
Chapter 6

Subfactors

In this chapter we will study subfactors: an inclusion of factors N  M satisfying 1M 2 N . We will restrict
ourselves to the case when N and M are both II1 factors, though more general inclusions have been studied
extensively in the literature. Note that if ⌧M is the unique trace on M , then ⌧M |N is necessarily the unique
trace on N . Despite the starting point sounding like a an Xzibit meme, subfactors result in an incredibly
rich theory with deep connections to knot polynomials and tensor categories.

This chapter will not be as thorough as the other chapters, and part of the reason is because entire books
can be written about this subject alone. We present here only a starting point for learning about subfactors,
though we will strive to present complete details whenever possible.

6.1 Index for Subfactors

Let 1M 2 N ⇢ M be an inclusion of II1 factors, and let ⌧M and ⌧N be the unique traces on M and N ,
respectively. We will identify M (and consequently N) with its representation on L

2(M). In this context
we will denote N

0
\ B(L2(M)) simply by N

0, which satisfies N
0
� M

0. Note that N
0 is a factor, and by

Remark 4.3.9 we know that N
0 is type II. Consequently, N 0 is either a II1 factor or a II1 factor. In the

former case, we will denote its unique trace by ⌧N 0 .
Noting that ⌧M |N = ⌧N , we see that the closure of N 1̂ in L

2(M) is a copy of L2(N). Thus we can view
L
2(N) as a closed subspace of L2(M) and we let eN 2 B(L2(M)) be the projection onto L

2(N). Since
L
2(N) is reducing for N , we have eN 2 N

0 by Lemma 1.2.5.

Definition 6.1.1. Let 1M 2 N ⇢ M be an inclusion of II1 factors. We define the index of N inside M as
the quantity

[M : N ] :=
1

⌧N 0(eN )

when N
0 is a II1 factor, and otherwise set [M : N ] := 1.
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Assuming N
0 is a II1 (i.e. finite) factor, we have ⌧N 0(eN )  1 and consequently [M : N ] � 1. In

particular, we have [M : N ] = 1 if and only if ⌧N 0(eN ) = 1. Since ⌧N 0 is a faithful state this is further
equivalent to eN = 1, which means L2(N) = L

2(M) and N = M . Thus [M : N ] = 1 if and only if N = M .
Roughly speaking, [M : N ] measures how much larger M is than N . The notation should remind of you the
notation for group indices, and the following example makes this explicit.

Example 6.1.2. Let �
↵y L

1(X,µ) be a free ergodic p.m.p action of a countably infinite discrete group on
a probability space (X,µ). Then M := L

1(X,µ) o↵ � is a II1 factor by Example 4.3.16. Let ⇤  � be a
subgroup such that ↵|⇤ is still ergodic (it is automatically free and p.m.p.). Then N := L

1(X,µ)o↵|⇤ ⇤ is
a II1 subfactor of M . In this case, we have

[M : N ] = [� : ⇤].

We provide only a sketch of the proof. Assume [� : ⇤] = n < 1 so that

� = ⇤ t ⇤g2 t · · · t ⇤gn

for some g2, . . . , gn 2 � \ ⇤. By Exercise 4.3.13, we have L
2(M) = `

2(�) ⌦ L
2(X,µ) and L

2(N) = `
2(⇤) ⌦

L
2(X,µ). Consequently

L
2(M) =

⇥
`
2(⇤)⌦ L

2(X,µ)
⇤
�
⇥
`
2(⇤g2)⌦ L

2(X,µ)
⇤
� · · ·�

⇥
`
2(⇤gn)⌦ L

2(X,µ)
⇤

= L
2(N)�

⇥
`
2(g2⇤)⌦ L

2(X,µ)
⇤
� · · ·�

⇥
`
2(gn⇤)⌦ L

2(X,µ)
⇤
.

