Mark Tomforde K-theory: An Elementary Introduction

Let A be a C^* -algebra, and let I be an ideal of A. Prove that if $K_0(I) \cong K_1(I) \cong \{0\}$, then $K_0(A) \cong K_0(A/I)$ and $K_1(A) \cong K_1(A/I)$.

If you have extra time, consider the following exercises:

1. Suppose A is a unital C^{*}-algebra that is Morita equivalent to a crossed product of an AF-algebra by \mathbb{Z} ; that is, there exists an AF-algebra B and an automorphism $\alpha \colon B \to B$ such that A is Morita equivalent to the crossed product $B \rtimes_{\alpha} \mathbb{Z}$. Prove that

 $K_0(A) \cong \operatorname{coker}(id - \alpha_0)$ and $K_1(A) \cong \ker(id - \alpha_0)$

where $(id - \alpha_0) \colon K_0(B) \to K_0(B)$. Also show that $K_1(A)$ is torsion-free abelian group.

(Recall: if $h: G \to H$ is a homomorphism between abelian groups, then the *cokernel* of h is defined coker(h) := H/im(h).)

[Hint: use the Pimsner–Voiculescu (PV) sequence.]

2. Prove that K_0 and K_1 distribute over a direct sum; that is, for any C^{*}-algebras A and B prove that

$$K_0(A \oplus B) \cong K_0(A) \oplus K_0(B)$$
 and $K_1(A \oplus B) \cong K_1(A) \oplus K_1(B)$.

There are several ways to do this problem. The hints below outline one possible approach.

[Hint 1: use the fact that K_0 and K_1 each take split exact sequences to split exact sequences.] [Hint 2: obtain the following commutative diagram

and apply the three-lemma (i.e. a special case of the five-lemma). Similarly for K_{1} .]

Ian Charlesworth Free Probability

Let G and H be countable discrete groups and let G * H denote their free product. View L(G) and L(H) as subalgebras of L(G * H), whose trace we denote by τ .

(a) For $g_1, \ldots, g_n \in G \setminus \{e\}$ and $h_1, h_2, \ldots, h_n \in H \setminus \{e\}$, show that

$$\tau(\lambda(g_1)\lambda(h_1)\cdots\lambda(g_n)\lambda(h_n))=0.$$

- (b) For $x \in \mathbb{C}[\lambda(G)]$, characterize when $\tau(x) = 0$. Similarly for $y \in \mathbb{C}[\lambda(H)]$.
- (c) For $x_1, \ldots, x_n \in \mathbb{C}[\lambda(G)]$ and $y_1, \ldots, y_n \in \mathbb{C}[\lambda(H)]$ assume $\tau(x_i) = \tau(y_i) = 0$ for $i = 1, \ldots, n$. Show that

$$\tau(x_1y_1\cdots x_ny_n)=0$$

(d) Show that the previous part holds for $x_i \in L(G)$ and $y_i \in L(H)$.