- $C^*.1$ Show that the matrix amplification of any *-homomorphism between C^* -algebras is again a *-homomorphism. Conclude that any *-homomorphism is completely positive.
- **C*.2** Let A and B be C*-algebras and $C \subset B$ a C*-subalgebra. Show that if $\theta : A \to C$ is a nuclear map, then so is θ when viewed as a map from A to B. Suppose we have a map $\rho : A \to C$ that is nuclear as a map from A to B. What could prevent ρ from being a nuclear map as a map from A to C?
- C*.3 Partitions of unity are nicer when you have a concrete example. For each $n \geq 2$, cover [0,1] by $2^n 1$ open intervals of equal length. (What are they? Also, we could start with n = 1, but it's too simple to pick up on a pattern.) Call this cover \mathcal{U}_n . Define (sketch) a partition of unity for \mathcal{U}_n . (Hint: think zig-zags.)

Now, construct a sequence of completely positive maps $C([0,1]) \xrightarrow{\psi_n} \mathbb{C}^{k_n} \xrightarrow{\phi_n} C([0,1])$, (what is k_n ?) that give a completely positive approximation of C([0,1]).

- **W*.1** Let Γ be a countable discrete group. Show that all projections in $L(\Gamma)$ are finite. [Hint: use the trace.]
- **W*.2** Let $\pi: M \to N$ be a *-isomorphism between von Neumann algebras and let $p \in \mathcal{P}(M)$.
 - (a) Show p is finite in M if and only if $\pi(p)$ is finite in N.
 - (b) Assuming π is normal, show p is semi-finite in M if and only if $\pi(p)$ is finite in N.
 - (c) Show p is purely infinite in M if and only if $\pi(p)$ is purely infinite in N.
 - (d) Show p is properly infinite in M if and only if $\pi(p)$ is properly infinite in N.
- **W*.3** In this exercise, you will show that $M_n(\mathbb{C})$ can be realized via a crossed-product construction. Consider $\Gamma := \mathbb{Z}_n$, the countable cyclic group of order n, and also set $X := \mathbb{Z}_n$ which we view as simply a space and equip with the counting (probability) measure.
 - (a) Show that $\alpha_q(f) := f(\cdot g)$ for $g \in \Gamma$ defines an action $\Gamma \stackrel{\alpha}{\curvearrowright} L^{\infty}(X, \mu)$.
 - (b) Show that $\Gamma \stackrel{\alpha}{\curvearrowright} L^{\infty}(X,\mu)$ is free, ergodic, and probability measure preserving.
 - (c) Show that $1_{\{1\}}, \ldots, 1_{\{n\}} \in L^{\infty}(X, \mu)$ are pairwise orthogonal and equivalent minimal projections.
 - (d) Show that $L^{\infty}(X,\mu) \rtimes_{\alpha} \Gamma \cong M_n(\mathbb{C})$. What is the preimage of $E_{i,j}$ under this isomorphism?
 - (e) Explain why there does not exist a discrete group Γ such that $L(\Gamma) \cong M_n(\mathbb{C})$.