It can be shown that the projections onto each of the remaining direct summands is equivalent to eN in N
0

(see Exercise 6.1.3). Consequently, ⌧N 0(eN ) = 1
n and so [M : N ] = n = [� : ⇤]. ⌅

Remark 6.1.3. There is an alternate formula for the index. Suppose M ⇢ B(H) is a finite factor such that
M

0
\ B(H) is also finite. Denote their respective traces by ⌧M and ⌧M 0 . For any non-zero ⇠ 2 H, M⇠ and

M
0
⇠ are reducing for M 0 and M , respectively, and so [M⇠] 2 M

0 and [M 0
⇠] 2 M by Lemma 1.2.5. Murray

and von Neumann defined the coupling constant of M over H to be the ratio

⌧M ([M 0
⇠])

⌧M 0([M⇠])
,

and they showed that it is independent of the choice of ⇠. When 1M 2 N ⇢ M ⇢ B(H) is a subfactor, it
can be shown that the ratio of the coupling constants for N and M

⌧N ([N 0
⇠])

⌧N 0([N⇠])

⌧M 0([M⇠])

⌧M ([M 0⇠])
(6.1)

is further independent of the representation M ⇢ B(H). This expression is in fact Jones’ original definition
for [M : N ], and since it does not depend on either H or ⇠ we can check that it matches with Definition 6.1.1.
Indeed, takeH = L

2(M) and ⇠ = 1̂, then 1̂ being cyclic and separating forM implies [M 1̂] = [M 01̂] = [N 01̂] =
1. Consequently

⌧N ([N 01̂])

⌧N 0([N 1̂])

⌧M 0([M 1̂])

⌧M ([M 01̂])
=

1

⌧N 0([N 1̂])
= [M : N ].

Thus (6.1) gives us a more flexible definition for the [M : N ].

Given a projection p 2 N
0
\ M , we can consider the compressed inclusion p 2 Np ⇢ pMp. Note that

Np and pMp are both type II factors by Corollary 4.2.3 and Remark 4.3.9, and since 1
⌧M (p)⌧M defines a

trace on pMp we see that they are in fact II1 factors. Thus we can consider the index [pMp : Np]. Using
Remark 6.1.3 and a few facts about the coupling constant, one can show

[pMp : Np] = [M : N ]⌧M (p)⌧N 0(p). (6.2)

We can use this fact to derive some nice consequences for certain values of the index.
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Proposition 6.1.4. If [M : N ] < 1, then N
0
\M is finite dimensional.

Proof. Let p1, . . . , pn 2 P(N 0
\ M) be non-zero pairwise orthogonal projections. Then since the index is

always greater than or equal to one, (6.2) implies

[M : N ] � [M : N ]
nX

i=1

⌧M (pi) =
nX

i=1

1

⌧N 0(pi)
[piMpi : Npi] �

nX

i=1

1

⌧N 0(pi)
.

Note that the condition
Pn

i=1 ⌧N 0(pi)  1 implies ⌧N 0(pi) 
1
n for some i = 1, . . . , n. Consequently, [M :

N ] � n, and so for any family of non-zero pairwise orthogonal projections P ⇢ P(N 0
\ M) we must have

|P|  [M : N ] < 1. Suppose P is a maximal family of pairwise orthogonal projections. We must have

X

p2P

p = 1,

since otherwise {1 �
P

p p} [ P contradicts the maximality of P. Also, each p 2 P must be minimal in
N

0
\M because otherwise for 0 < q < p the maximality of P is contradicted by {q, p� q}[P \{p}. Now, as

minimal projections, p, q 2 P are either centrally orthogonal or equivalent in N
0
\M by Proposition 4.1.9.

If they are centrally orthogonal, then the same proposition implies pxq = 0 for all x 2 N
0
\M . If they are

equivalent, say by vv
⇤ = p and v

⇤
v = q, then for x 2 N

0
\M we have

pxq = pxqq = px(v⇤v)(v⇤v) = pxv
⇤(vv⇤)v = pxv

⇤
pv = cpv = cv

for some c 2 C. Denote v := vp,q, and if p and q are centrally orthogonal set vp,q := 0. Thus for any
x 2 N

0
\M , we have

x = (
X

p2P

p)x(
X

q2P

q) =
X

p,q2P

pxq =
X

p,q2P

cp,qvp,q,

for cp,q 2 C. Hence N
0
\M = span{vp,q : p, q 2 P}, and since P is a finite set we see that N 0

\M is finite
dimensional.

Proposition 6.1.5. If [M : N ] < 4, then N
0
\M = C.

