/n

= r(a)2.

⇤
As a Banach ⇤-algebras, we consider C⇤-algebras “the same” when they are ⇤-isomorphic, i.e. there exists

a ⇤-preserving homomorphism between them. Normally, for a Banach space, you’d also request that the
bijective linear map be isometric. For ⇤-isomorphisms between C⇤-algebras, this will be automatic, thanks
again to the C⇤-identity.

Proposition 1.22. A ⇤-homomorphism ⇡ : A ! B between C⇤
-algebras is contractive (i.e. k⇡k  1) and

hence continuous. A ⇤-isomorphism between C⇤
-algebras is isometric.

Proof. Suppose ⇡ : A ! B is a ⇤-isomorphism. Let a 2 A. Then a
⇤
a is a normal element in A, which

means ka⇤ak = r(a⇤a). Since homomorphisms preserve invertibility, r(⇡(a⇤a))  r(a⇤a). This is where the
C⇤-norm comes in:

kak2 = ka⇤ak = r(a⇤a) � r(⇡(a⇤a)) = r(⇡(a)⇤⇡(a)) = k⇡(a)⇤⇡(a)k = k⇡(a)k2.
Now, assume ⇡ is injective. If ⇡ is a ⇤-isomorphism, then the inequality above is an equality. ⇤

So, in C⇤-algebras, the algebraic structure determines the norm:

kxk =
p
kx⇤xk =

p
r(x⇤x)

(Compare with the same fact for matrices.) It follows from this that a C⇤-algebra carries a unique norm
making it a C⇤-algebra.

Remark 1.23. What this is saying is that if (A, k · k) is a C⇤-algebra and k · k0 is another C⇤-norm on A

(without assuming A is complete with respect to k · k0), then k · k = k · k0.
There’s a subtlety here that can sometimes be a little tricky. If B is just a ⇤-algebra, then we can often

define multiple distinct C⇤-norms on B so that the completion of B with respect to these norms becomes a
C⇤-algebra.

We will be able to say more about ⇤-homomorphisms once we have established more on C⇤-ideals.
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2. Commutative C⇤-algebras

Some of you may have heard of the study of C⇤-algebras described as “non-commutative topology” or
“non-commutative continuous functions”. This perspective is really what jump-started the interest in C⇤-
algebras in the first place, and it comes from the following theorem, which is the focal point of this section:

Theorem 2.1 (Gelfand Naimark Theorem). Any commutative C⇤
-algebra A is ⇤-isomorphic to the C⇤

-

algebra C0(X) for some locally compact Hausdor↵ space X. Moreover, when A is unital, X is compact.

Definition 2.2. A nonzero homomorphism into the base field of an algebra is called a character. The
spectrum of a commutative Banach algebra A, denoted Â, is the set of all nonzero characters from A into C.
Hence Â is often called the character space for Â.

Remark 2.3. We assume for now that these are just homomorphisms. In fact, much of the theory we
develop on our way to the Gelfand Naimark theorem holds in general for Banach algebras. A consequence
of the Gelfand Naimark theorem for commutative C⇤-algebras will show that characters on a commutative
C⇤-algebra are automatically ⇤-preserving.

Notice that the kernel of a character is a closed ideal in A of co-dimension 1, and so it is automatically
a maximal ideal, i.e. it is not contained in any other proper ideal. It turns out there is a one-to-one
correspondence between maximal ideals in A and ideals of co-dimension 1 (and hence characters).

Exercise 2.4. A maximal ideal in a unital C⇤-algebra is automatically closed.
(Hint: If J ⇢ A is a proper ideal, consider J \B(1A, 1).)

Exercise 2.5 (Gelfand-Mazur). If A is a simple, unital, abelian Banach algebra, then A = C.

Corollary 2.6. If A is a unital abelian Banach algebra, then any maximal ideal in A has co-dimension 1,
i.e. if J ⇢ A is a maximal ideal, then A/J ' C.

Proof. If J ⇢ A is a maximal ideal, then A/J is simple. The rest follows from Gelfand-Mazur. ⇤

From Theorem 3.8 in the Prerequisite notes, we have for each maximal ideal J / A, a continuous homo-
morphism �j : A ! C.

Proposition 2.7. Let A be a commutative C⇤
-algebra. Then Â[ {0} is a weak-⇤ compact subset of the unit

ball of A
⇤
. When A is unital, Â is weak-⇤ compact.

