Robin Deeley Groupoid C*-algebras

Exercise: Suppose X is a nonempty finite set and R is an equivalence relation on X.

- (a) Prove that $C^*(R)$ is the direct sum of finitely many matrix algebras.
- (b) Compute the K-theory of $C^*(R)$.

If you have extra time:

Let G be a group. Examine the structure of the following two groupoids constructed from G.

- 1. Let $\mathcal{G} = G$ and $\mathcal{G}^2 = G \times G$; the multiplication map $\mathcal{G}^2 \to \mathcal{G}$ is given by group multiplication, and the map $\mathcal{G} \to \mathcal{G}$ is given by taking the inverse.
 - (a) Prove that \mathcal{G} is a groupoid.
 - (b) What is \mathcal{G}^0 in this case?
 - (c) Prove that \mathcal{G} is étale iff G is discrete.
- 2. Let G be a finite group, and set $\tilde{\mathcal{G}} = G \times G$, with $\tilde{\mathcal{G}}^2 = \{((g,h), (gh,k)) : g, h, k \in G\}$. Then the map $\tilde{\mathcal{G}}^2 \to \tilde{\mathcal{G}}$ is given by $((g,h), (gh,k)) \mapsto (g,hk)$ and the map $\tilde{\mathcal{G}} \to \tilde{\mathcal{G}}$ is defined via $(g,h) \mapsto (gh,h^{-1})$.
 - (a) Prove that $\tilde{\mathcal{G}}$ is a groupoid.
 - (b) What is $C_c(\tilde{\mathcal{G}})$? What changes if G is a countable discrete group?

Corey Jones Subfactors and quantum symmetries

Exercise: Let $N \subset B(\mathcal{H})$ be a II₁ factor. For $d \in \mathbb{N}$, embed $N \hookrightarrow M_d(N)$ by

$$x \mapsto \left(\begin{array}{cc} x & & 0 \\ & \ddots & \\ 0 & & x \end{array}\right) \qquad x \in N.$$

In this exercise, you will compute $[M_d(N):N]$.

(a) Show that B(L²(M_d(N))) = M_{d²}(B(L²(N))), where the entries in the latter space are indexed by pairs of pairs: ((i, j), (k, l)) for i, j, k, l = 1, ..., d.
[Hint: first show that L²(M_d(N)) ≈ L²(N)^{⊕d²}.]

[HIM: Inst show that $L^{2}(M_{d}(N)) = L^{2}(N)^{\oplus 2}$.]

- (b) Show that $N' \cap B(L^2(M_d(N))) = M_{d^2}(N' \cap L^2(N)).$
- (c) For $X = (x_{i,j})_{i,j=1}^d \in M_d(N)$, show that

$$e_N X = \begin{pmatrix} \frac{1}{d} \sum_{i=1}^d x_{i,i} & 0 \\ & \ddots & \\ 0 & & \frac{1}{d} \sum_{i=1}^d x_{i,i} \end{pmatrix}.$$

as vectors in $L^2(M_d(N))$.

- (d) Viewing $e_N \in M_{d^2}(N' \cap L^2(N))$, show that the $((i, j), (k, \ell))$ -entry of e_N is $\frac{1}{d}\delta_{i=j}\delta_{k=\ell}$.
- (e) Compute $\tau_{M_d(N)}(e_N)$ and $[M_d(N):N]$.
- (f) Show that $\langle M_d(N), e_N \rangle \cong M_{d^2}(N)$.