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11. Tensor Products of C⇤-algebras

Overall, sections 11.1 and 11.2 will be treated as preliminary material in the lecture, which will focus more
on sections 11.3 and 11.7. Section 11.4 goes into much more di�cult problems concerning injectivity and
exactness for tensor products. The point there is to just give a feel for the the questions and obstacles
in both settings. With time, we will touch on the topics in lecture. Section 11.5 gives a tensor product
characterization of nuclearity (Theorem 11.48) and highlights some important examples (Remark 11.51).
We will mention these in lecture but without much discussion. Section 11.6 establishes an important class
of examples (Theorem 11.55), which we will be sure to mention in lecture, but without much word on the
proof.

Section 11.3 defines the two primarily studied C⇤-norms on tensor products. These are quite analogous
to the universal and reduced norms for discrete groups, and we will explore several tensor product analogies
to results we saw for groups, e.g. Corollary 11.28, Proposition 11.33, and Proposition 11.32. Section 11.7
justifies our use of completely positive maps. We will cover Example 11.58 and mention how Stinespring’s
Dilation theorem is used in the proof of Theorem 11.59.

The way you read these notes will depend on your background and comfort level. If algebraic tensor
products are new to you, spend more time in section 11.1. Regardless of your comfort level with algebraic
tensors, be sure you’ve digested Exercise 11.11, which is quite foundational to the later sections. If you are
still shaky on Hilbert space operators, linger in section 11.2. If you feel comfortable with (assuming) the
material in these sections, but still want some more fundamental examples and arguments under your belt,
check out sections 11.6 and 11.5.

One of the most important constructions in C⇤-algebras is the tensor product. Given two C⇤-algebras A
and B, we form a C⇤-tensor product A⌦↵B by taking the ⇤-algebraic tensor product A�B and completing
with some C⇤-norm. In this section, we consider the two most prominent ones. This section is taken heavily
from the first half of [3, Chapter 3].

One word on notation. Because there is so much significance to the norm on a given tensor product,
we will denote algebraic tensor products by � and tensor products that are also complete with respect to
a norm by ⌦ (possibly with decoration to denote which norm). Sometimes ⌦ is used in the literature to
denote an algebraic tensor product, and sometimes it is used to indicate the normed tensor product space
with the spatial tensor product norm Definition 11.21. Usually authors are good about warning you of this.

11.1. Facts about algebraic tensor products. In this section we list some relevant facts about algebraic
tensor products that we will take for granted in the lecture. Many of these are proved in [3, Section 3.1-3.2].

We give a non-constructive definition since it highlights the key properties: Let A and B be C-vector
spaces. Their tensor product is the vector space A� B, together with a bilinear map � : A⇥ B ! A� B,
such that A�B is universal in the following sense:
For any C-vector space C and any bilinear map � : A ⇥ B ! C, there exists a unique bilinear map
�̃ : A�B ! C so that �̃(a�b) = �(a, b) for all a 2 A and b 2 B. The bilinearity of the map � : A⇥B ! A�B

means that we have the following algebraic relations in A�B:

(1) (a1 + a2)� b = (a1 � b) + (a2 � b) and
a� (b1 + b2) = (a� b1) + (a� b2) for all a, a1, a2 2 A, b, b1, b2 2 B; and

(2) �(a� b) = (�a)� b = a� (�b) for all a 2 A, b 2 B, and � 2 C.
Elements of the form a� b for a 2 A and b 2 B are called simple tensors. Note that if a = 0 or b = 0, then
a� b = 0.

Remark 11.1. A�B is spanned by its simple tensors, but consists of many more elements. For example, in
general the element (a1 � b1) + (a2 � b2) cannot be written as a simple tensor a� b.

As a vector space, the notion of linear independence in an algebraic tensor product is a little technical
but also technically very useful. We lay out the following propositions for later use.

As far as linear independence goes, the following propositions can be useful:
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Proposition 11.2. Suppose {a1, ..., an} ⇢ A are linearly independent and {b1, ..., bn} ⇢ B. Then

nX

1

ai � bi = 0 ) bi = 0, for 1  i  n.

Proposition 11.3. If {ei}i2I is a basis for A and {e0
j
}j2J is a basis for B, then {ei� e

0

j
}(i,j)2I⇥J is a basis

for A�B.

Proposition 11.4. If {ei}i2I is a basis for A and x 2 A � B, then there exists a unique finite set I0 ⇢ I

and {bi}i2I0 so that x =
P

i2I0
ei � bi.

Just as we take tensor products of linear spaces, we can take tensor products of linear maps.10 The
following is more of a proposition/ definition; existence and uniqueness of these maps come from the above
universal property.

Definition 11.5. Suppose A1A2, B1, B2 are C-vector spaces and �i : Ai ! Bi, i = 1, 2 are linear maps.
Then there is a unique linear map

�1 � �2 : A1 �B1 ! A2 �B2

so that �1 � �2(a� b) = �1(a)� �2(b) for all a 2 A1, b 2 A2. This is called the tensor product of the maps
�1 and �2.

The tensor product of linear maps preserves both injectivity and exact sequences:

Proposition 11.6. Suppose A1, A2, B1, B2 are C-vector spaces and �i : Ai ! Bi, i = 1, 2 are injective

linear maps. Then �1 � �2 is also injective.

Proposition 11.7. Suppose J,A,B,C are C-vector spaces. If 0 ! J
◆�! A

⇡�! B ! 0 is a short exact

sequence (i.e. ◆ is injective, ⇡ is surjective, and ker(⇡) = ◆(J)), then so is

0 ! J � C
◆�idC����! A� C

⇡�idC����! B � C ! 0.

We highlight a special case of this tensor product map when B1 = B2 is an algebra.

Definition 11.8. Suppose A1, A2 are C-vector spaces, B a C-algebra, and  i : Ai ! B are linear maps.
Then there exists a unique linear map

 1 ⇥  2 : A1 �A2 ! B

so that  1⇥ 2(a� b) =  1(a) 2(b) for all a 2 A1, b 2 A2. This is called the product of the maps  1 and  2.

Exercise 11.9. Explain what is meant by  1 ⇥  2 is a “special case” of a tensor product of maps. (Think
of the universal property and the bilinear map B �B ! B given on simple tensors by b1 � b2 7! b1b2.)

We are interested in particular in tensor products of C⇤-algebras. When A and B are C⇤-algebras, then
the algebraic tensor product is a ⇤-algebra with multiplication and involution defined on simple tensors as

(a� b)⇤ = a
⇤ � b

⇤ and (a1 � b1)(a2 � b2) = a1a2 � b1b2,

and extended linearly to all of A�B.
When we take the product of two ⇤-homomorphisms  1 : A1 ! B and  2 : A2 ! B, we are forced to

impose an extra condition to guarantee that the product  1 ⇥  2 is again a ⇤-homomorphism: the images
must commute, i.e. for each a1 2 A1 and a2 2 A2,  1(a1) 2(a2) =  2(a2) 1(a1).

Exercise 11.10. Justify the claim above, i.e. the product  1 ⇥  2 of two ⇤-homomorphisms  1 : A1 ! B

and  2 : A2 ! B is a ⇤-homomorphism provided that the ranges  1(A1) and  2(A2) commute in B.

