
Chapter 5

The Trace

In the previous chapters we saw that the Mn(C) group von Neumann algebras and the hyperfinite II1 factor
are all examples tracial von Neumann algebras. The main purpose of this chapter is to show admitting a
trace that characterizes all finite von Neumann algebras.

The first section give some structural results for the projections on finite von Neumann algebras with an
emphasis on the construction of the dyadic projections and the range of the trace on II1 factors. The next
section examines the outcome of the GNS contruction when applied to a trace on a factor, which is called
the standard representation. There are many like it, but this one is ours. We also introduce ultrapower
and ultraproduct constructions to help us define technical invariants for von Neumann algebras, namely the
McDu↵ Property and Property �.

We leave the details of the construction of a center-valued trace to the very end of the chapter for those
who want to punish themselves.

Lecture Preview: The content in this lecture will be covered over 2 days. The first of these lectures on
the 10th of July will cover Pages 64–66 properties of the trace for finite von Neumann algebras. To prepare
yourself for the lecture, it is highly encouraged that you know 5.4.1. Lemmas 5.1.1 through 5.1.3 will be
briefly discussed, but proof will likely not be presented. Definition 5.1.4 onward will provide the bulk of the
content. Please review the statements of Theorem 5.4.8, 5.4.9 , Theorem 5.4.10 as they will be referenced.

The lecture on Monday the 13th of July will describe the Standard Representation of a II1 factor (Pages
67–70). If time allows, we will describe the ultraprocduct construction (see Definition 5.3.2).

5.1 Tracial von Neumann Algebras

Lemma 5.1.1. Let M ⇢ B(H) be a finite von Neumann algebra and p 2 P(M) non-zero. If {pi}i2I ⇢ P(M)
is a family of pairwise orthogonal projections satisfying pi ⇠ p for all i 2 I, then |I| < 1.

Proof. If I is infinite, then there exists a proper subset J ⇢ I with |J | = |I|. But then

X

i2I

pi ⇠

X

j2J

pj <

X

i2I

pi,

contradicting M being finite.

Lemma 5.1.2. Let M ⇢ B(H) be a type II1 von Neumann algebra. Then there exists a projection p1/2 2

P(M) so that p1/2 ⇠ 1�p1/2. Moreover, there exists a family of projections {pr}r indexed by dyadic rationals
r 2 [0, 1] such that:

(i) pr  ps if r  s;

(ii) ps � pr ⇠ ps0 � pr0 whenever 0  r  s  1 and 0  r
0
 s

0
 1 satisfy s� r = s

0
� r

0;
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(iii) z(pr) = 1 for every r.

Proof. Let {pi, qi}i2I be a maximal family of pairwise orthogonal projections such that pi ⇠ qi for all
i 2 I. Define p1/2 :=

P
i pi and q =

P
i qi. Then p1/2 ⇠ q, and we further claim q = 1 � p1/2. If not,

then 1 � (p1/2 + q) 6= 0. Since M is type II, 1 � (p1/2 + q) is not abelian and consequently there exists
p0 2 P([1� (p1/2+ q)]M [1� (p1/2+ q)]) which is strictly less than its central support (in this corner), which
we will denote by z. Therefore, if q0 = z� p0, then p0 and q0 are not centrally orthogonal, and consequently
by Proposition 4.1.9 they have equivalent subprojections. However, this contradicts the maximality of
{pi, qi}i2I . Thus q = 1� p1/2.

Now, we construct the family of projections indexed by dyadic radicals r 2 [0, 1] inductively. We let p1/2
be as above, and set p1 := 1 and p0 := 0. Let v 2 M be such that v⇤v = p1/2 and vv

⇤ = 1� p1/2. Note that
p1/2Mp1/2 is type II by Remark 4.3.9. Moreover, it is type II1 since p1/2 is a finite projection: if q ⇠ p1/2 with
q < p1/2 then q+(1�p1/2) ⇠ p1/2+(1�p1/2) = 1 by Lemma 4.1.10, but q+(1�p1/2) < p1/2+(1�p1/2) = 1
contradicts 1 being finite. Thus p1/2Mp1/2 is type II1 and so the above argument yields p1/4  p1/2 such
that p1/4 ⇠ p1/2 � p1/4. Set p3/4 := p1/2 + vp1/4v

⇤. It is easily observed that p0  p1/4  p1/2  p3/4  p1

and p1/4 ⇠ p(k+1)/4 � pk/4 for each k = 0, 1, 2, 3. Induction then yields a family satisfying (i) and (ii).
To see (iii), fix a dyadic rational r and set z := 1� z(pr). Let n 2 N be large enough so that s := 1

2n  r.
Then by (i) we have zps  zpr = 0. Using (ii), we have zps ⇠ z(pks � p(k�1)s) for every k = 1, . . . , 2n, and
so it must be that z(pks � p(k�1)s) = 0. We then have

z = z

nX

k=1

(pks � p(k�1)s) = 0,

so that z(pr) = 1 as claimed.

Lemma 5.1.3. Let M ⇢ B(H) be a type II1 von Neumann algebra, and let {pr}r ⇢ P(M) be the family of
projections indexed by dyadic rationals r 2 [0, 1] as in the previous lemma. If p 2 P(M) is non-zero, then
there exists z 2 P(Z(M)) and a dyadic rational r 2 (0, 1] so that prz � pz and prz, pz 6= 0.

Proof. By considering the compression Mz(p), we may assume z(p) = 1. By the Comparison Theorem, for
each dyadic rational r 2 (0, 1] there exists a central projection zr such that przr � pzr and p(1 � zr) �

pr(1 � zr). Suppose, towards a contradiction, pzr = 0 for every r. Since z(p) = 1, it must be that zr = 0
and so p � pr for all r. In particular, we have for each k 2 N

p � p2�(k+1) ⇠ p2�k � p2�(k+1) .

