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9. Completely Positive Maps

This section gives a very quick introduction to completely positive maps for C⇤-algebraists. If this is your
first time seeing such maps defined, we recommend ignoring the non-unital generalities for this go around.
Once you have a grasp of the unital setting, you’ll understand what’s going on, and you will know where to
look if you ever need the non-unital generalizations in the future. With the exception of a few examples, we
will stick with the unital assumption in lecture.

The lecture will focus mostly on understanding key examples of completely positive maps (Examples
9.5, 9.8, 9.9 and Exercise 9.10), the characterization of completely positive maps a↵orded by Stinespring’s
Dilation theorem (Theorem 9.22), and an understanding Arveson’s Extension theorem (9.28) for completely
positive maps into B(H).

With time, we will give an overview of the proof of Stinespring’s Dilation Theorem, which is a direct
generalization of the GNS construction. In which case, it will be beneficial to have the GNS construction
proof handy. This proof goes through some algebraic tensor products for vector spaces. If it feels too
confusing, try revisiting it after we’ve had a treatment of tensor products next week.

Section 9.1 establishes some preliminary results and delves into dilation techniques. We encourage you
to read through the various dilation tricks and try the corresponding exercises in Section 9.1. These are
valuable tools, which we will not address in lecture.

This section concerns maps that preserve positivity even after matrix amplification. We will have to
forego several important facts and results on (completely) positive maps. For a full treatment, we highly
recommend Vern Paulsen’s book: [8, Chapters 2,3,6,7].

We begin with what we mean by matrix amplification. Ignoring the norm for a moment, given a ⇤-algebra
A and some 1  n < 1, we define Mn(A) to be the n ⇥ n matrices with entries in A (just as we would in
more general ring theory).

Mn(A) := {[aij ]1i,jn : aij 2 A, 1  i, j  n} (9.1)

We will usually suppress the usual subscripts on the matrices, i.e. we write [aij ] for [aij ]1i,jn (sometimes
also [aij ]ij).

This also comes with a natural involution where [ai,j ]⇤ = [a⇤
j,i
] for all [ai,j ] 2 Mn(A).

Definition 9.1. For a linear map � : A ! B between ⇤-algebras we define, for each n � 1, the linear map

�
(n) : Mn(A) ! Mn(B), �

(n)([aij ]) = [�(aij)].

The map �(n) is often called a matrix amplification of �.

When A is a C⇤-algebra, there is a natural C⇤-norm on Mn(A), which is inherited from the norm on A in
the following sense:

Recall from Exercise 7.50 from Day 1 Lectures that Mn(B(H)) = B(Hn) for any Hilbert space H. Now
(using Theorem 8.1), we faithfully represent A on some Hilbert space H with an injective ⇤-homomorphism
⇡ : A ! B(H). This induces a ⇤-homomorphism ⇡

(n) : Mn(A) ! Mn(B(H)) = B(Hn), which is also injective
(check). Then we can define a norm on Mn(A) by k[aij ]k := k⇡(n)([aij ])k (injectivity implies this is a norm
and not just a semi-norm), which will satisfy the C⇤-identity (because (⇡(n))�1 : ⇡(n)(Mn(A)) ! Mn(A) is
a ⇤-homomorphism).

The following inequality is a useful exercise, but we already have plenty of exercises. The argument is
outlined in [12, Exercise 1.13].

Proposition 9.2. For any C⇤
-algebra A, n � 1, and [aij ] 2 Mn(A), we have

max
i,j

{kaijk}  k[aij ]k 
X

ij

kaijk.

9.1. Preliminary results on cp maps. Unlike with the Gelfand-Naimark Theorem for commutative C⇤-
algebras, we will not start from scratch here. However, results in this section are developed nicely in [8,
Chapter 2]. The proofs therein are well-written and easy to follow, but we are after bigger fish and therefore
will just take these as means to an end.
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Definition 9.3. We say a linear map � : A ! B between C⇤-algebras is positive if it maps positive elements
to positive elements. We say it is n-positive if �(n) is positive, and we say that it is completely positive (c.p.
or cp) if it is n-positive for all n � 1. A completely positive map that is unital is abbreviated ucp.

Remark 9.4. For notation and terminology: often the word “linear” is dropped when discussing cp maps,
and �(n) is sometimes denoted by �n.