Recall from Section 9 where we defined a natural C⇤-norm on

Mn(A) := {[aij ] : ai,j 2 A, 1  i, j  n}. (11.1)

Exercise 11.11. Let A be any C⇤-algebra, 1  n < 1, and let Ei,j denote the matrix units on Mn(C)
(i.e. the matrices with 1 in the i, j coordinate and 0 elsewhere). Define a map ⇡ : Mn(A) ! Mn � A by
⇡([ai,j ]) =

P
n

i,j=1 Ei,j � aij . Show that this is an algebraic ⇤-isomorphism.

10For those categorically inclined, tensors play well with linear categories and act like “multiplication” for objects/ mor-
phisms. Ask Corey Jones after his expository talk.
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11.2. Tensor Products of Hilbert Space Operators. We saw in the prereqs how to define a tensor
product of two Hilbert spaces H1 ⌦ H2. (Recall that H1 ⌦ H2 is the completion of the algebraic tensor
product H1 �H2 with respect to the norm coming from the inner product which is given on simple tensors
by h⇠1 ⌦ ⇠2, ⌘1 ⌦ ⌘2i = h⇠1, ⌘1ih⇠2, ⌘2i.)

Given operators Ti 2 B(Hi) for i = 1, 2, we have a natural algebraic tensor product mapping T1 � T2 :
H1 �H2 ! H1 �H2 given on simple tensors by

(T1 � T2)(⇠ � ⌘) = T1⇠ � T2⌘.

This extends linearly to a linear map H1 �H2 ! H1 �H2 defined on sums of simple tensors by

T1 � T2

nX

1

cj(⇠j ⌦ ⌘j) =
nX

1

cj(T1⇠j ⌦ T2⌘j).

This map extends to an operator T1 ⌦ T2 2 B(H1 ⌦H2) by the following proposition.

Proposition 11.12. Given Hilbert spaces H1 and H2 and operators Ti 2 B(Hi), i = 1, 2, there is a unique

linear operator T1 ⌦ T2 2 B(H1 ⌦H2) such that

T1 ⌦ T2(⇠1 ⌦ ⇠2) = T1⇠1 ⌦ T2⇠2

for all ⇠i 2 Hi, i = 1, 2, and moreover kT1 ⌦ T2k = kT1kkT2k.

Proof. First, we want to show that the operator T1 � T2 is bounded on H1 � H2, which means we can
extend it to a bounded operator on H1 ⌦ H2. Assume for now that T2 = 1H2 , and write T = T1. LetP

n

1 cj(⇠j � ⌘j) 2 H1 � H2. Using a Gram-Schmidt process, we may assume ⌘j are orthonormal (check).
Then we compute

������
T � 1H2(

nX

j=1

cj(⇠j � ⌘j))

������

2

=

������

nX

j=1

cjT ⇠j � ⌘j

������

2

=

������
h

nX

i=1

ciT ⇠i � ⌘i,

nX

j=1

cjT ⇠j � ⌘ji

������

=

������

nX

i=1

nX

j=1

cic̄jhT ⇠i, T ⇠jih⌘i, ⌘ji

������
=

nX

j=1

|cj |2kT ⇠jk2  kTk2
nX

j=1

|cj |2k⇠jk2

= kTk2
������

nX

i=1

nX

j=1

cic̄jh⇠i, ⇠jih⌘i, ⌘ji

������
= kTk2

������

nX

j=1

cj(⇠j � ⌘j)

������

2

.

Then kT � 1H2k  kTk on H1 �H2, meaning it extends to an operator in B(H1 ⌦H2), denoted by T ⌦ 1H2 ,
with kT ⌦ 1H2k  kTk. Similarly, one shows that for any T2 2 B(H2), we have 1H1 ⌦ T2 2 B(H1 ⌦H2).

Now, for T1 2 B(H1) and T2 2 B(H2), we compose (1H1 ⌦ T2)(T1 ⌦ 1H2) to get T1 ⌦ T2 2 B(H1 ⌦H2)
with kT1 ⌦ T2k  kT1kkT2k and

T1 ⌦ T2(⇠1 ⌦ ⇠2) = T1⇠2 ⌦ T2⇠2

for all ⇠i 2 Hi. To show that this norm inequality is an equality, we find, for any " > 0, unit vectors ⇠i 2 Hi

with |kTi⇠ik � kTik| < "(2maxi kTik)�1 for i = 1, 2. Then, using Exercise 7.49 from Day 1, we have

k(T1 ⌦ T2)(⇠1 ⌦ ⇠2)k = kT1⇠1 ⌦ T2⇠2k = kT1⇠1kkT2⇠2k ⇠" kT1kkT2k.
(That’s shorthand for kT1⇠1kkT2⇠2k is within epsilon of kT1kkT2k.) ⇤

We will take for granted that taking tensor products of operators is well-behaved with respect to addition,
(scalar) multiplication, and adjoints.

Exercise 11.13. For A = [aij ] 2 M2(C) = B(C2) and B = [bi,j ] 2 M3(C) = B(C3), write a matrix array
for A⌦B 2 B(C2 ⌦ C3). (This is called a Kronecker product.)

In infinite dimensions, we do not have B(H1)�B(H2) = B(H1⌦H2) (the former is no longer automatically
closed).

Proposition 11.14. For Hilbert spaces H1 and H2, we define ⇤-homomorphisms ◆i : B(Hi) ! B(H1 ⌦H2)
by identifying B(H1) ' B(H1)�C1H2 and B(H2) ' C1H1�B(H2). These induce a product ⇤-homomorphism

◆1 ⇥ ◆2 : B(H1)�B(H2) ! B(H1 ⌦H2), which is injective.
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Proof. Since B(H1) ' B(H1) � C1H2 and B(H2) ' C1H1 � B(H2) (Exercise: check) and B(H1) � C1H2

and C1H1 � B(H2) commute in B(H1 ⌦ H2) (Exercise: check), we have from Section 11.1 the product
⇤-homomorphism

B(H1)�B(H2) ! B(H1 ⌦H2),

given by
nX

j=1

Sj � Tj 7!
nX

j=1

(Sj ⌦ 1H2)(1H1 ⌦ Ti) =
nX

j=1

Sj ⌦ Tj .

We just need to show that this map is injective, i.e. if the operator
P

n

j=1 Sj ⌦ Tj 2 B(H1 ⌦ H2) is

zero, then the sum of elementary tensors
P

n

j=1 Sj � Tj 2 B(H1) � B(H2) is also zero. By possibly re-
writing the coe�cients of the Sj , we may assume that the operators {Sj} are linearly independent. If
0 =

P
n

j=1 Sj ⌦ Tj 2 B(H1 ⌦H2), then for all vectors ⇠1, ⌘1 2 H1 and ⇠2, ⌘2 2 H2, we have

0 = h(
nX

j=1

Sj ⌦ Tj)(⇠1 ⌦ ⇠2), (⌘1 ⌦ ⌘2)i =
nX

j=1

hSj⇠1 ⌦ Tj⇠2, ⌘1 ⌦ ⌘2i

=
nX

j=1

hSj⇠1, ⌘1ihTj , ⇠2, ⌘2i =
nX

j=1

h
�
hTj⇠2, ⌘2i

�
Sj⇠1, ⌘1i.

