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12. Amenability

Preview of Lecture: In lecture, we’ll discuss the paradoxical decomposition of F2 (Example 12.3), but
probably not the proof of Proposition 12.4 or Proposition 12.5. My goal in lecture will be to discuss the proof
of Theorem 12.13; this will require also discussing Følner sets, but we won’t get into the proof of Proposition
12.10 or Proposition 12.12.

The concept of amenability for groups was introduced by John von Neumann in 1929, in response to the
Banach-Tarski paradox. For modern operator algebraists, amenable groups are important because these are
precisely the groups G for which C⇤(G) ⇠= C⇤

r
(G). Another C⇤-algebraic characterization of amenability is

that G is amenable i↵ C⇤

r
(G) is nuclear – indeed, this is what underlies the use of the word “amenable” instead

of “nuclear” for more general C⇤-algebras. More generally, if a C⇤-algebra A is nuclear and ↵ : G ! Aut(A)
is an action of an amenable group on A, then the crossed product C⇤-algebra C⇤(G,A,↵) will be nuclear.
(In particular, this is true for all of the crossed products Dawn Archey mentioned yesterday in her talk.)

There are many (many) equivalent characterizations of amenability (and they all have analogues for locally
compact groups, although in these notes we’ll just treat the discrete case). If you want to know more than
what’s presented here, [3, Section 2.6] is a good place to start. For a more exhaustive account, check out [8].

Definition 12.1. A discrete group G is amenable if it admits a left-invariant mean: that is, there is a state20

µ on `1(G) such that
µ(f) = µ(g 7! f(s�1

g))

for all f 2 `
1 and s 2 G.

Example 12.2. Any finite group G is amenable. We define µ(�g) =
1
|G|

for each g 2 G. It is easy to check

that if we extend µ to `1(G) by requiring it to be linear, the result is a state.

Example 12.3. The free group F2 is not amenable.
Recall that F2 = ha, bi is the set of all words in two noncommuting generators (here called a, b) and their

inverses. We will assume that the words are reduced in the sense that a variable is never immediately followed
by its inverse. Let A+ denote the set of words in F2 whose first letter is a, and A� denote the set of words
whose first letter is a�1, and note that

F2 = A+ t aA�;

if a reduced word w doesn’t start with a, then a
�1

w 2 F2 lies in A�, and so w 2 aA�.
Similarly, define B+ (resp. B�) to be the words whose first letter is b (resp. b�1). So if C = {bn : n � 0},

then we can also write
F2 = A+ tA� t (B+\C) t (B� [ C).

Finally, I claim that F2 = b
�1(B+\C)t (B� [C). Why? Notice that (B+\C) is the set of words whose first

letter is b (so the second letter can’t be b�1) but which contain other letters, so b
�1(B+\C) consists of words

whose first letter is not b�1, and which contain some letter that’s not b. On the other hand, (B� [C) is the
set of words which either have b

�1 as the first letter, or contain only nonnegative powers of b.
Now that we have these three decompositions of F2, suppose that we did in fact have a left-invariant mean

µ on `1(F2). Observe that �tS = �S(t�1·), for any t 2 F2. In other words (abusing notation and writing
µ(S) rather than µ(�S) for S ✓ F2) we have µ(tS) = µ(S) for any S ✓ F and any t 2 F. It follows that

1 = µ(F2) = µ(A+ t aA�) = µ(A+) + µ(A�).

On the other hand, µ(F2) = µ(A+)+µ(A�)+µ(B+\C)+µ(B�[C), so we must have µ(B+\C) = µ(B�[C) =
0. However, this contradicts the fact that (by our third decomposition)

1 = µ(F2) = µ(B+\C) + µ(B� [ C).

Notice that our decomposition F2 = A+ t A� t (B+\C) t (B� [ C) thus writes F2 as the disjoint union
of two subsets, namely A+ tA� and (B+\C)t (B� [C), which both end up having the same measure as F2

under any translation-invariant measure (thanks to our first and last decompositions of F2). This is often
called a paradoxical decomposition of F2, and is what underlies the Banach-Tarski paradox.

20We’ve only defined states on C⇤-algebras so far, but the definition in this context is the same: a linear functional of norm
1 which assigns a nonnegative real number to any nonnegative function.
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Proposition 12.4. If G is abelian then G is amenable.

The proof uses the Markov-Kakutani fixed point theorem: [5, Theorem VII.2.1] if X is a topological vector
space, K ✓ X is compact and convex, and T is a collection of continuous, linear, pairwise commuting maps
t : X ! X is such that every t 2 T satisfies tK ✓ K, then there is a point in K which is fixed by all t 2 T .

Proof of Proposition 12.4. The compact convex setK of interest here is the set S(`1(G)) of states on `1(G);
take T = {�⇤

s
: s 2 G}, where

�
⇤

s
(�)(f) = �(�sf) = �(g 7! f(s�1

g)).