Proof. Suppose, towards a contradiction that p, q 2 P(N 0
\ M) are orthogonal and non-zero. Then (6.2)

implies (by the same argument as in the proof of the previous proposition)

[M : N ] �
1

⌧N 0(p)
+

1

⌧N 0(q)
�

1

⌧N 0(p)
+

1

1� ⌧N 0(p)
.

This last expression is minimized at ⌧N 0(p) = 1
2 , and hence we obtain the contradiction [M : N ] � 4.

We present the next result without proof, but we direct the interested reader to Jones’ original paper.

Theorem 6.1.6 (Jones, 1983). Let 1M 2 N ⇢ M be an inclusion of II1 factors. Then

[M : N ] 2 {4 cos2(⇡/n) : n � 3} [ [4,1].

Moreover, every value in the set above occurs as the index of some unital inclusion of II1 factors.

This result is part of the work that would ultimately earn Vaughan Jones the Fields Medal. That the
index has a discrete component to its range was a remarkable revelation at the time1.

1Masamichi Takesaki says he first heard about the result when picking Vaughan Jones up from the airport for a visit to
UCLA, and was so startled by it that he nearly crashed the car.
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Exercises

6.1.1. Let N ⇢ P ⇢ M be inclusions of II1 factors. Show that [M : N ] = [M : P ][P : N ]. [Hint: use (6.1).]

6.1.2. Let N ⇢ B(H) be a II1 factor. For d 2 N, embed N ,! Md(N) by

x 7!

0

B@
x 0

. . .
0 x

1

CA x 2 N.

In this exercise, you will compute [Md(N) : N ].

(a) Show that B(L2(Md(N))) = Md2(B(L2(N))), where the entries in the latter space are indexed by
pairs of pairs: ((i, j), (k, `)) for i, j, k, ` = 1, . . . , d.

[Hint: first show that L2(Md(N)) ⇠= L
2(N)�d2

.]

(b) Show that N 0
\B(L2(Md(N))) = Md2(N 0

\ L
2(N)).

(c) For X = (xi,j)di,j=1 2 Md(N), show that

eNX =

0

B@

1
d

Pd
i=1 xi,i 0

. . .

0 1
d

Pd
i=1 xi,i

1

CA .

as vectors in L
2(Md(N)).

(d) Viewing eN 2 Md2(N 0
\ L

2(N)), show that the ((i, j), (k, `))-entry of eN is 1
d�i=j�k=`.

(e) Compute ⌧Md(N)(eN ) and [Md(N) : N ].

6.1.3. Let �
↵y L

1(X,µ) be a free ergodic p.m.p action of a countably infinite discrete group on a probability
space (X,µ). Let ⇤ < � be a finite index subgroup with

� = ⇤ t ⇤g2 t · · · t ⇤gn.

for some g2, . . . , gn 2 � \ ⇤. Assume ↵|⇤ is ergodic and set

M := L
1(X,µ)o↵ �

N := L
1(X,µ)o↵|⇤ ⇤.

Recall that L2(M) = `
2(�)⌦ L

2(X,µ) and L
2(N) = `

2(⇤)⌦ L
2(X,µ).

(a) For each i = 2, . . . , n, show that `2(⇤gi)⌦ L
2(X,µ) is reducing for N .

(b) Let J be the canonical conjugation operator on L
2(M): Jx̂ =cx⇤. Show that

J(�g ⌦ f) = �g�1 ⌦ ↵g�1(f̄)

for g 2 � and f 2 L
1(X,µ).

(c) For each i = 2, . . . , n, show that J�(g�1
i )JeNJ�(gi)J 2 N

0 and that this is the projection onto the
subspace `

2(⇤gi)⌦ L
2(X,µ).

(d) For each i = 2, . . . , n, show that eN is equivalent to J�(g�1
i )JeNJ�(gi)J in N

0.

(e) Compute ⌧N 0(eN ) and [M : N ].

6.1.4. Let � be an i.c.c. group, let ⇤ < � be a finite index subgroup, and set M := L(�) and N := L(⇤).

(a) Show that ⇤ is i.c.c.