Since this holds for all ⇠1, ⌘1 2 H1 the operator
P

n

j=1hTj⇠2, ⌘2iSj 2 B(H1) is zero (by Exercise 7.45 from
Day 1 Lectures). Since we assumed the {Sj} are linearly independent, it follows from Proposition 11.2 that
the coe�cients hTj⇠2, ⌘2i must all be 0. Again, since this holds for all ⇠2, ⌘2 2 H2, it follows that each
Tj = 0 2 B(H2), which finishes the proof. ⇤
Corollary 11.15. Given two representations ⇡i : Ai ! B(Hi), i = 1, 2, there is an induced representation

⇡1 � ⇡2 : A1 �A2 ! B(H1 ⌦H2)

such that ⇡1 � ⇡2(a1 � a2) = ⇡1(a1)⌦ ⇡2(a2) for all ai 2 Ai, i = 1, 2.

We have discussed extending pairs of linear maps to tensor products, but what about restricting maps
on tensor products to the tensor factors? Given a ⇤-homomorphism on an algebraic tensor product of C⇤-
algebras � : A� B ! C, when can we define restrictions �|A : A ! C and �|B : B ! C? In general this is
not so easy. In the unital setting, there is a natural way to do this.

Exercise 11.16. Suppose A,B, and C are C⇤-algebras with A and B unital and � : A � B ! C a ⇤-
homomorphism. Then there exist ⇤-homomorphisms �A : A ! C and �B : B ! C with commuting ranges
such that � = �A ⇥ �B .

A little harder to prove is the following (without the assumption that A and B are unital). See [3, Theorem
3.6.2].

Theorem 11.17. Let A and B be C⇤
-algebras and ⇡ : A�B ! B(H) a non-degenerate ⇤-homomorphism.

Then there exist non-degenerate representations ⇡A : A ! B(H) and ⇡B : B ! B(H) so that ⇡ = ⇡A ⇥ ⇡B.

11.3. C⇤-norms on tensor products. For C⇤-algebras A and B, A�B is a ⇤-algebra. In order to turn it
into a C⇤-algebra, we need to be able to define a C⇤-norm k · k on A�B. With this, (A�B, k · k) will be a
pre-C⇤

-algebra, i.e. its completion is a C⇤-algebra. Much like the situation with groups, we are guaranteed
the following:

• C⇤-norms on algebraic tensor products of C⇤-algebras always exist;
• there can be (very) many di↵erent C⇤-norms on a given algebraic tensor product of two C⇤-algebras;
• but we know how to describe the largest and smallest;11 and
• it is extremely interesting to ask when the two coincide (and this is related to the notion of amenabil-

ity for groups because math is beautiful).

Definition 11.18. For C⇤-algebras A and B, a cross norm on a A�B is a norm k·k such that ka⌦bk = kakkbk
for every a 2 A and b 2 B.

11The second part of this statement is a deep theorem due to Takesaki.
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Example 11.19. We verified in the previous section that for T1 2 B(H1) and T2 2 B(H2), the norm on
B(H1)�B(H2) inherited from B(H1⌦H2) is a cross norm. In fact as a consequence of Takesaki’s theorem12

(which we will discuss more later in this section) every C⇤-norm on A�B is a cross norm. We will take this
as a fact as we proceed.

In Exercise 11.11, we saw that there is an algebraic ⇤-isomorphism Mn(C)�A ' Mn(A), the latter being
a C⇤-algebra with norm induced by the norm of A. Hence pulling back the norm along this ⇤-isomorphism
gives a C⇤-norm on Mn(C)�A (i.e. k[�ij ]� ak = k[�ija]k). Moreover, Mn(C)�A is already complete with
respect to this norm, which means it is a C⇤-algebra. Hence any other C⇤-norm we define on Mn(A) agrees
with this norm. (See remarks after Proposition 1.21.) That means we have proved the following proposition.

Proposition 11.20. Let A be a C⇤
-algebra and 1  n < 1. Then there is a unique C⇤

-norm on the

algebraic tensor product Mn(C)�A, which comes from the ⇤-isomorphism Mn(C)�A ' Mn(A). Hence we

write Mn(C)⌦A.

This identification also introduces very convenient notation, e.g. for the diagonal matrix in Mn(A) with
a 2 A down the diagonal:

In ⌦ a $

2

66664

a 0 . . . 0

0 a . . .
...

...
...

. . .
...

0 . . . . . . a

3

77775
.

For general C⇤-algebras A and B, it should not be taken for granted that a C⇤-norm exists at all on A�B.
However, it turns out the two most natural candidates both yield C⇤-norms.

The first is the spatial norm, i.e. the norm inherited as a subspace of bounded operators on a tensor
product of Hilbert spaces. Recall that as a consequence of the GNS construction, every C⇤-algebra has at
least one faithful representation on some Hilbert space.

Definition 11.21 (Spatial Norm). Let ⇡i : Ai ! B(Hi) be faithful representations. The spatial norm on
A1 �A2 is ���

X
ai � bi

���
min

=
���
X

⇡1(ai)⌦ ⇡2(bi)
���
B(H1⌦H2)

.

Remark 11.22. We will explain the k·kmin notation later with Takesaki’s theorem, which we keep mentioning.

Exercise 11.23. Check that k · kmin is a semi-norm satisfying the C⇤-identity.

Proposition 11.24. The semi-norm k · kmin is a norm, i.e. for each x 2 A1 � A2, if kxkmin = 0, then
x = 0.

Proof. Let ⇡i : Ai ! B(Hi) be faithful representations. Then the algebraic tensor product map ⇡1 � ⇡2 :
A1 � A2 ! B(H1) � B(H2) is injective. By Proposition 11.14, we can view B(H1) � B(H2) as a ⇤-
subalgebra of B(H1 ⌦H2), and consequently have ⇡1 � ⇡2 : A1 �A2 ! B(H1 ⌦H2) injective. Then for any
x =

P
n

i=1 ai � bi 2 A1 �A2, if kxkmin = 0, then

0 = kxkmin = k
nX

i=1

⇡1(ai)⌦ ⇡2(bi)k = k(⇡1 � ⇡2)(x)k,

which by injectivity means x = 0. ⇤
Hence k · kmin is a norm, and we can define the C⇤-algebra

A⌦B := A�B
k·kmin

.

It is sometimes denoted A⌦min B, but we choose the undecorated notation to match the literature. In most
cases this the uno�cial “default” norm to take on a tensor product of C⇤-algebras.13

12Full disclosure, using this theorem is wayyyy overkill. A functional calculus argument could prove this, but this section is
already long enough.

13For groups, it’s the other way around and the maximal C⇤-completion of the group algebra is often the undecorated one.
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For a sense of perspective, dropping the representation notation, we view A1 ⇢ B(H1) and A2 ⇢ B(H2).
Then there is a natural way to stick them into a common C⇤-algebra, i.e. B(H1 ⌦H2), from whence they
can inherit the C⇤-norm, i.e. A1 ⌦A2 is the closure of the ⇤-subalgebra A1 �A2 ⇢ B(H1 ⌦H2).