For each k 2 N, let qk  p2�k � p2�(k+1) be such that p ⇠ qk. But then {qk}k2N is an infinite family or
pairwise orthogonal projections that contradicts Lemma 5.1.1. Thus there must be some r such that pzr 6= 0.
Consequently, zr 6= 0 and so przr 6= 0 since z(pr) = 1.

THe existence of the dyadic projections is one of the first steps in constructing a trace on a type II1
von Neumann algebra. The general idea would be to create a map from the dyadic projections mapping
�(pr) ! r and then attempting to extend this map from M to Z(M). In Section 5.4, take an alternate
route applying the Ryll-Nardjewski Theorem and other Banach space techniques. Unfortunatley, both paths
we described as long and highly technical which is why we are instead choosing to accept that finite von
Neuamm algebras have traces.

Definition 5.1.4. Let M be a von Neumann algebra. If ⌧ : M ! C is if there exists a normal, faithful state
which also satisfies the trace condition, ⌧(xy) = ⌧(yx), the ⌧ is called a trace on M . We say M is tracial
if M admits a trace.

Assuming that a trace exists, we know that M is automatically finite. The converse, however, is much
more di�cult and relies upon the construction of a center-valued trace, (see definition 5.4.1). This can be
done, and the approach we take relies on heavy-handed Banach space techniques.

The upshot is that once you know the center valued state � : M ! Z(M) exists, we identify ⇡ : Z(M) !
L
1(X,µ) (assuming that M has a cyclic vector). An even better situation comes up when M a factor

because the center-valued trace is automatically a trace and we can stop here.
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Theorem 5.1.5. A von Neumann algebra M is finite if and only if M has a trace M is a finite factor if
and only if M admits a unique trace ⌧ : M ! C.

Theorem 5.1.6. Let M be a finite factor equipped with its unique trace ⌧ .

• If M is of type I, then M is of type In with n finite and ⌧(P(M)) = {0, 1
n , . . . , 1}.

• If M is of type II1, then ⌧(P(M)) = [0, 1].

One interpretation of the values of the trace on projections of a finite type In is that it tells us the size
of the space onto which p projects relative to the ambient space. The trace on a II1 factor is similar, except
now, the relative size of a projection can be associated to a number in the continuum [0, 1] and moreover,
every value is realized.

I like to remind myself that every projection inMn(C) can be unitarily conjugated to a diagonal projection
with the only non-zero entries being 1 somewhere along the diagonal. Here, we can view the trace as
something akin to the normalized counting measure on a set of n points.

The picture that I have for II1 factors is remarkably similar, except first I start with a “matrix” indexed by
the interval [0, 1] and mentally identity the diagonal with the interval [0, 1]. We might imagine an projection
of trace t in a II1 factor with “1’s along the interval [0, t]. This allows to view the trace as a non-commutative
analog of the Lebesgue measure on a [0, 1].

The fact that ⌧ is normal implies that for a countable collection of orthogonal projections, ⌧(
P

pi) =P
⌧(pi). Since projections are the analogs of characteristic functions and the trace is similar to a measure,

we interpret this as a kind of countable additivity .
If M ✓ B(H) is a II1 factor with trace ⌧ , then for any non-zero projection p we have that pMp ✓ B(pH)

is also a type II1 factor with trace given by ⌧(pxp)/⌧(p) (remember, p is the identity element of pMp). Now
suppose that q is another projection such that ⌧(q) = ⌧(p). Since M is a factor, we have that p ⇠ q and
1� p ⇠ 1� q and thus, there is a unitary u 2 M so that u⇤

pMpu = qMq and thus the isomorphism class of
pMp depends only on t = ⌧(p) and not the choice of projection. Then for any 0 < t  1, we define define
M

t := pMp where p is any trace t projection.
It’s also possible to extend the definition of M t for any t � 1 by first choosing n 2 N with n � t, and

considering Mn(N). Mn(C) is again a II1 factor with trace ⌧n([xi,j ]) =
Pn

i=1 ⌧(xi,i). Choosing a projection
p 2 Mn(M) with trace ⌧n(p) = t/n, M t = pMn(M)p. We can check that up to isomorphism, M t does not
depend on our p or n and thus is well defined.

Definition 5.1.7. Let M be a type II1 factor. The fundamental group of M is the subgroup of R+

F(M) := {t 2 (0,1) : M t ⇠= M}.

The terminology here is unfortunate since this has concept no relation to the better-know fundamental
group from topology. Mentioning the fundamental group of a II1 factor in a talk or in casual conversation
will almost surely result in someone asking if this has any connection to topology. My advice, just say “no”
and then change the subject.

It is in fact a multiplicative subgroup of R, which can be checked by verifying that for any s, t > 0 we
have (M t)s ⇠= M

st.
When M is a tracial factor, there is another norm that one frequently encounters called the 2-norm.

Letting ⌧ be the unique trace on M , via the formula

kxk2 =
p
⌧(x⇤x).

Since ⌧ is faithful, we see that M this formula indeed defines a norm on M . The trace also induces a Hilbert
space structure on M via the formlula hx, yi = ⌧(y⇤x). Unfortunately, M is not complete with respect to
this norm but it’s completion is of interest. We delay that discussion for now. Instead, let’s compare the
2-norm and the oeprator norm of a finte von Neumann algebra.

Theorem 5.1.8. Let M be a tracial von Neumann algebra with trace ⌧ . Then for any x, y 2 M we have
that

kxyk2  kxkkyk2.

In particular, kxk2  kxk
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Proof. We first prove that for any self-adjoint w 2 M , w  kwk1, were 1 2 M is the identity element.
Define f(t) = kwk � t on [�kwk, kwk]. Then by the continuous functional calculus, we have that �(f(a)) ⇢
f(�(a)) ✓ [0,1) and thus kwk � w � 0. In particular x⇤

x  kxk
2.