One important class of examples that we have already seen is positive linear functionals (such as the states
used in the GNS representation theorem).

Example 9.5. For a unital C⇤-algebra A, a positive linear functional � 2 A
⇤ is completely positive. Indeed,

(for the unital case) note that �(n) : Mn(A) ! Mn(C), so we check positivity by checking for positive-
definiteness. To that end, let ⇠ 2 Cn and [aij ] 2 Mn(A) positive. Then by Exercise 3.11,
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is positive in Mn(A). Then
P

n

i,j=1 ⇠i⇠jaij is positive in A,7 which means its image under � is positive by
assumption. Then we compute

h�(n)([aij ])⇠, ⇠i = h[�(aij)]⇠, ⇠i =
*2
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Exercise 9.6. Show that the composition of completely positive maps is completely positive.

Exercise 9.7. Let � : A ! B be a positive map between C⇤-algebras. Show that � is ⇤-preserving, i.e.
�(a⇤) = �(a)⇤ for all a 2 A.

Exercise 9.8. Show that the matrix amplification of any ⇤-homomorphism between C⇤-algebras is again a
⇤-homomorphism. Conclude that any ⇤-homomorphism is completely positive.

Example 9.9. To get more examples of completely positive maps we build them out of known examples.
The idea is to conjugate another cp map: Let  : A ! B be a cp map between C⇤-algebras and b 2 B.

Then the map � := b
⇤
 (·)b : A ! B is linear and positive by Exercise 3.11. It is moreover completely

positive. Indeed, for each n � 1 and positive element [aij ] 2 Mn(A),

�
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Observe (exercise) that when kbk  1, � is then cpc.

Exercise 9.10. Now consider a more concrete setting of B(`2), and consider the rank n projection P defined
on the basis vectors by Pei = 1 if i  n and Pei = 0 if i > n. If we write an operator A 2 B(`2) as a matrix
array, what does its image under the completely positive map A 7! PAP look like? (This is where the word
“compression” comes from.)

Now, we identify PB(`2)P ' B(P `2) ' Mn(C) (like in Example 6.5). These are ⇤-isomorphisms, which
means their composition with the above compression by P gives a completely positive map B(`2) ! Mn(C).

7Perhaps there is a quicker argument, but here is one through tensor products. We’ll go ahead and record it so you can
come back after we’ve covered them. Exercise 11.7 tells us that Mn � A = Mn(A). So, the positive matrix in (9.2) is of the
form x = p⌦ b 2 Mn ⌦A, where p is the projection onto the first coordinate. Then x = |x| =

p
p⌦ b⇤b, which must also equal

|b|⌦ p by uniqueness of positive square roots. Then p⌦ b� p⌦ |b| = 0 implies b = |b| � 0.
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Example 9.11. One important class of completely positive maps are conditional expectations, which feature
more prominently in von Neumann algebras. Recall from the von Neumann lecture notes that a conditional
expectation is a contractive linear projection E : A ! B from a C⇤-algebra onto a C⇤-subalgebra B ⇢ A

such that Eb = b for all b 2 B. By a theorem of Tomiyama, any conditional expectation is automatically
completely positive and contractive. In this exercise, we consider a class of these that we will use a few times
in these notes.

Recall that a finite dimensional C⇤-algebra has the form F = �m

j=1Mlj (C) ⇢ ML(C) where L =
P

lj . We
define a conditional expectation ML(C) ! F as follows: for each j, let Pj denote the projection onto the jth
component of F , and define ⇢j : ML ! Mlj as the compression Ej(·) = Pj · Pj (where we identify Mlj (C)
with its copy in ML(C)). Then E : ML(C) ! F , given by

P
j
Ej , is a ucp map (exercise check). (Why do

we automatically know F is unital?)

Theorem 9.12 (Russo-Dye). Let A and B be unital C⇤
-algebras and � : A ! B a positive map. Then

k�k = k�(1)k.

This is [8, Corollary 2.9], where it appears as a Corollary to von Neumann’s inequality [8, Corollary 2.7],
which we will not treat here.

In the subsection on nonunital C⇤-algebras in [8, Chapter 2], Paulsen gives this non-unital extension of
the Russo-Dye theorem.

Proposition 9.13. Any positive map between C⇤
-algebras is bounded.

Finally, we record the following examples for future use. The proof is short, but we leave it for [8, Theorem
3.9].