In particular, Â is a locally compact Hausdor↵ space, which is compact when A is unital.

Proof. Let � 2 Â. Suppose k�k > 1 and a 2 A with kak < 1 and �(a) = 1. Since kak < 1, its spectrum is
in the unit ball, meaning 1� a is invertible. So, we compute

1 = �((1� a)(1� a)�1) = (�(1)� �(a))�((1� a)�1) = (0)�((1� a)�1) = 0,

which is an obvious contradiction.
Now, since Â[{0} is contained in the unit ball of A⇤, by Alaoglu’s theorem (Theorem 2.20 in the Prereqs),

all we need to show is that it is weak-⇤ closed. To that end, suppose we have a net (�i)i2I of characters
(multiplicative linear functionals) that converges weak-⇤ to some bounded linear functional � 2 A

⇤. We need
to check that � is multiplicative, but this follows from the fact that pointwise multiplication is continuous.
Indeed, for any a, b 2 A, we have

�(ab) = lim
i

�i(ab) = lim
i

�i(a)�i(b) = lim
i

�i(a) lim
i

�i(b) = �(a)�(b).

It follows that Â [ {0} is a compact Hausdor↵ space (with respect to the weak-⇤ topology).
Note that if A is unital, then for any � 2 Â, we have �(1) = 1, and so k�k � 1. It follows by the preceeding

argument that Â is itself a weak-⇤ closed subset of the unit ball in A
⇤. ⇤

Recall that when A is communtative but not unital, it embeds into Ã as an ideal with co-dimension 1,
which means it’s the kernel of a character �0 : Ã ! Ã/A = C. Notice that when restricted to A, this is

exactly the 0 homomorphism. It turns out there is a one-to-one correspondence between Â and ˆ̃
A\{�0}. In

particular, ˆ̃
A is (also) the one-point compactification of Â.
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Proposition 2.8. Suppose A is a non-unital commutative C⇤
-algebra, and let �0 : Ã ! Ã/A = C. Then,

there is a one-to-one correspondence between Â and
ˆ̃
A\{�0}.

Proof. Suppose �̃ 2 ˆ̃
A\{�0}. Since Ã/ ker(�̃) = C, ker(�̃) is a maximal ideal in Ã. Similarly, A is also a

maximal ideal, and so ker(�̃)\A ( A. Then ker(�̃)\A is an ideal of co-dimension 1 in A, which means the
map � : A 7! A/(A \ ker(�̃)) gives a character in Â.

On the other hand, if � 2 Â, define �̃ : Ã ! C by �̃(a,�) = �(a) + �. Then (as per Proposition 1.19)

�̃ 2 ˜̂
A is the unique extension of � to a character on Ã. With that, we have established the desired bijective

correspondence. ⇤

Definition 2.9. For a commutative C⇤-algebra A, we define the Gelfand transform � : A ! C0(Â) by
�(a)(�) = �(a), i.e. �(a) is the point evaluation at a.

Exercise 2.10. Here’s an exercise to build intuition:

(1) Show that all maximal ideals in C([0, 1]) are of the form {f 2 C([0, 1]) : f(t) = 0} for some t 2 [0, 1].

(2) For each t 2 [0, 1], define the map evt : C([0, 1]) ! C by evt(f) = f(t). Show that \C([0, 1]) = {evt :
t 2 [0, 1]}.

(3) Recall that for A = C0((0, 1]), its unitization is Ã := C([0, 1]). That means we can identify C0((0, 1])

with a maximal ideal inside C([0, 1]). To which character � 2 ˆ̃
A does this ideal correspond?

Show that this character agrees with the functional �0 : Ã ! C given by �(f +�1) = � for all f 2 A.

Here is our goal theorem:

Theorem 2.11 (Gelfand-Naimark). For any commutative C⇤
-algebra A, the Gelfand transform is an iso-

metric ⇤-isomorphism
1
of A onto C0(Â).

Notice that if A is unital, then C0(Â) = C(Â). If A is not unital, then the one point compactification of

Â is ˆ̃
A = Â [ {�0}, which means C0(Â) is exactly the continuous functions on ˆ̃

A that vanish at �0.
Before we prove the Gelfand-Naimark theorem, we will establish a few lemmas, which are interesting in

their own right.

Lemma 2.12. For any commutative C⇤
-algebra A, the Gelfand transform is a contractive (and hence con-

tinuous) homomorphism. Moreover, if A is unital, then for any a 2 A,

�(a) = �(�(a)) = {�(a) : � 2 Â} = ran(�(a)),

and � is isometric.