Now let us compute:

kxyk
2
2 = ⌧(y⇤x⇤

xy)  ⌧(kxk2y⇤y) = kxk
2
⌧(y2y) = kxk

2
kyk

2
2.

Exercises

5.1.1. Let R be the hyperfinite II1 factor.

(a) Show for every dyadic rational r 2 [0, 1], there exists a projection pr 2 R with ⌧(tr) = r. Hint: think
about the construction of R as an inductive limit.

(b) Now if t 2 [0, 1], show that there exists a projection pt 2 R with ⌧(pt) = t. Hint: if t 2 [0, 1], there
exists an increasing sequence (rn) of dyadic rationals such rn ! t.

5.1.2. Show that a von Neumann algebra M is finite if and only if for every x, y 2 M such that xy = 1 we
have yx = 1, i.e. if X is right invertible, it is invertible.

5.1.3. Let M be a type II1 factor and p a finite projection in M . Show that there exists an infinite family
of orthogonal projections {pii2I} with pi ⇠ p and

P
i2I pi = 1. If ⌧ : pMp ! C is the trace on pMp and

vi 2 M with v
⇤

i vi = p, viv
⇤

i = pi, show that

e⌧(x) :=
X

i2I

⌧(v⇤i xvi)

defines a normal tracial map. This is called a semi-finite trace on M .

5.1.4. Let M be a factor and d : P(M) ! [0,1] be a function such that

(i) d(p+ q) = d(p) + d(q) whenever pq = 0.

(ii) d(p) = d(q) whenever p ⇠ q.

(iii) d(p) = 0 implies that p = 0.

Then any such d is called a dimension function.

(a) Show that M is finite if and only if there exists a dimension function d with d(1) = 1.

(b) When M is finite, show that d = ⌧ |P(M) where ⌧ is the trace on M .

(c) If M is type II1, show that any such function which is not identically 0 must take every value in [0,1].

(d) If M is type III, show that d(p) 2 {0,1}

5.1.5. Let M be a type II1 factor.

(a) Show that (M t)s ⇠= M
ts.

(b) Conclude that the (poorly named IMO) fundamental group F(M) is in fact a subgroups of R+.
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5.2 The Standard Representation

Let M be finite factor with unique faithful normal tracial state ⌧ : M ! C. We denote by L
2(M) the GNS

Hilbert space associated to ⌧ ; that is,

hx, yi2 := ⌧(y⇤x) x, y 2 M

defines an inner product on M and we take L
2(M) to be its completion. For x 2 M , we will sometimes add

the decoration x̂ when we want to emphasize that we are thinking of x as a vector in L
2(M). We also obtain

a faithful normal representation ⇡⌧ : M ! B(L2(M)) which is defined by ⇡⌧ (x)ŷ = cxy for x, y 2 M . Let us
identify M ⇠= ⇡⌧ (M) so that we view M as a von Neumann algebra in B(L2(M)), and for x, y 2 M we have
xŷ = cxy.

Definition 5.2.1. For a finite factor M with unique trace ⌧ , the representation M ⇢ B(L2(M)) is called
the standard representation of M .

Note that x1̂ = x̂ implies 1̂ is a cyclic vector for M , and

kx1̂k22 = hx̂, x̂i2 = ⌧(x⇤
x)

implies 1̂ is separating for M since ⌧ is faithful.
Now, for x 2 M define Jx̂ :=cx⇤. We note that

kJx̂k
2
2 = kcx⇤k

2
2 = ⌧(xx⇤) = ⌧(x⇤

x) = kx̂k
2
2.

Thus J extends to a conjugate linear isometry on L
2(M).

Definition 5.2.2. For a finite factor M , the conjugate linear isometry J on L
2(M) is called the canonical

conjugation operator.

Note that since J is conjugate linear, we have hJ⇠, J⌘i2 = h⌘, ⇠i2 for ⇠, ⌘ 2 L
2(M). You should also

convince yourself that (JxJ)⇤ = Jx
⇤
J for x 2 B(L2(M)) (Exercise 5.2.1). Also observe that for x, y, z 2 M

we have

x(JyJ)ẑ = xJy bz⇤ = xJdyz⇤ = xdzy⇤ = [xzy⇤

= J\yz⇤x⇤ = Jydz⇤x⇤ = JyJcxz = (JyJ)xbz.

Thus x(JyJ) = (JyJ)x since cM is dense in L
2(M). This implies JMJ ⇢ M

0
\B(L2(M)). We will show the

reverse inclusion holds, but we first need to develop a few concepts. The following definition should remind
you of left and right convolvers in L(�) for a discrete group � (see Definition 1.3.4).

Definition 5.2.3. For ⇠ 2 L
2(M) define (potentially unbounded) linear operators �(⇠) : cM ! L

2(M) and

⇢(⇠) : cM ! L
2(M) by

�(⇠)x̂ := (Jx⇤
J)⇠ x 2 M

⇢(⇠)x̂ := x⇠.

We will call ⇠ 2 L
2(M) a left bounded (resp. right bounded) vector if �(⇠) (resp. ⇢(⇠)) extends to a

bounded operator on L
2(M), and in this case we also denote this extension by �(⇠) (resp. ⇢(⇠)). We denote

by LB(M) (resp. RB(M)) the collection of �(⇠) (resp. ⇢(⇠)) for left-bounded (resp. right-bounded) vectors
⇠ 2 L

2(M).

We make a few observations about left and right bounded vectors. For �(⇠) 2 LB(M) and x 2 M

J�(⇠)Jx̂ = J�(⇠)cx⇤ = J(JxJ)⇠ = xJ⇠ = ⇢(J⇠)x̂.