Proposition 9.14. For any unital C⇤
-algebra A and any compact Hausdor↵ space X, any unital positive

map � : A ! C(X) is ucp.

Remark 9.15. The converse holds too. This is a theorem of Stinespring (not to be confused with his dilation
theorem in the next section). ([8, Theorem 3.11])

Dilation Tricks:
Though our goals are Theorems 9.22 and 9.28, we would be doing a disservice to come this close to dilation
tricks and not give you a feel for the techniques. Also, we’ll want some of these facts later.

Lemma 9.16. Let A be a unital C⇤
-algebra and a, b 2 A. Then kak  1 i↵

✓
1 a

a
⇤ 1

◆
is positive in M2(A).

Proof. We assume A is faithfully (and unitally) represented on a Hilbert space B(H), whence we check for
positive-definiteness. For a 2 A, if kak  1, then for any ⇠, ⌘ 2 H, we have

⌧✓
1H a

a
⇤ 1H

◆✓
⇠

⌘

◆
,

✓
⇠

⌘

◆�
= h⇠, ⇠i+ ha⌘, ⇠i+ h⇠, a⌘i+ h⌘, ⌘i

� k⇠k2 � 2kakk⌘kk⇠k+ k⌘k2 � 0.

On the other hand, if kak > 1, then there exist unit vectors ⇠, ⌘ 2 A such that ha⌘, ⇠i < �1, which would
make the inner product above negative.

⇤
Definition 9.17. We say a linear map � : A ! B between C⇤-algebras is completely bounded if

sup
n

k�(n)k < 1.

Corollary 9.18. Any completely positive map is completely bounded. Moreover, if A and B are unital

C⇤
-algebras and � : A ! B is a completely positive map, then

k�(1)k = k�k = sup
n

k�(n)k.

We prove the case where � is unital, i.e. �(1) = 1, which also means �(n)(1) = 1Mn(A) for all n � 1. The
more general case needs one additional fact and is addressed in [8, Proposition 3.6], but the main idea is
already in the unital case.
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Proof. We know already that k�(1)k  k�k  sup
n
k�(n)k. Moreover, we know k�(1)k = k1Mn(B)k = 1 for

all n � 1. So, we want to prove that sup
n
k�(n)k  1. So, let a = [aij ] 2 Mn(A) with kak  1. Then by

Lemma 9.16, ✓
1Mn(A) a

a
⇤ 1Mn(A)

◆
2 M2n(A)

is positive. Since � is completely positive, �(n) is 2-positive, and so

�
(2n)

✓✓
1Mn(A) a

a
⇤ 1Mn(A)

◆◆
=

✓
1Mn(B) �

(n)(a)
�
(n)(a)⇤ 1Mn(B)

◆

is positive. By Lemma 9.16, this implies k�(n)(a)k  1, as desired. ⇤

More abbreviations:
Corollary 9.18 says that any ucp map is completely positive and completely contractive, abbreviated by cpc
(or some permutation of those letters).

Exercise 9.19. Let A be a unital C⇤-algebra and a 2 A such that kak  1. Show that the following is a
unitary in M2(A): ✓

a
p
1� aa⇤p

1� a⇤a a
⇤

◆
.

This is sometimes referred to Halmos’ Dilation

Now that we’ve tried a few dilation tricks, we (you) are ready to show a powerful result in C⇤-algebras
that relies heavily on the functional calculus and dilation tricks. Don’t worry, it’s just assembling pieces at
this point.

Exercise 9.20. Let ⇡ : A ! B be a ⇤-homomorphism between C⇤-algebras and b 2 ⇡(A). Show that there
exists a 2 A with ⇡(a) = b and kak = kbk. (Aloud we usually say something like, “contractions lift to
contractions”– with the assumption that we can scale to get the full result) Here are some steps:

(1) Consider the element x =


0 b

b
⇤ 0

�
2 M2(B). Show that kx⇤

xk = kb⇤bk.

(2) Apply Exercise 2.21 to x and ⇡(2) to get some lift y =


y11 y12

y21 y22

�
2 M2(A) (i.e. ⇡(2)(y) = x) with y

self-adjoint and kyk = kxk = kbk.
(3) Show that y12 is a lift of b.
(4) Now use Proposition 9.2 to finish the argument. (Don’t forget to mention why ky12k  b.)