Then one checks that every element of T is continuous, in the sense that if a net (�i)i 2 `
1(G)⇤ satisfies

�i ! � in the weak-* topology, then �⇤
s
(�i) ! �

⇤

s
(�) for all s 2 G. The fact that G is abelian implies that

T is a set of pairwise commuting maps, and one can check that T preserves S(`1(G)). So, the Markov-
Kakutani fixed point theorem gives us µ 2 S(`1(G)) such that �⇤

s
(µ) = µ for all s. By construction, µ is a

left-invariant mean on `1(G). ⇤
Proposition 12.5. The class of amenable groups is closed under taking subgroups, quotients, extensions,

and inductive limits.

Proof. We will prove that the class of amenable groups is closed under extensions, and leave the rest as an
exercise. So, suppose that N,H are amenable, with left invariant means µN , µH respectively, and 1 ! N !
G ! H ! 1 is a short exact sequence of groups (so that N is normal in G and H ⇠= G/N). We define a
functional µ on `1(G) by

µ(f) = µH(sN 7! µN (g 7! f(sg))).

Notice that the function sN 7! µN (g 7! f(sg)) is well defined by our hypothesis that µN is left invariant;
we have

µN (g 7! f(sg)) = µN (g 7! f(sng)).

Moreover, if f is positive, then the fact that µH , µN are positive linear functionals implies that µ is also a
positive linear functional. To see that µ is indeed a left invariant mean, then, it merely remains to check left
invariance. If g̃ 2 G, then

µ(�g̃f) = µH(sN 7! µN (g 7! (�g̃(sg))) = µH(sN 7! µN (g 7! f(g̃�1
sg))) = µH(g̃�1

sN 7! µN (g 7! f(g̃�1
sg)))

by the left invariance of µH . However, replacing the variable s 2 G with g̃s reveals that this latter is precisely
µ(f), as desired. ⇤
Exercise 12.6. Complete the proof of Proposition 12.5. Some hints:

• If H  G is a subgroup of an amenable group, pick a set S of left coset representatives of H  G,
so that you can write any g 2 G uniquely as g = sh for s 2 S, h 2 H. Use this to embed `1(H) into
`
1(G).

• To show that G = lim�!Gn is amenable whenever all the groups Gn are, you’ll need to take a weak-⇤
cluster point of the left invariant means witnessing amenability of the Gns.

In particular, Proposition 12.5 implies that Fn is not amenable for any n � 2: Each such Fn contains F2

as a subgroup.

Theorem 12.7. G is amenable i↵ C⇤

r
(G) ⇠= C⇤(G).

Proof. We will prove the backwards direction; the forwards direction (cf. [5, Theorem VII.2.8] or [3, Theorem
2.6.8]) uses a lot of machinery that we don’t have time to introduce.

Suppose C⇤

r
(G) ⇠= C⇤(G). Note that the universal property of C⇤(G) means that it always admits a one-

dimensional representation �, arising from the unitary representation ⇡(ug) = 1 for all g 2 G. Then, since we
assumed that the canonical surjection ⇡� : C⇤(G) ! C⇤

r
(G) is an isomorphism, � becomes a 1-dimensional

representation on C⇤

r
(G).

By the Hahn-Banach Theorem, extend � to a norm-1 bounded linear functional (also called �) on
B(`2(G)), and then restrict it to a bounded linear functional on `1(G) (viewed as a subalgebra of B(`2(G)),
acting by left multiplication). If f 2 `

1(G) is positive, f = sup{f |F : F ✓ G finite}, and as each f |F is
positive in C⇤

r
(G), the fact that �|C⇤

r(G) is a ⇤-homomorphism (and hence positive) implies �(f) � 0 for all
f � 0 in `1(G).
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It’s straightforward to check Exercise: do it! that if f 2 `
1(G), f =

P
g2G

agug, then �s(f) = usfu
⇤

s

as operators on `
2(G). Moreover, as � is a ⇤-homomorphism on C⇤

r
(G) 3 ug, these elements are in the

multiplicative domain of � (see Proposition 9.26). Therefore, �(�sf) = �(f) for any f 2 `
1(G), so � is our

left-invariant mean. ⇤

We would also like to prove that G is amenable i↵ C⇤

r
(G) is nuclear. To do this, it will be easier to

work with a di↵erent characterization of amenability. To introduce it, recall that if S, T are sets, then
S�T = (S [ T )\(S \ T ) is the set of elements which are in precisely one of S, T .

Definition 12.8. A discrete group G satisfies the Følner condition if for any finite subset E ✓ G and any
✏ > 0, there is a finite subset F ✓ G such that

|sF�F |
|F | < ✏ for all s 2 E.