This shows that ⇢(J⇠) 2 RB(M) and J�(⇠)J = ⇢(J⇠). Similarly, we have J⇢(⇠)J = �(J⇠) and hence
J(LB(M))J = RB(M). Additionally, for ⇢(⇠) 2 RB(M) and x, y 2 M

h⇢(J⇠)x̂, ŷi2 = hxJ⇠, ŷi2 = hJ⇠, x
⇤
ŷi2 =

D
Jdx⇤y, ⇠

E

2
=
D
dy⇤x, ⇠

E

2
= hx̂, y⇠i2 = hx̂, ⇢(⇠)ŷi2 = h⇢(⇠)⇤x̂, ŷi2 .
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Thus ⇢(⇠)⇤ = ⇢(J⇠), and using our previous identities we see that

�(J⇠) = J⇢(⇠)J = J⇢(J⇠)⇤J = (J⇢(J⇠)J)⇤ = �(⇠)⇤,

so �(xi)⇤ = �(J⇠). Lastly, we observe that for �(⇠) 2 LB(M), ⇢(⌘) 2 RB(M), and x, y 2 M

h�(⇠)⇢(⌘)x̂, ŷi2 = hx⌘,�(J⇠)ŷi2 = hx⌘, Jy
⇤
J(J⇠)i2 = hJyJx⌘, J⇠i2 = hxJyJ⌘, J⇠i2

= h⇠, JxJyJ⌘i2 = hJx
⇤
J⇠, yJ⌘i2 = h�(⇠)x̂, ⇢(J⌘)ŷi2 = h⇢(⌘)�(⇠)x̂, ŷi2 .

Thus �(⇠)⇢(⌘) = ⇢(⌘)�(⇠), and so LB(M) ⇢ RB(M)0. We collect these observations in the following
proposition.

Proposition 5.2.4. Let M be a finite factor. For �(⇠) 2 LB(M) and ⇢(⌘) 2 RB(M) we have

�(⇠)⇤ = �(J⇠) = J⇢(⇠)J

⇢(⌘)⇤ = ⇢(J⌘) = J�(⌘)J.

Moreover, J(LB(M)J = RB(M) and LB(M) ⇢ RB(M)0.

Just as left and right bounded vectors should remind of left and right convolvers, the proof of the following
theorem should remind you of how we showed R(�) = L(�)0 (see Theorem 1.3.7).

Theorem 5.2.5. Let M be a finite factor with trace ⌧ . Under the standard representation M ⇢ B(L2(M)),
we have M

0 = JMJ where J is the canonical conjugation operator on L
2(M).

Proof. For x, y 2 M we have

�(x̂)ŷ = (Jy⇤J)x̂ = Jy
⇤cx⇤ = J[y⇤x⇤ = cxy = xŷ,

so that �(x̂) = x. Hence M ⇢ LB(M). Also, for x 2 M
0 and y 2 M we have

⇢(x1̂)ŷ = yx1̂ = xy1̂ = xŷ,

so that ⇢(x1̂) = x. Hence M
0
⇢ RB(M). Thus

M ⇢ LB(M) ⇢ RB(M)0 ⇢ (M 0)0 = M,

where the second inclusion follows from Proposition 5.2.4. Thus M = LB(M) = RB(M)0. Similarly,

M
0
⇢ RB(M) ⇢ LB(M)0 ⇢ M

0
,

and so M
0 = RB(M) = LB(M)0. Thus M 0 = RB(M) = J(LB(M))J = M .

One consequence of the above theorem is that M 0
\B(L2(M)) is also a finite factor. Indeed, ⌧ 0(Jx⇤

J) :=
⌧(x) for x 2 M defines a trace on M

0. However, this need not be true for an arbitrary representation
M ⇢ B(H) of a finite factor.

We change topics slightly here and derive another important concept from the standard representation.

Definition 5.2.6. Let M ⇢ B(H) be a von Neumann algebra and 1M 2 N ⇢ M a von Neumann subalgebra.
A conditional expectation from M to N is a linear map E : M ! M satisfying

(i) E(a) = a for all a 2 N ;

(ii) E(axb) = aE(x)b for all a, b 2 N and x 2 M ;

(iii) E(x) � 0 whenever x � 0.
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Observe for x 2 M that one has

0  E ((x� E(x))⇤(x� E(x))) = E (x⇤
x� x

⇤
E(x)� E(x)⇤x+ E(x)⇤E(x))

= E(x⇤
x)� E(x⇤)E(x)� E(x)⇤E(x) + E(x)⇤E(x) = E(x⇤

x)� E(x⇤)E(x).

So E(x⇤)E(x)  E(x⇤
x). Since E preserves positive elements, decomposing x as a linear combination of

four positive elements yields E(x⇤) = E(x)⇤. Thus we have E(x)⇤E(x)  E(x⇤
x)  E(kxk21M ) = kxk

21M ,
which implies kE(x)k  kxk. That is, E is automatically a contraction.

In general, a conditional expectation from M to a subalgebra N need not exist. However, when M is a
finite factor the situation is quite nice:

Theorem 5.2.7. Let M be a finite factor with trace ⌧ . If 1M 2 N ⇢ M is a von Neumann subalgebra, then
there exists a unique conditional expectation EN : M ! N satisfying ⌧ � EN = ⌧ . Moreover, EN is normal
and faithful.

The proof of this theorem is beyond the scope of these notes, but can be found in An introduction to II1
factors by Claire Anantharaman-Delaroche and Sorin Popa. We mention that if eN := [N 1̂] then one can
show eN x̂ is left bounded for all x 2 M and EN (x) = �(eN x̂) for x 2 M . Observe that

\EN (x) = EN (x)1̂ = �(eN x̂)1̂ = J1⇤JeN x̂ = eN x̂.