We close with one important fact that holds for cpc maps that does not hold in general is that any cpc
maps between C⇤-algebras extends to a ucp map between their unitizations. The proof is short but digs into
some surprisingly technical aspects of double duals of C⇤-algebras, so we leave it to [3, Proposition 2.2.1].

Proposition 9.21. Let A and B be C⇤
-algebras with A non-unital and B unital, and let � : A ! B be a

cpc map. Then � extends to a ucp map �̃ : Ã ! B, which is given by

�̃(a+ �1
Ã
) = �(a) + �1B .

9.2. Stinespring’s Dilation Theorem. We saw in the previous section that compressing a ⇤-homomorphism
gives a completely positive map. What Stinespring’s Dilation Theorem tells us is that that’s basically how
every completely positive map arises! That’s right, when we are working with completely positive maps,
we are really just looking at “compressed” ⇤-homomorphisms.8 That’s what makes Stinespring’s theorem
so powerful: cp (ucp) maps are more abundant than ⇤-homomorphisms, but when you have a cp map,
you can draw a lot of conclusions pertaining to its structure by appealing to its “Stinespring Dilation”
⇤-homomorphism.

Enough prelude. Here’s the theorem.

8“Compressed” is in quotations because in the non-unital setting it will be conjugation but not necessarily by a projection
as in Definition 4.2.1 in the von Neumann notes.
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Theorem 9.22 (Stinespring’s Dilation Theorem). Let A be a unital C⇤
-algebra and � : A ! B(H) a cp

map. Then there exists a Hilbert space H0
, a unital ⇤-representation ⇡ : A ! B(H0) and a linear map

V : H ! H0
such that

�(a) = V
⇤
⇡(a)V

for every a 2 A. In particular, k�k = kV k2 = kV ⇤
V k = k�(1)k = sup

n
k�(n)k.

Moreover, if � is unital, then V is an isometry and V
⇤ = PVH is the projection onto VH ⇢ H0

. In this

case we identify H with a subspace VH ⇢ H0
and have

�(a) = PH⇡(a)|H.

Remark 9.23. We have a few remarks on this.

(1) When � is unital, we think of ⇡(a) as

⇡(a) =


�(a) T12

T21 T22

�

where T12 : H? ! H, T21 : H ! H? and T22 : H? ! H? are some bounded linear maps.
Notice how the unital case generalizes Example 9.10 (with ⇡ = id).

(2) There is a non-unital version. Follow [3, Remark 1.5.4].
(3) One usually hears the term “minimal Stinespring dilation.” Consider a Stinespring representation

(⇡,H0
, V ) for � : A ! B(H). Let H0 ⇢ H be the closed linear span of ⇡(A)VH, which reducing for

⇡(A) (as in vN notes) and hence the co-restriction ⇡ : A ! B(H0) is a representation. Whenever
⇡(A)VH is dense in H0, (i.e. its closure is H0), then the Stinespring dilation is unique up to unitary
equivalence. (See [8, Proposition 4.2].)

The proof is exactly a generalization of the GNS construction of a representation corresponding to a state.
The technique in general is sometimes called “separation and completion”: first you define a semi-norm (or
semi-inner-product in this case), then you mod out by the null set– hence making it a genuine norm (or
inner product), then complete the quotient space with respect to your new norm. Since we have already
seen the technical side of the GNS proof, let’s see the overarching idea this time around in order to better
understand how to potentially use this technique in other settings. (For a proof that checks all the details,
see [8, Theorem 4.1].)

Proof of Stinespring’s Dilation Theorem. Let � : A ! B(H) be a cp map, and consider the algebraic tensor
product

A�H := span{a� ⇠ : a 2 A, ⇠ 2 H}.
We define a symmteric bilinear function h·, ·i by

ha� ⇠, b� ⌘i = h�(b⇤a)⇠, ⌘iH,

for a, b 2 A and ⇠, ⌘ 2 H (extending linearly to A �H). One then checks that this is positive semidefinite
(i.e. hx, xi � 0), which means it’s an inner product modulo the fact that we could potentially have hx, xi = 0
for non-zero x 2 A�H. No worries. It turns out the space consisting of such elements N = {x 2 A�H :
hx, xi = 0} is a subspace of A � H, which means we can take the quotient (A � H)/N . The symmetric
bilinear function h·, ·i from before now induces a genuine inner product on (A�H)/N given by

hx+N , y +N i := hx, yi.