(b) Suppose � = ⇤t⇤g2t· · ·t⇤gn for g2, . . . , gn 2 ⇤\⇤. For each i = 2, . . . , n, show that J�(g�1
i )JeNJ�(gi)J 2

N
0 and that this is the projection onto `

2(⇤gi).

(c) For each i = 2, . . . , n, show that eN is equivalent to J�(g�1
i )JeNJ�(gi)J in N

0.

(d) Compute ⌧N 0(eN ) and [M : N ].
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6.2 The Basic Construction

Once more we let 1M 2 N ⇢ M ⇢ B(L2(M)) be an inclusion of II1 factors with unique traces ⌧N and ⌧M ,
respectively. Let eN 2 B(L2(M)) be the projection onto the subspace L

2(N) ⇢ L
2(M), so that eN 2 N

0.
Recall from Theorem 5.2.5, that if J is the canonical commutation on L

2(M) then JMJ = M
0. Consequently,

JNJ ⇢ M
0. However, N ⇢ M implies N 0

⇢ M
0. Thus we cannot have JNJ = N

0 unless N 0 = M
0, in which

case N = M . Since this case corresponds to [M : N ] = 1, we see that whenever [M : N ] > 1 we have M
0 is

a strict subset of N 0, and JN
0
J � JM

0
J = M . We summarize these various relations in the diagram below.

B(L2(M))

J · J

[
[

JN
0
J N

0

[ [

M M
0

[ [

N JNJ

[
[

C1M

Horizontal reflection in the above diagram corresponds to conjugating by J . There is another important
symmetry: reflecting through the center of the diagram corresponds to taking the commutant. This is
clear for the pairs (C1M , B(L2(M)), (M,M

0), and (N,N
0), but it also holds for (JN 0

J, JNJ). That is,
(JN 0

J)0 = JNJ . Indeed, x 2 (JN 0
J)0 if and only if x(JyJ) = (JyJ)x for all y 2 N

0, and conjugating the
equation by J shows this is equivalent to (JxJ)y = y(JxJ) for all y 2 N

0. Consequently, x 2 (JN 0
J)0 if and

only if JxJ 2 N
00 = N , and thus the claimed equality holds. In particular, this implies JN 0

J is a factor:

Z(JN 0
J) = (JN 0

J) \ (JN 0
J)0 = (JN 0

J) \ JNJ = J(N 0
\N)J = C,

since N is a factor. Thus using only conjugation by J and taking commutants, we have produced a new
factor extending our original inclusion: N ⇢ M ⇢ JN

0
J . We will study this new factor further, but first we

require a lemma.
Recall from Theorem 5.2.7 that there is a faithful normal trace-preserving conditional expectation

EN : M ! N . This map is positive, restricts to the identity on N , and satisfies EN (axb) = aEN (x)b for all
a, b 2 N and x 2 M . Also recall that for each x 2 M , EN (x) is uniquely determined by EN (x)1̂ = eN x̂.

Lemma 6.2.1. ,

(i) For x 2 M , eNxeN = EN (x)eN .

(ii) N = {eN}
0
\M .

(iii) N
0 = {M

0
[ {eN}}

00.

(iv) JeN = eNJ .

Proof. ,

(i): For y 2 M , we have

eNxeN ŷ = eNxEN (y)1̂ = eN
\xEN (y) = EN (xEN (y))1̂ = EN (x)EN (y)1̂ = EN (x)eN ŷ.

Since cM is dense in L
2(M), we have eNxeN = EN (x)eN .

(ii): Since eN 2 N
0, we have N ⇢ {eN}

0
\M . On the other hand, for x 2 {eN}

0
\M we have

EN (x)1̂ = eN x̂ = eNx1̂ = xeN 1̂ = x1̂.

Since 1̂ is separating for M , we must have x = EN (x) 2 N .
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(iii): The Bicommutant Theorem implies it su�ces to show {M
0
[ {eN}}

0 = N . Note that {M 0
[ {eN}}

0
⇢

M
00
\ {eN}

0 = M \ {eN}
0 = N by the previous part. The reverse inclusion follows from N ⇢ M and

the previous part.

(iv): For x 2 M we have

JeN x̂ = JEN (x)1̂ = EN (x)⇤1̂ = EN (x⇤)1̂ = eNcx⇤ = eNJx̂.