It is a fact (although not one we’ll prove here) that G satisfies the Følner condition i↵ G is amenable.
However, we can prove that satisfying the Følner condition is equivalent to the following property, which is
hopefully su�ciently reminiscent of the definition of amenability that you’re willing to believe said fact. If
you recall that `1(G) is the predual of `1(G) and hence is dense in `1(G)⇤, you may be even more credulous.

Definition 12.9. A discrete group G admits an approximate invariant mean if, for any finite subset E ✓ G

and any ✏ > 0, there is a positive function m = m(E, ✏) 2 `
1(G) with

P
s2G

m(s) = 1 and such that

sup
s2E

X

t2G

|m(s�1
t)�m(t)| < ✏.

Proposition 12.10. G satisfies the Følner condition i↵ G admits an approximate invariant mean.

Proof. Suppose G satisfies the Følner condition. Given a finite set E and ✏ > 0, let F ✓ G be the finite set
guaranteed by the Følner condition and let m = 1

|F |
�F . Note that

�F (s
�1

t) = 1 , s
�1

t 2 F , t 2 sF,

so
P

t2G
|m(s�1

t)�m(t)| = |sF�F |

|F |
< ✏ for all s 2 E.

On the other hand, suppose that G admits an approximate invariant mean. We first make a helpful
technical observation. Given a positive function f 2 `

1(G) and r � 0, set F (f, r) = {t : f(t) > r}. Notice
first that F (f, r) must be finite for each fixed r, in order to have f 2 `

1(G). We now observe that if f, h are
two such functions, both bounded above by 1, then

|f(t)� h(t)| =
Z 1

0
|�F (f,r)(t)� �F (h,r)(t)| dr.

To see this, suppose without loss of generality that f(t) = x, h(t) = y with x  y. Then �F (f,r)(t) = 1 i↵
r < x and �F (h,r)(t) = 1 i↵ r < y, so the integrand is 1 precisely on the interval [x, y).

Now, supposing G admits an approximate invariant mean, fix a finite subset E ✓ G and � > 0; write
✏ = �/|E|, and let m 2 `

1(G) be a norm-1 positive function such that
P

t2G
|m(t) � m(s�1

t)| < ✏ for all
s 2 E. Applying our above observation to the functions f = m,h = (t 7! m(s�1

t)), we have

X

t2G

|m(t)�m(s�1
t)| =

X

t2G

Z 1

0
|�F (f,r)(t)� �F (h,r)(t)| dr =

Z 1

0

X

t2G

|�F (f,r)(t)� �F (h,r)(t)| dr

(as the integrand is positive we can exchange the integral and the sum). Moreover, we have t 2 F (h, r)
precisely if m(s�1

t) > r, that is, if t 2 sF (m, r). It follows that

X

t2G

|m(t)�m(s�1
t)| =

Z 1

0
|F (m, r)� sF (m, r)| dr < ✏

for all s 2 G. Furthermore, as m is positive, 1 =
P

t2G
m(t) =

R 1
0 |F (m, r)| dr. It follows that

X

s2E

Z 1

0
|sF (m, r)�F (m, r)| dr <

Z 1

0
|E|✏|F (m, r)| dr,
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and so we must have X

s2E

|sF (m, r)�F (m, r)| < |E|✏|F (m, r)|

for some r. Then, in particular, for each s 2 E we have

|sF (m, r)�F (m, r)|
|F (m, r)| < |E|✏ = �,

so F (m, r) satisfies the Følner condition for the given E and � > 0. ⇤

The proof of the following Proposition can be found in [3, Theorem 2.6.8] (see also [5, Theorem VII.2.8]).
It uses a lot more Banach space theory than one might expect.

Proposition 12.11. G is amenable i↵ G admits an approximate invariant mean (i↵ G satisfies the Følner

condition).

Before proving our next theorem, we need the following useful fact about completely positive maps.

Proposition 12.12. A map � : Mn(C) ! A is completely positive i↵ [�(Eij)] 2 Mn(A) is positive.

Proof. We prove the backwards direction and leave the forwards direction as an easy exercise to the reader.
So, suppose a = [�(Eij ] 2 Mn(A) is positive; write [bij ] := a

1/2, so that

aij = �(Eij) = (b⇤b)ij =
nX

k=1

b
⇤

ki
bkj .

Without loss of generality, assume A ✓ B(H), so that each entry bij of b 2 Mn(A) lies in B(H). Define
V : H ! Cn ⌦ Cn ⌦H by

V (⇠) =
nX

j,k=1

ej ⌦ ek ⌦ bk,j⇠.