So, when we complete (A�H)/N with respect to this inner product, we get a Hilbert space. Let’s suggestively
call it H0.

For a 2 A, we define the linear map ⇡(a) : A �H ! A �H by left multiplication, i.e. on for a 2 A and
b� ⇠ 2 A�H, we have

⇡(a)(b� ⇠) = ab� ⇠,

and we extend linearly. A computation shows that ⇡(a) : N ! N , and so it induces a linear map on the
quotient (A�H)/N , which we still denote by ⇡(a). Moreover, it turns out that k⇡(a)(x+N )k  kakkx+Nk
for all x + N 2 (A � H)/N (where kx + Nk2 = hx + N , x + N i), which means we can extend ⇡(a) to a
bounded linear operator on all of H0. One then checks that this is indeed a unital ⇤-homomorphism.
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Define V : H ! H0 by V (⇠) = (1A � ⇠)+N . Then we compute for each unit vector ⇠ 2 H, using Exercise
7.48 from the Day 1 Lecture Notes,

kV ⇠k2 = h1A � ⇠, 1A � ⇠i = h�(1⇤
A
1A)⇠, ⇠i  k�(1)kk⇠k2 = k�(1)k.

It follows that kV k = k�(1)k and moreover that V is an isometry when � is unital.
Finally, since V is an isometry, we conclude that for all ⇠, ⌘ 2 H,

hV ⇤
⇡(a)V ⇠, ⌘iH = h⇡(a)V ⇠, V ⌘i = h⇡(a)((1� ⇠) +N ), (1� ⌘) +N i = h�(a)⇠, ⌘iH,

and hence V
⇤
⇡(a)V = �(a). ⇤

Exercise 9.24. Describe in words how (the proof of) Stinespring’s Dilation Theorem generalizes the Gelfand
Naimark Segal Theorem. In particular, when � is a state, what is H? A�H?

Yes, there is a generalization of Stinespring’s Dilation Theorem called the Kasparov-Stinespring Dilation
Theorem. This is phrased in either the language of Hilbert C⇤-modules (see [6] for a nice introduction) or
multiplier algebras (in Kasparov’s original paper).

Frankly, Stinespring’s theorem admits several generaliztions. For instance, there is one for maps that are
just considered completely bounded, i.e. linear maps with sup

n
k�(n)k < 1.

For the sake of seeing Stinespring’s Dilation theorem in action, we introduce another useful concept for
ucp maps: multiplicative domains. Here’s how we define a multiplicative domain.

Definition 9.25. Let A and B be unital C⇤-algebras and � : A ! B ucp. Then the set

{a 2 A : �(a)�(b) = �(ab) and �(b)�(a) = �(ba) 8 b 2 A}
is a C⇤-subalgebra of A called the multiplicative domain of �.

Notice that � is a ⇤-homomorphism when restricted to this set. In fact, this is the largest C⇤-subalgebra
on which the ucp map acts as a ⇤-homomorphism, though the fact that it is a C⇤-algebra requires proof. To
prove this, we use Stinespring’s Dilation theorem to prove the following alternative description.

Proposition 9.26. Let A and B be unital C⇤
-algebras and � : A ! B ucp. Then the multiplicative domain

of � is equal to the set

{a 2 A : �(a)⇤�(a) = �(a⇤a) and �(a)�(a)⇤ = �(aa⇤)}.

Proof of Proposition 9.26. Let A be a unital C⇤-algebra and � : A ! B a ucp map. One inclusion is
immediate. We will work through the other inclusion.

Since B can be faithfully represented on some B(H) (and the composition of that representation with �
is still cp), we assume B ⇢ B(H) and view � as a map into B(H). Let (⇡, V,H0) be a Stinespring Dilation
for � : A ! B(H), i.e. ⇡ : A ! B(H0) is a representation of A and V : H ,! H0 an isometric embedding so
that �(a) = V