Thus the density of cM in L
2(M) yields JeN = eNJ .

Proposition 6.2.2. Let 1M 2 N ⇢ M ⇢ B(L2(M)) be an inclusion of II1 factors. If eN 2 B(L2(M)) is
the projection onto L

2(N), then the factor JN
0
J is generated by M [ {eN}. In fact, JN 0

J is generated by
the ⇤-algebra span(M [MeNM).

Proof. Recall that we have already seen that JN
0
J is a factor in the discussion at the beginning of the

section. From Lemma 6.2.1.(iii), we see that N 0 is the von Neumann algebra generated by M
0
[ {eN}. Note

the unital *-algebra generated by M
0
[{eN} is spanned by elements of the form y1eNy2eN · · · eNyd for d � 1

and y1, . . . , yd 2 M
0. Using Lemma 6.2.1.(iv) to assert eN = JeNJ we have

J(y1eNy2eN · · · eNyd)J = (Jy1J)eN (Jy2J)eN · · · eN (JydJ).

Since JM
0
J = M by Theorem 5.2.5, the above element is in the *-algebra generated by M [ {eN}. Conse-

quently, JN 0
J is the von Neumann algebra generated by M [ {eN}.

The ⇤-algebra generated by M [ {eN} is span{x1eNx2eN · · · eNxd : d � 1, x1, . . . , xd 2 M}. But
Lemma 6.2.1.(i),(iii) imply for d � 3

x1eNx2eNx3eN · · · eNxd = x1EN (x2)eNEN (x3)eN · · · eNxd = x1EN (x2)EN (x3) · · ·EN (xn�1)eNxd.

So span(M [MeNM) is a ⇤-algebra generating JN
0
J .

In light of the above proposition, we make the following definition.

Definition 6.2.3. The basic construction for N ⇢ M is hM, eN i := {M [ {eN}}
00
⇢ B(L2(M)).

By the discussion of at the beginning of the section, we know the commutant of hM, eN i = JN
0
J is JNJ ,

which is a II1 factor since N is a II1 factor. So by Remark 4.3.9 we know hM, eN i is a type II factor, but it
could be either type II1 or type II1. As we will see in the next theorem, the former case happens precisely
when the index [M : N ] is finite.

Theorem 6.2.4. Let 1M 2 N ⇢ M ⇢ B(L2(M)) be an inclusion of II1 factors, and let hM, eN i be its basic
construction. Then hM, eN i is a II1 factor if and only if [M : N ] < 1. In this case, we have

[hM, eN i : M ] = [M : N ].

If ⌧hM,eN i is the unique trace on hM, eN i, then

⌧hM,eN i(xeN ) =
1

[M : N ]
⌧M (x) 8x 2 M,

and in particular ⌧hM,eN i(eN ) = [M : N ]�1.

Proof. By the discussion preceding the theorem we know that hM, eN i is a type II factor, and so it su�ces
to show hM, eN i is finite if and only if [M : N ] < 1. Recall that [M : N ] < 1 if and only if N 0 is a finite
by definition of the index. Thus it further su�ces to show hM, eN i is finite if and only if N 0 is finite, and
by Theorem 5.1.5 it yet further su�ces to show hM, eN i has a trace if and only if N 0 has a trace. But this
follows from hM, eN i = JN

0
J because a trace on one algebra can be used to define a trace on the other:

⌧hM,eN i(x) := ⌧N 0(JxJ) x 2 hM, eN i .

⌧N 0(y) := ⌧hM,eN i(JyJ) y 2 JN
0
J.
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Thus hM, eN i is II1 factor if and only if [M : N ] < 1.
Let ⌧hM,eN i be the unique trace on hM, eN i. By the above, we have ⌧hM,eN i(x) = ⌧N 0(JxJ) for all

x 2 hM, eN i, and in particular

⌧hM,eN i(eN ) = ⌧N 0(JeNJ) = ⌧N 0(eN ) =
1

[M : N ]
,

where in the second equality we have used eN = JeNJ from Lemma 6.2.1.(iv). Now, by Lemma 6.2.1.(ii)
we see that N 3 x 7! ⌧hM,eN i(xeN ) defines a tracial positive linear functional on N , and so must equal c⌧N
for some c 2 C by the uniquness of ⌧N . Setting x = 1 reveals

c = c⌧N (1) = ⌧hM,eN i(1eN ) = ⌧hM,eN i(eN ) =
1

[M : N ]
.