However, the norm was defined with an arbitrary choice of faithful representations. Fortunately, the value
of the norm is independent of that choice.

Proposition 11.25. Given faithful representations ⇡i : Ai ! B(Hi) and ⇡0

i
: Ai ! B(H0

i
), then the minimal

tensor norms k · kmin and k · k0min defined by each pair of faithful representations agree.

The proof is nice to see because it highlights two useful techniques. The first, yet again, is approximate
identities. The second is the fact that there is only one C⇤-norm on Mn(B) for any C⇤-algebra B.

In our proof, we limit ourselves to the countable setting to avoid the extra notation involved with nets.

Proof. By symmetry, it su�ces to prove the case where H1 = H0

1 and ⇡1 = ⇡
0

1.
We first consider the case where A1 = Mn(C) for some n. Since both k · kmin and k · k0min are C⇤-norms,

by Proposition 11.20, for every x =
P

m

i=1 Ti � ai 2 Mn(C)�A2,
�����

nX

i=1

⇡1(Ti)⌦ ⇡2(ai)

����� = kxkmin = kxk0min =

�����

nX

i=1

⇡1(Ti)⌦ ⇡
0

2(ai)

����� . (11.2){unique min norm}{unique min norm}

Now, for the general separable case, take an increasing net of finite-rank projections P1  P2  ... in
B(H1) where the rank of Pn is n and such that kPn⇠ � ⇠k ! 0 for all ⇠ 2 H1 (i.e. Pn converge in SOT to
1H1). Then for every T 2 B(H1 ⌦H2), (Pn ⌦ 1H2)T (Pn ⌦ 1H2) converges in ⇤-SOT14 to T , and so we have
(check)

kTk = sup
n

k(Pn ⌦ 1H2)T (Pn ⌦ 1H2)k.

That means for any x =
P

m

i=1 ai � bi 2 A1 �A2,

kxkmin = sup
n

�����

mX

i=1

Pn⇡(ai)Pn ⌦ ⇡2(bi)

�����

kxk0min = sup
n

�����

mX

i=1

Pn⇡(ai)Pn ⌦ ⇡
0

2(bi)

����� .

For n � 1, define a ⇤-isomorphism � : Mn(C) ! PnB(H)Pn. Since � is a faithful representation of Mn(C),
by (11.2), we have

�����

mX

i=1

Pn⇡(ai)Pn ⌦ ⇡2(bi)

����� =

�����

mX

i=1

�(��1(Pn⇡(ai)Pn))⌦ ⇡2(bi)

�����

=

�����

mX

i=1

�(��1(Pn⇡(ai)Pn))⌦ ⇡
0

2(bi)

�����

=

�����

mX

i=1

Pn⇡(ai)Pn ⌦ ⇡
0

2(bi)

����� .

It follows that kxkmin = kxk0min. ⇤
So, given C⇤-algebras A1 and A2 and faithful non-degenerate representations ⇡i : Ai ! B(Hi), we

complete ⇡1 � ⇡2 to a faithful representation

⇡1 ⌦ ⇡2 : A1 ⌦A2 ! B(H1 ⌦H2).

There is another often useful description of the minimal tensor norm.

Proposition 11.26. For C⇤
-algebras A1 and A2, and x =

P
n

j=1 aj � bj 2 A1 �A2,

kxkmin = sup{k
nX

j=1

⇡1(aj)⌦ ⇡2(bj)k : ⇡i : Ai ! B(Hi) (nondegenerate) representations}.

14Sn ! S in ⇤-SOT if Sn ! S in SOT and S⇤
n ! S⇤ in SOT.
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Proof. Let ⇡i : Ai ! B(Hi) be representations and �i : Ai ! B(H0

i
) be faithful representations. Then by

Exercise 4.16, ⇡i��i : Ai ! B(Hi�H0

i
) is a faithful representation. Let Pi 2 B(Hi�H0

i
) be the compression

to Hi for each i = 1, 2... ⇤

Exercise 11.27. Finish the proof of Proposition 11.26. This is an example of a technique where one can
dilate a map to one with a desired property (e.g. faithfulness) and then cut down to the original map to
draw the desired conclusion.

Corollary 11.28. For a pair of ⇤-homomorphisms �i : Ai ! Bi, the algebraic tensor product �1 � �2

extends to a ⇤-homomorphism

�1 ⌦min �2 : A1 ⌦min A2 ! B1 ⌦min B2.

Proof. We are charged with showing that �1 � �2 is continuous with respect to the topologies on A1 � A2

and B1 � B2 induced by their respective k · kmin norms. We know that there exist faithful representations
⇡
A

i
: Ai ! B(HA

i
) and faithful representations ⇡B

i
: Bi ! B(HB

i
). So if x =

P
n

j=1 aj � bj 2 A1 � A2, the
fact that ⇤-homomorphisms are norm-decreasing means that

kxkA1⌦minA2 = k
nX

j=1

⇡
A

1 (aj)⌦ ⇡
A

2 (bj)k � k
nX

j=1

⇡
B

1 (�1(aj))⌦ ⇡
B

2 (�2(bj))k = k�1 � �2(x)kB1⌦minB2 .

But each ⇡
B

i
�i : Ai ! B(HB

i
) is a representation of Ai, so we complete the proof via an appeal to the

preceding proposition. ⇤

Just as with groups, there is another natural norm which comes from taking all possible representations.

Definition 11.29 (Maximal Norm). Let A and B be C⇤-algebras. We define the maximal C⇤-tensor norm
on A�B by

kxkmax = {sup k⇡(x)k : ⇡ : A�B ! B(H) a (non-degenerate) rep}
for all x 2 A�B.

The first question is if this is even finite; it is by Theorem 11.17. Indeed, given ⇡ : A�B ! B(H), with
restrictions ⇡|A and ⇡|B , then we have for all simple tensors a� b 2 A�B,

k⇡(a� b)k = k⇡|A(a)⇡|B(b)k  k⇡|A(a)kk⇡|B(b)k  kakkbk.

Just as we argued for groups (Proposition 5.7), this with the triangle inequality guarantees that kxkmax < 1
for all x 2 A�B.

Exercise 11.30. Check that k · kmax is a semi-norm satisfying the C⇤-identity.

For any pair of faithful representations ⇡i : Ai ! B(Hi), we get a representation ⇡ = ⇡1�⇡2 : A1�A2 !
B(H1 ⌦H2). It follows that for any x 2 A1 �A2,

kxkmin = k⇡(x)k  kxkmax.

So, for any x 2 A1 �A2,

kxkmax = 0 ) kxkmin = 0 ) x = 0,

which means k · kmax is a norm. Hence we define the C⇤-algebra

A1 ⌦max A2 := A1 �A2
k·kmax

.

Remark 11.31. Note that by definition, the ⇤-algebra A1 � A2 is a dense subalgebra in A1 ⌦max A2 and
A1 ⌦A2.

Just as with groups, the maximal tensor product enjoys the following universal property.