⇤
⇡(a)V for all a 2 A. Then for any a 2 A, we have

�(a⇤a)� �(a)⇤�(a) = V
⇤
⇡(a⇤a)V � V

⇤
⇡(a)⇤V V

⇤
⇡(a)V

= V
⇤
⇡(a)⇤1H0⇡(a)V � V

⇤
⇡(a)⇤V V

⇤
⇡(a)V

= V
⇤
⇡(a)⇤(1H0 � V V

⇤)⇡(a)V

Now, suppose a 2 A so that �(a⇤a) = �(a)⇤�(a) and �(aa⇤) = �(a)�(a)⇤. Since V is an isometry, V V
⇤

is a positive contraction, and so by Exercise 3.11, 1H0 � V V
⇤ is a positive contraction, which has a unique

positive square root. With that observation, we compute

0 = �(a⇤a)� �(a)⇤�(a) = V
⇤
⇡(a)⇤(1H0 � V V

⇤)⇡(a)V

= V
⇤
⇡(a)⇤(

p
1H0 � V V ⇤)2⇡(a)V

= [
p
1H0 � V V ⇤⇡(a)V ]⇤[

p
1H0 � V V ⇤⇡(a)V ].

It follows (from say the C⇤-identity) that
p
1H0 � V V ⇤⇡(a)V = 0.

With that, we let b 2 A and compute

�(ba)� �(b)�(a) = V
⇤
⇡(b)(1H0 � V V

⇤)⇡(a)V = 0.

A symmetric argument shows that �(ab) = �(b)�(a) for all b 2 A, which completes the argument. ⇤
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Exercise 9.27. Conclude that the multiplicative domain of a cpc map � : A ! B from a unital C⇤-algebra
is a C⇤-subalgebra.

9.3. Arveson’s Extension Theorem. The other major theorem for completely positive maps (as far as C⇤-
algebraists are usually concerned) is Arveson’s Dilation Theorem. Just as Stinespring’s Dilation Theorem was
a generalization of GNS, which was a generalization of GN, Arveson’s Extension Theorem is a generalization
of Krein’s Theorem, which is a strengthening of the Hahn-Banach Theorem for C⇤-algebras. On the other
hand, where Stinespring’s proof was a generalization of the proofs that came before, Arveson’s proof builds
on the proofs that came before.

Theorem 9.28 (Arveson’s Extension Theorem). Let B be a unital C⇤
-algebra, A ⇢ B a unital C⇤

-subalgebra,

and � : A ! B(H) a cp map. Then there exists a cp map �̃ : B ! B(H) extending �, i.e. �̃|A = �.

Remark 9.29. In an abuse of categorical language, B(H) is often called injective in the category of C⇤-algebras
with morphisms given by cpc maps. (It’s an abuse of language because we always assume an embedding
A ⇢ B is a ⇤-homomorphism embedding.)

This theorem plays a big role in the next section when we see a characterization of nuclear C⇤-algebras in
terms of completely positive maps. For now, we just give an idea of the proof via the results it generalizes.

Theorem 9.30 (Krein). Let B be a unital C⇤
-algebra, A ⇢ B a unital C⇤

-subalgebra, and � : A ! C a

positive linear map. Then � extends to a positive map on B.

This intermediate result is [8, Theorem 6.2].

Proposition 9.31. Let B be a unital C⇤
-algebra, n � 1, A ⇢ B a unital C⇤

-subalgebra, and � : A ! Mn(C)
completely positive. Then � extends to a completely positive map B ! Mn(C).

From this to Arveson’s theorem, we take a completely positive map � : A ! B(H) and an increasing
net of finite rank projections Pi 2 B(H). Then each compression �i : A ! PiB(H)Pi ' MrankPi(C),
given by Pi�(·)Pi, is a completely positive map with completely positive extension. From here you take a
point-ultraweak cluster point of the �i’s (ask Brent and Rolando), and that’s your cp extension of �!

Exercise 9.32. Suppose C ⇢ B(H) is a unital C⇤-subalgebra of B(H) (meaning its unit is 1H) and E :
B(H) ! C is a conditional expectation (which we recall from Exercise 9.11 is completely positive by
Tomiyama’s theorem). Show that Arveson’s Extension theorem holds for C as well, i.e. for any unital
C⇤-algebras A ⇢ B and cp map � : A ! C, there exists a cp map �̃ : B ! C extending �, i.e. �̃|A = �.

Using Example 9.11, conclude that Arveson’s Extension theorem holds for all finite dimensional C⇤-
algebras.