Then we compute that if T = [tij ] 2 Mn(C),

hV ⇤(T ⌦ 1⌦ 1)V ⌘, ⇠i = h(T ⌦ 1⌦ 1)(V ⌘), V ⇠i

= h
nX

i,j,k=1

tijei ⌦ ek ⌦ bk,j⌘,

nX

`,m=1

e` ⌦ em ⌦ bm,`⇠i

=
nX

i,j,k=1

tijhbk,j⌘, bk,i⇠i =
nX

i,j,k=1

hb⇤
k,i

bk,j⌘, ⇠i

= h�([tij ])⌘, ⇠i.

In other words, �(T ) = V
⇤(T⌦1⌦1)V is a compression of the ⇤-homomorphism  : Mn(C) ! B(Cn⌦Cn⌦H)

given by  (T ) = T ⌦ 1⌦ 1, so � is cp. ⇤

Finally, we can prove our second marquee theorem.

Theorem 12.13. G is amenable i↵ C⇤

r
(G) is nuclear.

Proof. Suppose G is amenable (and, for simplicity, countable, so that we can enumerate the elements of G).
By Proposition 12.11, we can assume that G satisfies the Følner condition. Choose, then, a sequence of
finite sets Fn such that Fn satisfies the Følner condition for ✏ = 1/n and the finite set consisting of the first
n elements of G. Let Pn 2 B(`2(G)) be the projection onto the subspace spanned by {�g : g 2 Fn}, so that
we can identify PnB(`2(G))Pn with MFn(C). Define �n : C⇤

r
(G) ! MFn(C) by �n(x) = PnxPn. Example

9.9 shows that �n is ccp.
To define  n : MFn(C) ! C⇤

r
(G), write Epq for the matrix unit in MFn(C) such that Epq(�q) = �p. Then

define

 n(Epq) =
1

|Fn|
upu

⇤

q
,
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and extend  n to be a linear map on MFn(C). If we enumerate the elements of Fn as p1, . . . , p|Fn|
, then

[ n(Epq)] satisfies

[ n(Epq)] =
1

|Fn|2

2

6664

up1 0 · · · 0
up2 0 · · · 0
...

... · · ·
...

up|Fn| 0 · · · 0

3

7775

2

6664

up1 0 · · · 0
up2 0 · · · 0
...

... · · ·
...

up|Fn| 0 · · · 0

3

7775

⇤

� 0,

so Proposition 12.12 tells us that  n is also cp. In fact,  is ucp: our choice of scaling factor and the fact
that each up is a unitary means that

 n(1) =
X

p2Fn

 n(Epp) = 1.

To complete the proof that C⇤

r
(G) is nuclear when G is amenable, it remains to show that for any a 2 C⇤

r
(G)

we have limn!1 ka� n(�n(a))k = 0. In fact, since the generators us densely span C⇤

r
(G), it su�ces to show

that limn!1 kus �  n(�n(us))k = 0 for all s 2 G.

One quickly computes that �n(us) =
P

p:p,s�1p2Fn
Ep,s�1p, and therefore

 n(�n(us)) =
1

|Fn|
X

p:p,s�1p2Fn

upu
⇤

s�1p
=

1

|Fn|
X

p:p,s�1p2Fn

us = us

|Fn \ sFn|
|Fn|

.

As |Fn � sFn| = 2|Fn|� 2|Fn \ sFn|, our choice of the sets Fn implies that

0 = lim
n!1

|Fn � sFn|
|Fn|

= lim
n!1

1� |Fn \ sFn|
|Fn|

for any s 2 G. In particular,

lim
n!1

kus �  n(�n(us))k = lim
n!1

1� |Fn \ sFn|
|Fn|

= 0,

as desired.
Now, for the converse. Assume C⇤

r
(G) is nuclear, so that we have cpc maps �n : C⇤

r
(G) ! Mk(n) and

 n : Mk(n) ! C⇤

r
(G). By Arveson’s Extension Theorem, we might as well assume that �n is defined on all of

B(`2(G)), so that the composition �n =  n ��n is a cpc map from B(`2(G)) to C⇤

r
(G), such that �n(x) ! x

for all x 2 C⇤

r
(G). Take a point-ultraweak limit of the maps �n (ask Brent and Rolando), and we end up

with a cpc map � : B(`2(G)) ! L(G) which restricts to the identity on C⇤

r
(G).

Recall from your von Neumann algebra lectures that there is a canonical trace ⌧ on L(G), given by
⌧(x) = hx�e, �ei. Define µ = ⌧ ��; we claim that µ is a left invariant mean. To see this, we again use that the
left translation action �s on functions in `1(G) ✓ B(`2(G)) is given by �s(f) = usfu

⇤

s
. Since �|C⇤

r(G) = id,
we have ug in the multiplicative domain of � for all g. Consequently, for any f 2 `

1(G),

µ(�s(f)) = ⌧(�(usfu
⇤

s
)) = ⌧(us�(f)u

⇤

s
) = ⌧(�(f)),

since ⌧ is a trace and us is a unitary. ⇤
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