Proposition 11.32. If � : A1�A2 ! C is a ⇤-homomorphism, then there exists a unique ⇤-homomorphism

A1⌦maxA2 ! C, which extends �. In particular, any pair of ⇤-homomorphisms �i : Ai ! C with commuting

ranges induces a unique ⇤-homomorphism

�1 ⇥ �2 : A⌦max B ! C.
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Note that this is really just a statement about norms, and it is a theme we’ve seen before (Proposition
5.7). Let’s flesh out a more general idea that underlies both.

Suppose B and C are C⇤-algebras, B0 ⇢ B is a dense ⇤-subalgebra, and ⇡ : B0 ! C is a ⇤-homomorphism.
(Notice that, unless B0 = B, this means B0 is not a C⇤-algebra.) The only obstruction to extending ⇡ to
a ⇤-homorphism on B is if ⇡ is not contractive on B0, i.e. k⇡(b)k > kbk for some b 2 B0. In other
words, ⇡ extends to B i↵ ⇡ is contractive on B0. The necessity is easy to see. Indeed, if ⇡ does extend
to B, then the C⇤-norm on B forces ⇡ to be contractive on all of B, including B0. On the other hand, if
⇡ : B0 ! C is a contractive ⇤-homomorphism, then it is in particular bounded, which means it extends to
a bounded homomorphism ⇡ : B ! C. Moreover, just as we saw in Proposition 5.7, for any b 2 B with
bn 2 B0 converging to b, we have ⇡(bn) ! ⇡(b) and hence ⇡(bn)⇤ ! ⇡(b)⇤. Then by uniqueness of limits,
⇡(b⇤) = ⇡(b) since

k⇡(bn)⇤ � ⇡(b⇤)k = k⇡(b⇤
n
)� ⇡(b⇤)k ! 0.

For the sake of reference, we record this in a proposition:

Proposition 11.33. Suppose B and C are C⇤
-algebras, B0 ⇢ B is a dense ⇤-subalgebra, and ⇡ : B0 ! C

is a ⇤-homomorphism. Then ⇡ extends to B i↵ ⇡ is contractive on B0.

With that digression, the proof of proposition 11.32 is quite immediate.

Proof of Proposition 11.32. Take a faithful non-degenerate representation ⇡ : C ! B(H). Then ⇡ � � :
A1 � A2 ! B(H) is a contractive ⇤-homomorphism (with respect to the k · kmax norm) and hence extends
to A⌦max A2. ⇤

It follows from this that k · kmax is the largest possible C⇤-norm on A1 �A2.

Corollary 11.34. Given any C⇤
-norm k ·k on A1�A2, there is a surjective ⇤-homomorphism A1⌦maxA2 !

A1 �A2
k·k

extending the identity map on A1 �A2.

Proof. Suppose k · k is another C⇤-norm on A1 � A2. Then the identity map A1 � A2 ! A1 �A2
k·k

is a
⇤-homomorphism, which then extends to a ⇤-homorphism

A1 ⌦max A2 ! A1 �A2
k·k

.

Since it is a ⇤-homomorphism, its image is closed and contains the dense subset A1 � A2, and so it is a
surjection. As a surjective ⇤-homomorphism, it is contractive, and so kxkmax � kxk for all x 2 A1 �A2. ⇤

Remark 11.35. Very often in the literature, the closure of A � B with respect to an arbitrary tensor norm
is denoted by A⌦↵ B where the norm is denoted by k · k↵.

It turns out that the spatial norm k · kmin is the minimal C⇤-norm on A1 � A2. This is an important
theorem due to Takesaki whose proof involves some heavy work in extending states to tensor products. For
the sake of time, we will have to take this for granted. The proof is worked out in [3, Section 3].

Theorem 11.36 (Takesaki). The spatial norm k ·kmin is the minimal C⇤
-norm on A1�A2. In other words,

given any C⇤
-norm k · k on A1 �A2, there are surjective ⇤-homomorphisms

A1 ⌦max A2 ! A1 �A2
k·k ! A1 ⌦A2

extending the identity map

A1 �A2 ! A1 �A2 ! A1 �A2.

It follows that if the natural surjection A1 ⌦max A2 ! A1 ⌦ A2 is injective, then A1 � A2 has a unique
tensor norm. This fact is often indicated by writing

A1 ⌦max A2 = A1 ⌦A2.

Remark 11.37. It is important here that it is this natural surjection that is also injective, i.e. the one that
extends the identity map A1 �A2.

We have been avoiding the non-unital elephant in the room. We relegate the proof to [3, Corollary 3.3.12].
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Proposition 11.38. If A and B are C⇤
-algebras with A non-unital, then any C⇤

-norm on A � B can be

extended to a C⇤
-norm on Ã � B (meaning the norms agree on A � B ⇢ Ã � B). Similarly, when both A

and B are non-unital, any C⇤
-norm can be extended to Ã� B̃.

15

Exercise 11.39. For C⇤-algebras A and B, we have canonical16 isomorphisms A⌦B ' B⌦A and A⌦maxB '
B ⌦max A.

11.4. Inclusions and Short Exact Sequences. This section is dedicated to two properties that held
automatically for algebraic tensor products but that can now fail for their C⇤-completions:

(1) They respect inclusions, i.e. if B and C are C⇤-algebras and A ⇢ B a C⇤-subalgebra, then we have
a natural inclusion

A� C ,! B � C.

(2) They respect exact sequences, i.e. if B and C are C⇤-algebras and J /B an ideal, then the following
sequence is exact.

0 ! J � C ! B � C ! B/J � C ! 0.

Proposition 11.40. Let B and C be C⇤
-algebras, A ⇢ B a C⇤

-subalgebra, and J /B an ideal. Then

(1) We have a natural inclusion A⌦min C ✓ B ⌦min C.

(2) This can fail for the maximal tensor product.

Exercise 11.41. Check (1). (This is just a statement about norms on sums of simple tensors.)

For (2), that’s where things get interesting. Questions about embeddability of maximal tensor products
get hard quick. So, it’s easiest to explain why it can go wrong. Recall that the maximal tensor product norm
was defined as a supremum over all representations. A representation on B � C restricts to one on A� C,
but a representation on A�C need not extend to B�C. So, in general the sup taken for the maximal norm
on A� C is taken over a larger set than the one for B � C.

Remark 11.42. One fact that will play a role promptly is that this does hold when A is an ideal in B. A
representation from an ideal J /A in a C⇤-algebra does always extend to a representation on A (see [1, Section
1.3]). So when J /A is an ideal, then so is J �C for any C⇤-algebra C, and we have J ⌦max C /A⌦max C .

Here are some examples of where this can go wrong. Unfortunately, we haven’t built up su�cient termi-
nology to explain why.

Example 11.43. Let A ⇢ B(H) be a separable C⇤-algebra lacking Lance’s Weak Expectation Property
([3, Exercise 2.3.14]), e.g. an exact C⇤-algebra that is non-nuclear (exactness due to Wasserman), such as
C⇤

r
(F2). Then A⌦max C⇤(F2) does not embed into B(H)⌦max C⇤(F2).
Using Kirchberg’s O2 embedding theorem (a very di�cult and sophisticated result in C⇤-theory) as well

as his groundbreaking work enabling the recent solution to Connes’ Embedding Problem (more on that
later), we can give another example: C⇤

r
(F2) embeds into O2 (because it is exact and separable), but

C⇤

r
(F2)⌦max C⇤(F2) does not embed into O2 ⌦max C⇤(F2).