Proof. Multiplicativity follows from multiplicativity of characters. Notice that �(a) is automatically contin-
uous because the topology on Â is the weak-⇤ topology. When A is nonunital, �(a)(�0) = �0(a) = 0 for each
a 2 A, which, by the above remarks, means �(A) ⇢ C0(Â).

Since each character is contractive and the norm on C0(Â) is the sup norm, it follows that � is contractive.
Now, suppose A is unital. First, we show that a 2 A is invertible i↵ �(a) 2 C(Â) is invertible. The

forward direction follows immediately from the fact that � is a homomorphism. On the other hand, if a 2 A

is not invertible, then it lives in some maximal ideal, meaning it is in the kernel of some nonzero character
� 2 Â. Then �(a)(�) = �(a) = 0, meaning �(a) is not invertible. It follows that �(a) = �(�(a)) for all
a 2 A.

Now, suppose � 2 �(a). Then there exists � 2 Â such that �(�1� a)(�) = 0, i.e. �(a)(�) = �. It follows
that k�(a)k1 = r(a).

Since A is commutative, all elements of A are normal. Hence it follows from Lemma 1.21 that for any
a 2 A,

kak = r(a) = k�(a)k1.

So, � is isometric.
⇤

1
⇤-preserving isomorphism
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Notice that the above argument shows that when A is not unital, its Gelfand transform extends to the
Gelfand transform on its unitization.

Lemma 2.13. Let A be a commutative C⇤
-algebra. If a 2 A is self-adjoint, then �(a) ⇢ R.

Proof. Suppose a 2 A is self-adjoint, and assume A ⇢ Ã. For each t 2 R, the power series
X

n�0

(ita)n

n!

converges to some element exp(ita) in Ã. One checks that

exp(ita)⇤ =
X

n�0

(�ita)n

n!
= exp(�ita) = exp(ita)�1

,

which means exp(ita) is a unitary in Ã. Now, consider the Gelfand map � : Ã ! C( ˆ̃A). By the preceeding
lemma, we know �(a) = ran(�(a)) = {�(a) : � 2 Â}. So, it su�ces to show that �(a) 2 R for each � 2 Â.
Fix � 2 Â. Since � is a character (i.e. continuous, linear, multiplicative), it follows that for any t 2 R,

�(exp(ita)) = �(
X

n�0

(ita)n

n!
) =

X

n�0

(it�(a))n

n!
= e

it�(a)
.

Since exp(ita) is a unitary, we know from Example 1.12 that eit�(a) 2 T for all t 2 R. It follows that �(a) 2 R
as desired. ⇤

Remark 2.14. We shall see soon that we did not need to assume A was commutative in Lemma 2.13. The
same argument would work by just considering the Gelfand transform on C⇤(a, 1). However, we will need to
first establish that the spectrum of a in C⇤(a, 1) is the same as its spectrum in A.

Now we are ready to prove the theorem.

Proof of Gelfand Naimark Theorem. First, we assume that A is unital. We know from Lemma 2.12 that �
is isometric, which means its image in C(Â) is closed.

For any self-adjoint a 2 A, we have ran(�(a)) ⇢ R, which means �(a) = �(a) is self-adjoint. So
Proposition 1.7, tells us � is ⇤-preserving.

So, altogether, �(A) is a unital, norm closed self-adjoint subalgebra of C(Â) where Â is compact and
Hausdor↵. Then the Stone-Weierstrass Theorem ([Conway, I.5,6]) says that �(A) = C(Â) provided that it
separates the points of Â. But if � and  are distinct points in Â, then they have distinct kernels, and so
�(A) separates the points of Â.

Now suppose that A is not unital. Then � extends to the isometric ⇤-isomorphism �̃ : A ! C(Â).
Since A is an ideal of co-dimension one, �̃(A) is a maximal ideal in C(Â) contained in the maximal ideal

{f 2 C( ˆ̃A) : f(�0) = 0}. Then �̃(A) = {f 2 C( ˆ̃A) : f(�0) = 0}, and it follows that �(A) = C0(Â) from the
aforementioned identifications. ⇤

Corollary 2.15. Characters on commutative C⇤
-algebras are ⇤-homomorphisms.