Since 1̂ is separating for M (and hence N), EN (x) is the unique a 2 N satisfying â = eN x̂. Moreover, EN (x)
is the unique a 2 N satisfying

hx̂, b̂i2 = hâ, b̂i2 8b 2 N.

Indeed,

hx̂, b̂i2 = hx̂, eN b̂i2 = heN x̂, b̂i2 = h \EN (x), b̂i2,

implies that hâ � \EN (x), b̂i2 = 0 for all b 2 N . Choosing b̂ = â � \EN (x) shows that â = ˆEN (x) and so
a = EN (x) since 1̂ is separating for M .

Exercises

5.2.1. For x 2 B(L2(M)), show that (JxJ)⇤ = Jx
⇤
J .

5.2.2. For n 2 N, show that L2(Mn(C)) = Mn(C) with inner product

hA,Bi2 =
1

n

nX

i,j=1

Ai,jBi,j .

5.2.3. For a discrete i.c.c. group �, let M := L(�).

(a) Show that L2(M) = `
2(�).

(b) Show that LB(M) = LC(�) and RB(M) = RC(�).

5.2.4. Let M be a finite factor with trace ⌧ . For N := C ⇢ M , show that the conditional expectation
EN : M ! N is given by EN (x) = ⌧(x)1M .

5.2.5. For n 2 N, let D ⇢ Mn(C) be the subalgebra of diagonal matrices. Show that the conditional
expectation ED : Mn(C) ! D is given by

ED

0

B@
a1,1 · · · a1,n
...

. . .
...

an,1 · · · an,n

1

CA =

0

B@
a1,1 0

. . .
0 an,n

1

CA

5.2.6. Let � be a discrete i.c.c. group. Let ⇤ < � be a subgroup, and view L(�) as a von Neumann subalgebra
of L(�). Show that the conditional expectation EL(⇤) : L(�) ! L(⇤) satisfies EL(⇤)(�(g)) = 1⇤(g)�(g).
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5.3 The Tracial Ultraproduct and Ultrapowers

For this portion, we fix a family of von Neumann algebras (Mn)n2N such that every Mn is finite with trace
⌧n. We fix an ultrafilter ! 2 �(N), where �(N). We let

`
1(N, (En)) =

(
(xn) 2

1Y

n=1

Mn : sup
n2N

kxnk < 1

)
,

denote the ⇤-algebra of bounded sequences. We define the trace ideal to be

I =
n
(xn) 2 `

1(N, (Mn) : lim
n!!

⌧n(x
⇤

nxn) = 0
o

Lemma 5.3.1. I as defined above is an operator closed 2-sided ideal of

`
1(N, (Mn))

.

Proof. Letting (xn) 2 I, notice that for any an, bn 2 Mn, we have that

kanxnbnk2  kankkbnkkxnk2,

and hence
lim
n!!

⌧n(b
⇤

nxna
⇤

nanxnbn)  lim
n!!

(kankkbnkkxnk2)
2 = 0

Definition 5.3.2. Consider a family of finite von Neumann algebras (Mn)n2N such that every Mn is finite
with fixed trace ⌧n, and fix an ultrafilter ! 2 �(N) where �(N) is the Stone-Cech compactification of N. The
algebra `1(N, (Mn))/I, called the ultraproduct of the family (Mn). k(xn)k = limn!! kxnk is a norm on the
ultraproduct. When Mn = M is a fixed finite von Neumann algebra, then this is called the ultrapower of
M , and is denoted by M

!.

There is a natural embedding of M ✓ M
! which is defined by mapping x to the equivalence class of the

constant sequence (x) 2 M
!.

Observe that since every element of `1(N, (Mn))/I with limn!! kxnk = 0 is contained in the trace ideal
I, and thus the k(xn)k = limn!! kxnk.

Theorem 5.3.3. The ultrapoduct of a family of finite von Neumann algebras is again a finite von Neumann
algebra with trace ⌧! := limn!! ⌧n. Additionally, the ultraproduct is a factor whenever each of the Mn’s are
factors.

Notice that the definition above is in some sense uninteresting when ! is a principle ultrafilter. Hence,
we often make the standing assumption that an utlrafilter is non-principle.

Definition 5.3.4. Let M be a tracial von Neumann algebra. M has Property Gamma if and only if
M

0
\M

!
6= C where ! is a non-principle ultrafilter on N. M has the McDu↵ property if and only if M 0

\M
!

is non-abelian.

The advantage of working with an ultrapower von Neumann algebar is that it converts asymptotic
behavior within a von Neumann algebra into something exact. To say the same thing more concretely, the
key property of ulttrapowers is countable saturation, which essentially enables us to pass from approximately
satisfying a certain property to exactly satisfying that property. On the flip side, if an ultrapower of a von
Neumann M

! algebra satisfies a certain property, then there should be some kind of sequential version of
that same statement for M .

This is not the definition of Property � or the McDu↵ property that one usually encounters. However,
the ultrapower version of these concepts simplifies things quite a bit. For example, here are the version of
Property � and the McDu↵ property that is frequently found in the literature.
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Definition 5.3.5. Let M be a tracial von Neumann algebra. M is said to have property � if there exist
a sequence of unitaries (un)n2N with ⌧(un) = 0 and

lim
n!1

kuxn � xunk2 = 0

for every x 2 M . This sequence (un)n2N is said to be an asymptotically central sequence of M . M is McDu↵
(or has the McDu↵ property) if M ⇠= M ⌦R.