Proposition 11.44. Let B and C be C⇤
-algebras and J /B an ideal. Then

(1) The sequence

0 ! J ⌦max C ! B ⌦max C ! B/J ⌦max C ! 0

is exact.

(2) This can fail for the minimal (i.e. spatial) tensor product.

For (1), the proof in full detail is provided in [3, Proposition 3.7.1]. We simply give an idea of what needs
to be shown. In either case, J ⌦max C /B ⌦max C and J ⌦ C /B ⌦ C. So we have exact sequences

0 ! J ⌦max C ! B ⌦max C ! (B ⌦max C)/(J ⌦max C) ! 0

and
0 ! J ⌦min C ! B ⌦min C ! (B ⌦min C)/(J ⌦min C) ! 0.

15In general (i.e. when we don’t have A = Ã or B = B̃, this is a larger algebra than Â�B.
16i.e. This is another way of saying “natural”. In this setting, this means the maps extend the usual algebraic maps.
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In both cases, from the algebraic identification B/J � C ' (B � C)/(B � J) one argues that there is a
C⇤-norm so that

(B ⌦max C)/(J ⌦max C) ' B/J ⌦↵ C and (B ⌦min C)/(J ⌦min C) = B/J ⌦� C.

It will follow from the maximality of k · kmax that ⌦↵ = ⌦max. But for the other quotient, that won’t always
happen.

Definition 11.45. We say a C⇤-algebra C is exact if the sequence

0 ! J ⌦min C ! B ⌦min C ! (B ⌦min C)/(J ⌦min C) ! 0

is exact for any C⇤-algebra B and any ideal J /B.

Though seemingly unrelated, the two definitions we have given for exactness are indeed equivalent, though
the proof of this is not easy.

Theorem 11.46 (Kirchberg). A C⇤
-algebra is exact in the sense of Definition 10.17 if and only if the

functor ⌦minA is exact, i.e. if the above definition holds.

The question of when two C⇤-algebras have a unique C⇤-tensor norm is very di�cult, and resolving this
question for certain algebras is equivalent to resolving big open problems.

For example, thanks to deep and groundbreaking work of Kirchberg, we know that a famous recently-
resolved problem, Connes’ Embedding Problem, is equivalent to answering the question of whether or not
C⇤(F2) ⌦max C⇤(F2) = C⇤(F2) ⌦ C⇤(F2). (Ask Brent and Rolando for the the original statement.) Further
work (building on Kirchberg’s results) connected this to what is known as Tsirelson’s problem in quantum
information theory, which was what was actually refuted earlier this year.

Another example is A. Thom’s example of a hyperlinear group that is not residually finite. (Again, thanks
to work of Kirchberg, this is equivalent to the full group C⇤-algebra of said group not having a unique tensor
norm with B(H).)

Another example is Junge and Pisier’s proof that B(H)� B(H) does not have a unique C⇤-tensor norm
when H is infinite dimensional, which was proven by Kirchberg to be equivalent to another collection of open
problems.

Remark 11.47. You may have noticed that Kirchberg was very influential in a lot of results pertaining to
tensor products of C⇤-algebras. Yeah.

11.5. Nuclearity. On the other end of the spectrum are C⇤-algebras which always have unique tensor
product norms. The term originally used for such C⇤-algebras was in fact “nuclear.” But we’ve already used
this term for C⇤-algebras satisfying the completely positive approximation property. That these two coincide
is a remarkable theorem, independently proved by Choi-E↵ros and Kirchberg

Theorem 11.48 (Choi-E↵ros, Kirchberg). A C⇤
-algebra A satisfies the completely positive approximation

property (Definition 10.6) if and only if A�B has a unique C⇤
-tensor norm for any C⇤

-algebra B.

The proof of this theorem would require us to build up a fair bit of theory first, so we simply point you
to Chapters 2 and 3 in [3], where the argument and surrounding theory is laid out quite well.

In general, it’s often easier to prove that a C⇤-algebra has the completely positive approximation property
(an internal property) as opposed to always having a unique tensor product norm (an external property).
However, it was not so hard to show the latter for one class of C⇤-algebras.

Example 11.49. From Proposition 11.20, we know that Mn(C) is nuclear for any n � 1. It turns out that
any finite-dimensional C⇤-algebra is nuclear. (This mostly comes down to Proposition 6.1. See [7, Theorem
6.3.9] for more details.)

We have already seen that K(H), as an AF algebra, is nuclear. Just for fun, here’s an argument from the
tensor product perspective.

Example 11.50. Let K denote the compact operators on some Hilbert space H and A any C⇤-algebra.
First we claim that FR(H)�A is a dense ⇤-subalgebra of K�A with respect to any C⇤-norm on K�A.

We know from Day 1 lectures that FR(H) is dense in K. Now, suppose S � a 2 K � A and Sj 2 FR(H)
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a sequence with Sj ! S. Recall that any C⇤-norm k · k on K � A is a cross norm, and so for any norm
C⇤-norm k · k on K �A, we have

k(S � a)� (Sj � a)k = k(S � Sj)� ak = kS � Sjkkak ! 0.

Using the triangle inequality, we can extend this to show that any x =
P

m

j=1 Tj � aj 2 K � A can be
approximated in any C⇤-norm by sums of simple tensors of finite rank operators.

So if we know kxkmax = kxkmin for any x 2 FR(H) � A, then it follows that the natural surjection
K⌦max A ! K⌦A is isometric and K is nuclear. Fix x =

P
m

j=1 Tj � aj 2 FR(H)�A, and let ⇡ : K�A !
B(H0) be a representation. Then there exists a projection P 2 B(H) of rank n < 1 such that Tj = PTjP for
each j, and x =

P
m

j=1 PTjP�aj . Hence x 2 PB(H)P�A. From Exercise 7.41 from Day 1 Lectures, we have
a ⇤-isomorphism � : Mn(C) ! PB(H)P , and hence a representation ⇡0 := ⇡�(��idA) : Mn(C)�A ! B(H).

Since we know Mn(C) ⌦max A = Mn(C) ⌦min A, we know that for any faithful representations �1 :
Mn(C) ! B(H1) and �2 : A ! B(H2),

k
mX

j=1

�1(�
�1(PTjP ))� �2(aj)kB(H1⌦H2) = k

mX

j=1

�
�1(PTjP )� ajkmin

= k
mX

j=1

�
�1(PTjP )� ajkmax � k⇡0(

mX

j=1

�
�1(PTjP )� aj)k

= k⇡(
mX

j=1

PTjP � aj)k = k⇡(x)k.

In particular, this holds for the faithful representations �1 = idK �� : Mn(C) ! PB(H)P ⇢ K ,! B(H) and
any faithful representation �2 of A. But then we have

kxkmin = k
mX

j=1

idK(Sj)� �2(aj)kB(H⌦H2)

= k
mX

j=1

�1(�
�1(PSjP ))� �2(aj)kB(H⌦H2)

� k⇡(x)k.

Since ⇡ : K �A ! B(H0) was arbitrary, it follows that

kxkmin � kxkmax,

which finishes the proof.