Proof. It su�ces to prove that they map self-adjoint elements to real numbers. For any � 2 Â, and a 2 A

self-adjoint, we have �(a)(�) = �(a) 2 R. ⇤

For any element a in a C⇤-algebra A, we write C⇤(a) for the C⇤-algebra generated by a. When A is unital,
C⇤(a, 1) can be identified with the closure of the set of all polynomials on a, a

⇤
, 1 (aka ⇤-polynomials on a).

When a is a normal, B := C⇤(a) is a commutative C⇤-algebra, and so it is ⇤-isomorphic to C0(B̂) ⇢ C( ˆ̃B).

Moreover, any character � 2 B̂ is determined by where it maps a. So, the map ˆ̃
B ! C given by � 7! �(a) is

a homeomorphism onto �(a)( ˆ̃B), which we know is equal to �(a). Moreover, the Gelfand map then identifies
a with the identity function z 7! z on C(�(a)). When a is not invertible, C0(B̂) corresponds to the ideal
consisting of functions that vanish at 0. If a is invertible, then 0 /2 �(a), so either way, we can say

C⇤(a) ' C0(�(a)\{0}).
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Problem: What do we mean by �(a) here? By design, this must be the set of � 2 C such that �1 � a is
not invertible in (the unitization of) B, i.e. this is �B(a), not �A(a). In general, �A(a) is smaller (there
are more potential inverses for a� �1 in A ◆ B), and we have no reason to suspect that these are the same
set. But for C⇤-algebras, they are.

For now, we just establish the following.

Proposition 2.16. Let a be a normal element of a C⇤
-algebra A and B = C⇤(a). Then B ' C0(�A(a)\{0})

and �A(a) = �B(a).

Proof. We have already established that B ' C0(�B(a)\{0}).
Suppose � 2 �B(a)\{0}. Then for each ✏ > 0, there exists b 2 B with k�(b)k = 1 and k��(b)��(a)�(b)k <

✏. That means kbk = 1 and k�b�abk < ✏, which means �1�a is not invertible in Ã. (Indeed, if c(�1�x) = 1,
then 1 = kbk = kc(�1� x)bk < kck✏ for all ✏.) ⇤

This justifies the terminology “spectrum” for the space of characters on a commutative C⇤-algebra.
Before moving too far away from Proposition 2.16, we remark that it yields a more general corollary.

Corollary 2.17. If a is a normal element in a unital C⇤
-algebra A and B is any unital C⇤

-subalgebra of A

containing a, then �A(a) = �B(a).

Now we come to an incredibly powerful tool, with which we conclude the section: The Functional Calculus.
Let A be a unital C⇤-algebra, a 2 A a normal element, and f 2 C(�(a)). We denote by f(a) the inverse image
of f under the Gelfand transform of C⇤(a, 1) (the isometric ⇤-isomorphism between C⇤(a, 1) and C(�(a))).

Corollary 2.18 (The Functional Calculus). Let a be a normal element of a unital C⇤
-algebra A and f, g 2

C(�(a)). Then

(1) f(�(a)) = �(f(a)),
(2) g(f(�(a)) = (g � f)(a), and
(3) if 0 2 �(a) and f(0) = 0, then f(a) is in the non-unital C⇤

-algebra, C⇤(a).

Proof. Since f(a) 2 C⇤(a, 1), we have

�(f(a)) = �(�(f(a))) = �(f) = f(�(a)).

Since � is a homomorphism, the second claim holds immediately when g is a Laurent polynomial (i.e. a
polynomial in z and z). Then the general case follows by approximating g uniformly with Laurent polyno-
mials.

The third claim follows immediately from Proposition 2.16. ⇤
Exercise 2.19. Check for understanding. If a 2 A is a normal element in a unital C⇤-algebra and � :
C⇤(a) ! C0(�(a)) the Gelfand transform,

(1) What is its image �(a) 2 C0(�(a))?
(2) If a is invertible, is a�1 2 C

⇤(a)?

We will see this applied repeatedly in the section on positive elements.

Exercise 2.20. Suppose A and B are commutative unital C⇤-algebras and � : A ! B a unital ⇤-
homomorphism. Then for any a 2 A and f 2 C(�(a)), we have �(f(a)) = f(�(a)).

Exercise 2.21. Let ⇡ : A ! B be a surjective ⇤-homomorphism between C⇤-algebras and b 2 B a self-
adjoint element. Show that b lifts to a self-adjoint element a 2 A with ⇡(a) = b and kak = kbk.
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