R, the hyperfinite II1 factor, has both Property � and the McDu↵ property, an hence any McDu↵ von
Neumann algebra has property �, though my proof does depend on the model I create for R R is isomorphic
to infinite tensor product of M2(C). Other examples McDu↵ von Neumann algebras include infinite tensor
products of II1 factors. Murray and von Neumann were able to show that L(F2) does not have Property �
and hence L(F2) 6⇠= R. The issue here is that we have not talked about tensor products of von Neumann
algebras,

We now have the terminology to state the infamous Connes Embedding Problem (sometimes called the
Connes Embedding Conjecture). Does every II1 factor M admit an embedding into R

! wehere R
! is some

ultrapower of R? There are a myriad of equivalences that one can formulate here. In the language of free
probability theory, the existence of an embedding of M into R

! is equivalent to M admitting micorstates. In
C

⇤ algebras, this question about embeddings of every possible II1 factor is logically equivalent verifying that
the tensor square of C⇤(Fn) admits exactly one C

⇤ norm. The language of operator spaces and quantum
information theory allow for equivalent rephrasings of the Connes Embbedding Problem that, while notable,
will not be discussed here. Talk to Roy...

5.4 Center-Valued traces

Fixing for a moment a finite dimensional factor, Mn(C), there is a distinguished state ⌧n : Mn(C) ! C which
we call the trace and it is characterized by the so-called tracial property which means that ⌧(xy) = ⌧(yx),
c.f. Exercise 1.3.2. Now, suppose that M = Mn1(C)�Mn2(C) is a direct sum of 2 finite dimensional factors.
M admits multiple traces, for example ⌧ = 1

2 (⌧n1 � ⌧n2) and ⌧ 0 = 1
4⌧n1 �

3
4⌧n2 . We will soon see that the

existence and uniquness of a trace finite factors. Even when M is not a factorm, there is however a surrogate
for the trace, a unique map � : M ! Z(M) that reduces to the trace when M is a factor. Moreover, the
existence of such a map completely characterizes finite von Neumann algebras.

Definition 5.4.1. Let M be a von Neumann algebra and Z(M) its center. A map � : M ! Z(M) is a
center-valued state if

(i) � is linear and bounded,

(ii) and �(zm) = z�(m) for any z 2 Z(M),

If in addition we have that

(iii) �(xy) = �(yx) for every x, y 2 M ,

then � is called a center-valued trace.

Lemma 5.4.2. Let M be a von Neumann algebra and � : M ! C be any linear functional. The following
are equivalent:

(i) �(xy) = �(yx) for all x, y 2 M .

(ii) �(x) = �(u⇤
xu) for all x 2 M and all unitaries u 2 M .

A linear functional as in Lemma 5.4.2 is called a tracial linear functional. A warning: some authors use
the word central to describe linear functions which satisfy this property.

Proof. This is left as Exercise 5.4.2.
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We now discuss the structure theory of states, in particular the polar decomposition. If � : M ! C is
a normal positive linear functional, then {x 2 M : �(x⇤

x) = 0} is a left ideal which is closed in the WOT,
thus by Exercise 4.2.8 there exists a projection p 2 P(M) such that �(x⇤

x) = 0 if and only if x 2 Mp. We
denote by s(�) = 1� p the support projection of �. Note that if q = s(�) then

�(xq) = �(qx) = �(x)

for all x 2 M , and moreover, � will be faithful when restricted to qMq.

Theorem 5.4.3 (Polar Decomposition for States). Suppose M is a von Neumann algebra and � 2 M⇤, then
there exists a unique partial isometry v 2 M and positive linear functional  2 M⇤ such that �(x) =  (xv)
for every x 2 M and v

⇤
v = s( )

Proof. Assume for now that k�k = 1. There exists some a 2 (M)1 so that �(a) = k�k. Let a
⇤ = v|a

⇤
|

denote the polar decomposition of a⇤. Letting  (x) = �(xv), we have that  (|a⇤|) = �(a) = k�k = 1. Since
0  |a

⇤
|  1, it follows that for every t 2 R

k|a
⇤
|+ e

it(1� |a
⇤
|)k  1.

Fix t so that eit ((1� |a
⇤
|) � 0. Then we have

 (|a⇤|)   (|a⇤|) + e
it
 ((1� |a

⇤
|)  k�k = �(|a⇤|),

and thus  (1) =  (|a⇤|) = k�k implying that  is a positive linear functional.
Let p = v

⇤
v. Since we may replace a with avs(�)s, we may assume that p  s(�). For every x 2 M such

that kxk  1, we have that
 (|a⇤|+ (1� p)x⇤

x(1� p))  k k

which shows that  ((1� p)x⇤
x(1� p)) = 0 and thus p � s(�).

We leave out the proof of the uniqueness for now.
To see that�(x) =  (xv) it su�ces to show that �(x(1 � p)) = 0 for all x 2 M . Suppose that kxk = 1

and �(x(1� p)) = � � 0. Then for n 2 N we have

n+ � =�(na+ x(1� p))

kna+ x(1� p)k

=k(na+ x(1� p))(na+ x(1� p)⇤k1/2

kn
2
|a

⇤
|
2 + x(1� p)x⇤

k
1/2



p
n2 + 1

implying that � = 0.

Our goal with the next few lemmas is to characterize finite von Neumann algebras in terms of the
existence of a center-valued state. The presentation contained here is an existence result that relies on
the Ryll-Nardzewski fixed point theorem. We exclude the proof for now; instead, accept it as fact and
acknowledge that it bestows upon us the existence of a fixed point in an appropriate setting.

Theorem 5.4.4 (Ryll-Nardzewski). Let X be a Hausdor↵ locally convex vector space, K ✓ X a non-empty,
weakly compact, convex subset and E a non-contracting semigroup of weakly continuous a�ne mappings of
K into K . Then there exists an x0 2 K, such that T (x0) = x0 for every T 2 E.

Lemma 5.4.5. Let M be a von Neumann algebra, Z(M) its center, and � 2 M⇤ a normal tracial linear
functional. Then k�k = k�|Z(M)k. In particular, � is positive if and only if �|Z(M) is positive.