Thus ⌧hM,eN i(xeN ) = 1
[M :N ]⌧N (x) for x 2 N . Using Lemma 6.2.1.(i), we can show this also holds for x 2 M :

⌧hM,eN i(xeN ) = ⌧hM,eN i(eNxeN ) = ⌧hM,eN i(EN (x)eN )

=
1

[M : N ]
⌧N (EN (x)) =

1

[M : N ]
⌧M (EN (x)) =

1

[M : N ]
⌧M (x),

where the last equality uses the fact that EN is trace-preserving.
Finally, we compute the index [hM, eN i : M ] using (6.1). We take H = L

2(M) and ⇠ = 1̂. Note that 1̂ is
cyclic for hM, eN i since it is cyclic for M , and it is cyclic for M 0 since it is separating for M . Consequenlty,
[hM, eN i 1̂] = [M 01̂] = [M 1̂] = 1. Thus

[hM, eN i : M ] =
⌧M ([M 01̂])

⌧M 0([M 1̂])

⌧hM,eN i
0([hM, eN i]1̂)

⌧hM,eN i([hM, eN i
0 1̂])

=
⌧M (1)

⌧M 0(1)

⌧hM,eN i
0(1)

⌧hM,eN i([hM, eN i
0 1̂])

=
1

⌧hM,eN i([hM, eN i
0 1̂])

Now, as we saw above hM, eN i
0 = JNJ and so [JNJ 1̂] = [JN 1̂] = [N 1̂] = eN . Since ⌧hM,eN i(eN ) = [M :

N ]�1, the above computation yields [hM, eN i : M ] = [M : N ].

We now see that a finite index inclusion of II1 factors N ⇢ M begets another finite index inclusion of II1
factors: M ⇢ hM, eN i. Moreover, the index of this new inclusion equals the original index and is therefore
finite. Consequently, we can iterate this process and generate a tower of II1 factors:

N ⇢ M ⇢ hM, eN i ⇢ hhM, eN i , eM i ⇢ · · ·

If we relabel these von Neumann algebras by M0 := N , M1 := M , M2 := hM, eN i, etc. then we have

M0 ⇢ M1 ⇢ M2 ⇢ M3 ⇢ · · · ,

and [Mi : Mi�1] = [M : N ] for all i � 1. Moreover, by Exercise 6.1.1 for any i > j � 0 we have

[Mi : Mj ] =
iY

k=j+1

[Mk : Mk�1] = [M : N ]i�j
.

In particular, [Mi : M0] = [M : N ]i < 1 and [Mi : M1] = [M : N ]i�1
< 1, and so M

0

0 \Mi and M
0

1 \Mi

are finite dimensional by Proposition 6.1.4.

Definition 6.2.5. The Jones tower for a finite index inclusion of II1 factors N ⇢ M is series of inclusions
constructed above:

M0:=

N

⇢ M1:=

M

⇢ M2:=

hM, eN i

⇢ M3 ⇢ · · ·
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The standard invariant of N ⇢ M is the collection of finite dimensional relative commutants {M
0

0 \

Mi}i�0 [ {M
0

1 \Mi}i�1:

C = M
0

0 \M0 ⇢ M
0

0 \M1

⇢

C = M
0

1 \M1

⇢

⇢

M
0

0 \M2

⇢

M
0

1 \M2

⇢

⇢

M
0

0 \M2

⇢

M
0

1 \M2

⇢

⇢

· · ·

· · ·

While the standard invariant may seem to be a dizzying array of von Neumann algebras, remember
that each M

0

j \Mi is finite-dimensional and consequently is isomorphic to a direct sum of matrix algebras.
Moreover, one can diagrammatically encode the data of these relative commutants and their various inclusions
using planar algebras. These objects also provide a bridge between subfactors and category theory, and
although they are worthy of their own entire course we will not go into further detail on them here.