Remark 11.51. Consider K = K(`2). It follows from Example 11.50 that the completion of K�K under any
tensor norm can be identified with the completion of K�K with respect to the norm on B(`2 � `

2) (via the
tensor product of faithful representations idK�idK). This will be a closed two-sided ideal in B(`2�`2), which
means it must be the compact operators K(`2 � `

2). Moreover, after a permutation of the basis elements,
we have `2 ⌦ `

2 ' `
2. With this, one can then argue that K ⌦ K ' K. More generally, we say a C⇤-algebra

is stable if A⌦K ' A. (Because of nuclearity, it does not matter what tensor product we choose.)
Since K is stable and since (A⌦ K)⌦ K ' A⌦ (K ⌦ K) ' A⌦ K for any C⇤-algebra A

17, we call A⌦ K
the stabilization of A. This is a basic object in many results and theories in C⇤-algebras, such as multiplier
algebras, K-theory and classification, and is closely tied to Morita equivalence for C⇤-algebras. It turns
out that the stabilization of A is very similar to A from the perspective of many C⇤-algebraic invariants,
and so replacing A by its stabilization gives one more “wiggle room” for computations without a↵ecting the
underlying structure very much.

There is another fundamental class of nuclear C⇤-algebras: commutative C⇤-algebras. This was not so
hard to prove with the completely positive approximation property definition of nuclearity (Proposition

17In fact, the associativity for the minimal and maximal tensor product norms holds for all C⇤-algebras, i.e. for C⇤-algebras
A,B,C, we have (A ⌦ B) ⌦ C ' A ⌦ (B ⌦ C) and (A ⌦max B) ⌦max C ' A ⌦max (B ⌦max C). This is normally an exercise,
but we have plenty already.
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10.10). Before the Choi-E↵ros/Kirchberg theorem, Takesaki showed that tensor products with commutative
C⇤-algebras always have a unique C⇤-norm, but the proof was much more involved.

Theorem 11.52 (Takesaki). Let A and C be C⇤
-algebras with C commutative. Then there is a unique

C⇤
-tensor norm on C �A.

11.6. C0(X,A) as tensor products. Let us spend a little more time on this last class of nuclear C⇤-algebras.
Recall from the Gelfand Naimark Theorem that any commutative C⇤-algebra is ⇤-isomorphic to C0(X) for
some locally compact Hausdor↵ space X. With this in mind look into another description of the tensor
product of a C⇤-algebra with a commutative C⇤-algebra.

Definition 11.53. Let A be a C⇤-algebra and X a locally compact Hausdor↵ space (when X is not compact,
we denote by X [ {1} its one point compactification). Just as we did for A = C, we define

C0(X,A) := {f : X [ {1} ! A : f continuous and f(1) = 0}.
When X is moreover compact, this is the same as C(X,A).

Lemma 11.54. Let A be a C⇤
-algebra and X a locally compact Hausdor↵ space. Define the ⇤-homomorphism

� : C0(X)� A ! C0(X,A) on simple tensors by f � a 7! f(·)a. This gives a ⇤-homomorphism, which then

extends to a surjective ⇤-homomorphism C0(X)⌦maxA ! C0(X,A). Moreover, � is injective on C0(X)�A.

The proof that the image of � is dense in C0(X,A) is another example of a “partition of unity argument.”
We will give the argument from [7, Lemma 6.4.16] in the case where X is compact. The non-compact case
amounts to identifying C0(X,A) = {f 2 C(X[{1}, A) : f(1) = 0} (see [7, Lemma 6.4.16] for full details).

Recall that we take for granted the fact from topology that, given any compact Hausdor↵ space X

with open cover U1, ..., Un, there exist continuous functions h1, ..., hn : X ! [0, 1] so that supp(hj) ⇢ Uj

and
P

j
hj = 1. (See [Theorem 2.13, Rudin, Real and Complex Analysis].) This is a partition of unity

subordinate to U1, ..., Un (in fact a rather nice one).

Proof of Lemma 11.54. Since there is nothing surprising in checking that it is a ⇤-homomorphism, which by
universality extends to a ⇤-homomorphism on A⌦max B, we move straight to the surjective ⇤-isomorphism
claim.

For the surjectivity argument, we assume X is compact (or work in its one point compactification as
aforementioned). Since the image of a ⇤-homomorphism from a C⇤-algebra is closed, it su�ces to show that
C(X,A) is the closed linear span of functions of the form f(·)a for f 2 C(X) and a 2 A. Let g 2 C(X,A) and
" > 0. Since X is compact and g continuous, g(X) is compact, which means we can find a finite collection
a1, ..., an 2 g(X) ⇢ A so that {B"(aj)}j covers g(X), and hence Uj = g

�1(B"(aj)) forms a finite open cover
of X. Since X is compact, the aforementioned fact from topology tells us there exist continuous functions
hj : X ! [0, 1], 1  j  n so that for each j, supp(hj) ⇢ Uj and

P
j
hj(x) = 1 for all x 2 X. Notice that,

by our choice of Uj , that means that for each x 2 X, either hj(x) = 0 or kg(x)� ajk < ". Then we compute
for each x 2 X,

kg(x)�
X

j

hj(x)ajk = k

0

@
X

j

hj(x)

1

A g(x)�
X

j

hj(x)ajk

= k
X

j

hj(x)(g(x)� aj)k 
X

j

hj(x)kg(x)� ajk


X

j

hj(x)" = ".

This establishes our claim.
For injectivity, on C0(X)�A, suppose c =

P
n

j=1 fj � aj 2 ker(�) where f1, ..., fn 2 C0(X) and a1, ..., an

are linearly independent elements of A. Then �(c) = 0 implies that
P

fj(x)aj = 0 for all x 2 X. But now
these fj(x) are just complex numbers, and so the linear independence of the a1, ..., an implies that fj(x) = 0
for each 1  j  n and every x 2 X. That means f1 = ... = fn = 0 and so c = 0. Hence � is injective on
C0(X)�A. ⇤
Theorem 11.55. If A is a C⇤

-algebra and X is a locally compact Hausdor↵ space, then for any C⇤
-tensor

norm, we have C0(X)�A
k·k

' C0(X,A).
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Proof. Since the map � from Lemma 11.54 is injective, the pull-back of the norm from C0(X,A) (i.e.
kck = k⇡(c)k) gives a C⇤-norm on C0(X)�A (as opposed to just a semi-norm). By Theorem 11.52, there is
a unique C⇤-tensor norm on C0(X) � A, which means this norm agrees with k · kmax. Hence the surjective
⇤-homomorphism C0(X) ⌦max A ! C0(X,A) is isometric, and hence a ⇤-isomorphism. By identifying
C0(X)⌦max A with the closure of C0(X)�A under any other C⇤-norm, the claim follows. ⇤
Example 11.56. Three particularly interesting cases are when X = [0, 1], X = (0, 1], and X = (0, 1). 18

For a C⇤-algebra A, the cone over A is the C⇤-algebra

CA := C0((0, 1], A) = {f : (0, 1] ! A : f is continuous and lim
t!0

f(t) = 0},

and the suspension
19 over A is the C⇤-algebra,

SA := C0((0, 1), A) := {f : (0, 1)] ! A : f is continuous and lim
t!0

f(t) = 0 = lim
t!1

f(t)}.