Proof. Let � = Rv|�| be the polar decomposition of �. The for any unitary u 2 M , we have that

� = Ru⇤vuTu|�|.
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From the uniqueness of the polar decomposition for linear functionals and the centrality of �, it follows that
that u⇤

vu = v and Tu|�| = |�| for every unitary u 2 M . Thus, v 2 Z(M) and |�| is also tracial. Thus, we
have that

k�k = k |�| k = |�|(1) = �(v⇤)  k�|Z(M)kkv
⇤
k  k�k.

Lemma 5.4.6. Let M be a finite von Neumann algebras with Z(M) its center. Then any normal linear
functional ! : Z(M) ! C extends uniquely to a bounded normal tracial linear function �! on M . Moreover,
k�!k = k!k, �! is positive whenever ! is positive, and the map  : Z(M)⇤ ! M⇤ defined by ! 7! �! is
linear.

Proof. The uniqueness will be left as an exercise (see 5.4.4). If we can indeed show that such an extension
exists, then the norm preserving property, and positivity follow from the previous lemma. To show the
existence, let � 2 M⇤ be any normal linear functional extending ! to M . For notational convenience,
whenever u is a unitary in M we let Tu : M⇤ ! M⇤ denote the transformation mapping  7!  � Ad(u)
where Ad(u)(x) = u

⇤
xu for every x 2 M . In the statement of the Ryll-Nardzewski theorem, let X = M⇤,

K be the norm closed convex hull of = {Tu� : u 2 U(M)} ✓ M⇤, and E = {Tu|K}. We claim without proof
that K is a weakly compact, convex, non-empty subset of X = M⇤. Further, observe that Tu|K : K ! K

and that Tu is an isometry, making E a collection of non-contracting semi-group of weakly continuous a�ne
mappings of K to itself.

Then Ryll-Nardzewski Theorem provides the existence of a fixed point �! 2 K, i.e. Tu�! = �! for every
u 2 M implying that �! is a normal tracial linear functional on M .

Finally, we show that �!|Z(M) = !. Notice that by construction, �|Z(M) = !, and hence, Tu�|Z(M) = !

for every u 2 U(M). Thus, any convex combination and therefore any element of K will also equal ! when
restricted to the center of M .

Now to show linearity, assume that !1,!2 2 Z(M)⇤ and c 2 C. Then,  !1+c!2 and  !1 + c !2 are
extensions of !1 + c!2, and by uniqueness they are equal.

Theorem 5.4.7. If M if a finite von Neumann algebra, then admits a center-valued trace, namely the
adjoint of the map  : Z(M)⇤ ! M⇤ defines a center-valued state on a finite von Neumann algebra.

Proof. Now consider a finite von Neumann algebra M . By Lemma 5.4.6, there is a linear and isometric map
 : Z(M)⇤ ! M⇤ taking normal linear functionals on Z(M) to tracial linear functional on M . Since we
may identify Z(M)⇤)⇤ with (Z(M) and (M⇤)⇤ with M , we let � : M ! Z(M) be the map determined by
the relation

 !(x) = !(�(x))

for every ! 2 Z(M)⇤ and x 2 M . In other words, � : M ! Z(M) is the (Banach space) adjoint of the map
 .

Theorem 5.4.8. Let M be a von Neumann algebra, Z(M). If � : M ! Z(M) is a center-valued trace, then
� has the following additional properties:

(i) � is unique.

(ii) k�k = 1,

(iii) � is �-WOT continuous (normal),

(iv) �(zx) = z�(x) for every x 2 M and z 2 Z(M) (bimodular),

(v) �(x⇤
x) � 0 (positive),

(vi) �(x⇤
x) = 0 =) x = 0 (faithful),
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Proof. If we suppose that there was another center-value trace �̃ on M distinct from �, there would exist
x 2 M so that �(x) 6= �̃(x). But this would imply that we can find a normal linear functional ! 2 Z(M) so
that !(�(x)) 6= !(�̃(x)). However, since ! � � and ! � �̃ are distinct bounded normal extensions of ! which
are tracial, this contradicts Lemma 5.4.6. Hence, the center-valued trace from Theorem 5.4.7 is the unique
such map on M .

The normality and the the fact that the � has norm 1 arises from the fact that � is the (Banach space)
adjoint of the map from Lemma 5.4.6.

Now to prove the bimodularity, we start by fixing a unitary u 2 Z(M) and defining  : M ! Z(M)
by  (x) = u

⇤
�(ux). Notice that  is a center-valued trace and thus must equal �, i.e. �(x) = u

⇤
�(ux) for

every x 2 M . Replacing x with u
⇤
x shows that �(u⇤

x) = u
⇤
�(x) for every x 2 M and for every unitary

u 2 Z(M). Since every element z 2 Z(M) is a linear combination of 4 unitaries and � is a linear map, we
now have that �(zx) = z�(x) for every z 2 Z(M) and every x 2 M .

In order to verify postivity, we will show that !(�(x⇤
x)) � 0 for every positive linear functional ! 2

Z(M)⇤. Notice that � must satisfy
!(�(x⇤

x)) = �!(x
⇤
x),

where �! is the normal tracial linear functional extending !. Since Lemma 5.4.6 shows that �!(x⇤
x) � 0,

which is what we wanted to show.
We will verify the defniteness of � by proving the contrapositive. In particular, if y 2 M and y > 0 we

will show that there exists ! 2 Z(M)⇤ so that !(�(y)) 6= 0. To this end, fix y 2 M be a positive element and
z = z(y) its central support projection, choose ! a positive normal linear functional such that p = s(!)  z.
If  ! is the tracial extension of ! to M , it is invariant under conjugation by any unitary in M . Hence, its
support projection is also invariant under conjugation by all unitaries of M implying that s(�!) is in the
center of M and in particular s(�!) = s(!) = p. If �!(y) = 0, then xp = 0; however this is not possible
since 0 6= p  z. Thus, �!(y) = !(�(x)) 6= 0, finishing the final claim.