We conclude with an example where the basic construction can be explicitly described. The resulting
von Neumann algebra is the generalization of the crossed product construction from Example 4.3.16, where
L
1(X,µ) (i.e. a commutative von Neumann algebra) has been replaced with II1 factor.

Example 6.2.6. Consider a II1 factorM ⇢ B(L2(M)). Let U(L2(M)) denote the group of unitary operators
on L

2(M), and suppose U < U(L2(M)) is a finite subgroup satisfying U \ M = {1}, uMu
⇤ = M for all

u 2 U , and u1̂ = 1̂ for all u 2 U . Denote

M
U := {x 2 M : uxu⇤ = x 8u 2 U}.

The hypotheses on U imply that this is a factor. This is not obvious but we will assume it as a fact. Then

p :=
1

|U |

X

u2U

u 2 (MU )0,

and p is a projection (Exercise 6.2.3). Observe for x 2 M that

px̂ =
1

|U |

X

u2U

ux1̂ =
1

|U |

X

u2U

uxu
⇤
u1̂ =

1

|U |

X

u2U

uxu
⇤1̂,

and 1
|U |

P
u uxu

⇤
2 M

U . Thus p = eMU . We claim that

hM, eMU i =

(
X

u2U

xuu : xu 2 M

)00

.

Denote the set on the right by B. For x, y 2 M we have

xeMU y =
1

|U |

X

u2U

xuy =
1

|U |

X

u2U

x(uyu⇤)u 2 B.

Since the identity of the group U is 1, we have x = x1 2 B for x 2 M . Thus span(M [MeNM) ⇢ B, and
the former is a ⇤-algebra generating hM, eMU i by Proposition 6.2.2. Thus to prove the claim it su�ces to
show B ⇢ hM, eMU i, and this will follow if U ⇢ hM, eMU i. For x 2 M we have

JuJx̂ = Jux
⇤1̂ = Jux

⇤
u
⇤
u1̂ = Jux

⇤
u
⇤1̂ = [uxu⇤ = uxu

⇤1̂ = ux1̂ = ux̂.

So JuJ = u by the density of cM ⇢ L
2(M). Since U ⇢ (MU )0, this shows U = JUJ 2 J(MU )0J = hM, eMU i,

and so the claim holds. The trace on hM, eMU i is given by

⌧
hM,eMU i

 
X

u2U

xuu

!
= ⌧M (x1)

(see Exercise 6.2.4). In particular,

⌧
hM,eMU i

(eMU ) = ⌧
hM,eMU i

 
1

|U |

X

u2U

u

!
=

1

|U |
⌧M (1) =

1

|U |
.

So by Theorem 6.2.3 we have [M : MU ] = |U |.
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Exercises

6.2.1. Show that the basic construction for N ⇢ Md(N) is Md2(N). [Hint: use Proposition 6.2.2 and the
computation of eN in Exercise 6.1.2.]

6.2.2. Let � be an i.c.c. group, let ⇤ < � be a finite index subgroup, and set M := L(�) and N := L(⇤).
Suppose

� = ⇤ t ⇤g2 t · · · t ⇤gn

for g2, . . . , gn 2 � \ ⇤. Set p1 := eN and pi = �(gi)eN�(g�1
i ) for i = 2, . . . , n.

(a) Show that piMpi is spatially isomorphic to NeN for each i = 2, . . . , n.

(b) Show that hM, eN i is isomorphic to Mn(N). What is the image of M under this isomorphism?

6.2.3. Let U(H) be the group of unitaries on a Hilbert space H. For a finite subgroup U < U(H), show that

1

|U |

X

u2U

u

is a projection.

6.2.4. LetM ⇢ B(L2(M)) be a II1 factor and let U < U(L2(M)) be a finite subgroup satisfying U\M = {1}
and uMu

⇤ = M for all u 2 M .

(a) Show that ⌧M (uxu⇤) = ⌧M (x) for all u 2 U and x 2 M . [Warning: since u 62 M when u is non-trivial,
this is not simply a consequence of the tracial property of ⌧M .]

(b) Show that

⌧

 
X

u2U

xuu

!
= ⌧M (x1)

defines a faithful trace on the ⇤-algebra {
P

u xuu : xu 2 M}.
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