The suspension will become very important when we get to K-theory. It is also sometimes denoted by ⌃A.

11.7. Continuous linear maps on tensor products. In Takesaki’s proof that k · kmin is the smallest
C⇤-norm, a delicate and crucial part of the argument is showing that states extend to tensor products, i.e.

for �i 2 S(Ai), �1 � �2 extends to a state on A1 �A2
k·k

for any C⇤-norm k · k (mapping into C⌦ C = C).
Given a pair of ⇤-homomorphisms �i : Ai ! Bi, we have a ⇤-homomorphism

�1 � �2 : A1 �A2 ! B1 �B2

defined on the dense ⇤-subalgebra A1�A2 of A1 �A2
k·k

where k·k is any C⇤-norm. By Proposition 11.33, this

extends to a ⇤-homomorphism on A1 �A2
k·k

i↵ �1 � �2 is contractive on sums of simple tensors. Naturally,
this depends on the norm we put on B1 � B2 (e.g. if Ai = Bi and we give A1 � A2 the minimal norm and
B1 �B2 the maximal norm).

We already saw in Corollary 11.28 that this holds when we consider both A1�A2 and B1�B2 with their
respective minimal tensor product norms.

Exercise 11.57. Show that for a pair of ⇤-homomorphisms �i : Ai ! Bi, the algebraic tensor product
�1 � �2 extends to a ⇤-homomorphism on

�1 ⌦max,� �2 : A1 ⌦max A2 ! B1 ⌦� B2

for any C⇤-tensor product B1 ⌦� B2.

However, many maps that we want to work with (e.g. states) are not necessarily ⇤-homomorphisms. Hence
it is important to understand which class of bounded linear maps extend to tensor products, in particular,
for which bounded linear maps �i : Ai ! Bi does �1 � �2 extend to continuous linear maps

�1 ⌦max �2 : A1 ⌦max A2 ! B1 ⌦max B2

and
�1 ⌦min �2 : A1 ⌦min A2 ! B1 ⌦min B2?

Let us consider an example where this fails.

Example 11.58. Consider K = K(`2). As we saw in Example 11.50, K is nuclear, meaning in particular
that the completion of K � K under any tensor norm can be identified with the completion of K � K with
respect to the norm on B(`2 ⌦ `

2) (via the tensor product of faithful representations idK � idK). For each
i, j, we define the rank one operator Pi,j = h·, eiiej . (Think of these as an infinite-dimensional version of the
matrix units for Mn(C).) For each n � 1, define Vn 2 K ⌦K by

Vn :=
nX

i,j=1

Pi,j ⌦ Pj,i.

Then Vn is a partial isometry. (Indeed, since Pi,jPl,k = �j,lPi,k, we can compute that V ⇤

n
Vn = Pn�Pn where

Pn is the rank n projection sending ej 7! ej for 1  j  n and ej 7! 0 for j > n.) So kVnk = 1 for all n.

18Depending on how we like to define our functions these intervals are sometimes replaced with homeomorphic copies, e.g.,
sometimes R is used in place of (0, 1). This certainly makes the “1” notation more natural!

19“Cone” and “suspension” are not to be confused with the notions from topology, in case you are wondering.
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Now considering each T = [tij ] 2 K as an array, we let Tr : K ! K denote the transpose map, which is
given by Tr([tij ]) = [tji]. This is a linear ⇤-preserving isometric map (since T

⇤ = [t̄ji]), and

Tr � 1K(Vn) =
nX

i,j=1

eji ⌦ eji.

Now, consider the vector ⇠ =
P

n

k=1 ek ⌦ ek. One computes

kTr � 1K(Vn)⇠k = k
nX

i,j=1

nX

k=1

hek, ejiei ⌦ hek, ejieik

= k
nX

i=1

nX

k=1

hek, ekiei ⌦ hek, ekieik

= k
nX

i=1

n(ei ⌦ ei)k = kn⇠k = nk⇠k.

In particular, this means that kTr � 1K(Vn)k � n and hence kTr � 1Kk � n for all n 2 N. This is an
unbounded operator and hence not continuous.

So what kinds of bounded linear maps on C⇤-algebras yield continuous tensor product maps? Notice
that the above example is ⇤-preserving, so that’s not enough. We have remarked several times that much of
the structure of the C⇤-algebra is preserved by positive elements. Perhaps we need to consider linear maps
� : A ! B that send positive elements in A to positive elements in B? But even that isn’t enough. It turns
out that the transpose map above does send positive elements to positive elements. So, what gives? This is
where we finally motivate the idea of completely positive maps. Recall that a linear map � : A ! B between
C⇤-algebras is completely positive if (equivalently) the linear map

�
(n) : Mn(C)⌦A ! Mn(C)⌦B

is positive for all n � 1.

Theorem 11.59. Let �i : Ai ! Bi be linear cp maps. Then the algebraic tensor product map

�1 � �2 : A1 �A2 ! B1 �B2

extends to a linear cp map (which is then also bounded and hence continuous) map on both the maximal and

minimal tensor products:

�1 ⌦ �2 :A1 ⌦A2 ! B1 ⌦B2

�1 ⌦max �2 :A1 ⌦max A2 ! B1 ⌦max B2.

Moreover, we have k�1 ⌦max �2k = k�1 ⌦ �2k = k�1kk�2k.
Remember that we have already proved this for ⇤-homomorphisms. Stinespring’s Dilation theorem will

allow us to transfer this fact to cpc maps.
In full disclosure, we need a stronger version of this to prove the ⌦max part of Theorem 11.59, so we

direct you to [3, Proposition 1.5.6] and its use in the proof of [3, Theorem 3.5.3]. But for the sake of seeing
Stinespring’s Theorem in action, let’s prove that the algebraic tensor product of cp maps extends to a cp
map between spatial tensor products.

Proof of Theorem 11.59 (for spatial tensor). Let A1, A2, B1, B2 be C⇤-algebras and �i : Ai ! Bi cp maps.
First, by taking faithful representations, it su�ces to assume that Bi ⇢ B(Hi) for i = 1, 2 (why?). Then
�i : Ai ! B(Hi) are cp maps, which have Stinespring dilations (⇡i,H0

i
, Vi) for i = 1, 2. Since these are

⇤-homomorphisms, ⇡1�⇡2 : A1�A2 ! B(H0

1)�B(H0

2) ⇢ B(H0

1⌦H0

2) extends to A1⌦A2. Define the map
�1 ⌦ �2 : A1 ⌦A2 ! B1 ⌦B2 ⇢ B(H0

1 ⌦H0

2) by

�1 ⌦ �2(x) = (V1 ⌦ V2)
⇤(⇡1 ⌦ ⇡2)(x)(V1 ⌦ V2).

By Example 9.9, this is a cp map. Moreover, for elementary tensors a1 � a2 2 A2 �A2, we have

�1 ⌦ �2(a1 � a2) = (V ⇤

1 ⇡1(a1)V1)⌦ (V ⇤

2 ⇡2(a2)V2) = �1(a1)� �2(a2),

which means (by linearity) that �1 ⌦ �2|A1�A2 = �1 � �2. ⇤
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