In light of the first item in the previous lemma, we are justified calling � : M ! Z(M) the canonical
center valued trace on a finite von Neumann algebra M , whenever such a map exists. We should observe
that the canonical center valued trace � is an example of a conditional expectation. That is, � is a positive,
bimodular, norm 1, linear functional from M to the subalgebra Z(M). We will explore general conditional
expectations in a later section.

Corollary 5.4.9. M is a finite von Neumann algebra if and only if M has a unique center-valued trace.

Proof. Assume that � is a center-valued trace on M . If p is a projection on in M such that p  1 and p ⇠ 1.
In this case, 0  1� p and 1 = �(1) = �(p). It follows that 0  �(1� p) = �(1)��(p) = 0. Thus, 1 = p and
hence M is finite.

One of the main uses of a center-valued trace is that it detects equivalence of projections.

Theorem 5.4.10. Let M be a von Neumann algebra with center-valued trace �. If p and q are projections
in M ,p � q if and only if �(p)  �(q). Specifically, p ⇠ q if and only if �(p) = �(q).

Proof. If p � q and v is a partial isometry such that v⇤v = p and vv
⇤
 q, then �(p) = �(v⇤v) = �(vv⇤) 

�(q), where the last line follows from the fact that q � vv
⇤
� 0 and the linearity of �.

Conversely, assume that �(p)  �(q). Linearity of � shows that �(q � p)  0. By the Comparison
Theorem, there exists a central projection z so that zp � zq and (1 � z)q � (1 � z)p. Using the tracial
property of � in conjunction with the , we have that �((1�z)(q�p)) � 0. The bimodularity of � now implies
0  (1 � z)�(q � p) From here, we use the initial assumption to conclude that (1 � z)�(q � p)  0, which
when combined with the positive definiteness implies that (1� z)q ⇠ (1� z)p. Thus, p � q.

The fact that p ⇠ q is logically equivalent to �(p) = �(q) follows from an application of Proposition 4.1.5
(Cantor-Schoder-Bernstein for projections).

For this portion, we fix a finite von Neumann algebra M with center valued trace � : M ! Z(M).

Definition 5.4.11. M is homogeneous of type In if there exists a family of n equivalent abelian mutually
orthogonal projections,e1, . . . , en , such that

Pn
i=1 pi = 1.
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An elementary example of a homogenous von Neumann algebra of type In is the n⇥n matrices, Mn(C).

Theorem 5.4.12. Let M be a finite homogeneous type In von Neumann algebra and � : M ! Z(M) its
center valued trace. Then the range of � restricted to the projections of M coincides with

nX

k=1

k

n
zk

where z1, . . . , zn are mutually orthogonal central projections

Proof. First, we show that there exists a projection p0 so that z(p0) = 1. Letting {p1, . . . , pk} be a maximal
family of mutually centrally orthogonal abelian projections (z(pi)z(pj) = 0 whenever i 6= j). Then p0 =

W
pi

is also abelian, and by maximality we must have that z(p0)) = 1.
Since M is homogeneous, of type In, there exists a family of n abelian, mutually orthogonal projections,

equivalent to p0 whose sum equals 1. Hence

1 = �(1) = �

 
nX

i=1

qi

!
=

nX

i=1

�(qi) = n�(p0).

Now, for any central projection z we see that �(p0z) =
1
nz and thus the range of �|P (M) contains elements

of the form indicated above.

A center valued trace on a II1 von Neumann algebra satisfies an analog of the intermediate value property.

Theorem 5.4.13. Let M be a type II1 von Neumann algebra with center valued trace �. If p, q are projections
in M and z 2 Z(M) is a central projection with �(q)  z  �(q), then there exists some projection r with
p  r  f and �(r) = q.

Proof. First an observation about II1 von Neumann algebras: if s is any projection and " > 0 then there exists
a non-zero projection s"  s such that �(s")  "z(s"). To this end, choose n so that 1

2n  ". Since M is type
II1, Lemma 5.1.2 shows that there is a family of 2n equivalent, mutually orthogonal, non-zero subprojections
of s whose sum is s. Letting s" be any one of these, this now gives that �(s") =

1
2n�(s)  "�(s)  "z(e").

Now, let P a maximal family of totally ordered projections in M such that if s 2 P then p  s  q and
�(s)  z. Such a collection exists and is non-empty since p 2 P . Letting r =

W
s2P s, we have that p  r  q

and �(p)  z.
Let’s suppose that z � �(r) > 0. Then in this case, there is some " > 0 and a no-zero central projection

w so that
z � �(r)w � "w.

Notice that this would imply that (q � r)w 6= 0; otherwise we would have that �(r)w = �(p) � zp, a
contradiction . So, we can find some non-zero projection s" with s"  (p � r)w and �(s")  "w. But this
would imply that r + S" 2 P , contradicting the maximality of P . So we must have that z = �(r).

Exercises

5.4.1. Show that if M is finite and separable, then M is tracial. When M is not a factor show that a trace
is not unique.

5.4.2. Prove Lemma 5.4.2. [Hint: use Exercise 3.1.7.]

5.4.3. Let n1, . . . , nk be a collection of natural numbers and consider M =
Lk

i=1 Mni(C).

(a) Compute the center of M . Show that M has a continuum of faithful states � : M ! C with the tracial
property.
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(b) M = M2(C)�M3(C) has two non-zero orthogonal central projections which sum to the identity of M ,
which we call z1, z2. For each a 2 {0, 1

2,1} and b 2 {0, 1
3 ,

2
3 , 1}, find a projection p 2 P(M) such that

�(p) = az1 + bz2 where � is the center-valued trace.

5.4.4. Show that under the conditions in 5.4.6, the extension of ! to a tracial state defined all of M is
unique.
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