Remark 9.33. If you’ve peeked at some of the reference texts, you’ll notice that many of the theorems from
this section are given for operator systems. What are those? You’ll learn more about them in Sam Kim’s
expository lecture next week, but for now, here’s an idea.

Notice that completely positive maps completely preserve the structure of positive elements in a C⇤-
algebra. So, there is a lot to be gained from considering self-adjoint unital subspaces of C⇤-algebras.

An operator system is a unital self-adjoint subspace of a C⇤-algebra. (Not necessarily closed.) Arveson’s
extension theorem is actually stated where we assume that A ⇢ B is not a C⇤-algebra but an operator
system inside B.
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10. Completely Positive Approximations

This section introduces what is historically known as the “completely positive approximation property,”
which, in the hindsight provided by a major theorem of Choi-E↵ros and also Kirchberg (which we give next
week), is now called nuclearity. In essence, a C⇤-algebra has the completely positive approximation property
when it can be well approximated by cpc maps that factor through finite dimensional C⇤-algebras. This is,
at its heart, a property of maps, which is where we start in section 10.1.

However, in the lecture, we will focus on nuclearity of C⇤-algebras (10.2) and hence will take the material
in Section 10.1 for granted. We will go through the discussion on K(`2) at the beginning of this section
in the context of the definition of nuclearity. We will prove Proposition 10.15 and Proposition 10.9 in the
separable setting. Arveson’s Extension theorem will feature prominently.

Though we will not be able to treat it in lecture, we highly recommend reading the argument that
commutative C⇤-algebras are nuclear (Proposition 10.10) and working out the hands-on example in Exercise
10.12.

Many of the C⇤-algebras we can get our hands on have some reasonable connection to finite-dimensional
C⇤-algebras. AF algebras in particular were built out of finite-dimensional subalgebras. More generally, they
can be approximated by their finite dimensional subalgebras in a way that can be generalized to a much
larger class of C⇤-algebras. To get a better feeling for what we mean, let us start with a motivating example.

We know (Example 6.5) that K(`2) is built as a union of finite-dimensional algebras as follows:

K(`2) =
[

n

PnK(`2)Pn

where Pn is the projection onto span{e1, . . . , en}. Since the projections (Pn)n form an approximate unit for
K(`2), we have for each T 2 K(`2),

kT � PnTPnk ! 0.

We saw in the previous section that the map T 7! PnTPn is a completely positive comtractive map. Compose
that with the ⇤-isomorphism PnK(`2)Pn ' Mn(C), and we have a cpc map  n : K(`2) ! Mn(C). Moreover,
when we compose that with the ⇤-homomorphism embedding �n : Mn ! PnK(`2)Pn ⇢ K(`2), we can write

kT � �n n(T )k ! 0.

This is called a completely positive approximation of K(`2), and the existence of such an approximation is
what it means (in modern terms) to be nuclear.

For the sake of simplicity, many results here are not stated in their full generality. If you find this section
interesting, we suggest [3, Chapter 2], which covers this material quite well, save a dearth of hands-on
examples.

10.1. Nuclear Maps. We start with the definition of a nuclear map between C⇤-algebras.

Definition 10.1. A cpc map ✓ : A ! B between C⇤-algebras is called nuclear if there exist cpc maps
 i : A ! Mk(i)(C) and �i : Mk(i)(C) ! B, for i 2 I, so that �i �  i ! ✓ in the point norm topology, i.e. for
each a 2 A,

lim
i2I

k�i( i(a))� ✓(a)k = 0.

Remark 10.2. There’s lots to say here. This idea is thoroughly researched and nuanced, and there are so
many variations on the above definition. We’ll keep these remarks brief.

• If A is separable, then it can be written as a countable union of finite subsets. Then we can choose
the net I in Definition 10.1 to be a sequence.

• The requirements placed on the maps  i and �i can vary. It turns out we could equivalently relax
the contractive requirement. On the other hand, we could equivalently keep the requirement that
they are cpc and demand moreover that they have certain (approximate) orthogonality preserving
properties (known as order zero). There’s a fair bit of research in this direction by Winter, Zacharias,
Kirchberg, Hirchberg, Brown, and Carrion to name a few. (FYI: Nate Brown will be one of our
expository speakers, and José Carrion will speak at our conference.)
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• The convergence in Definition 10.1 could have be given with respect the point-ultraweak (aka �-
weak) topology (in which case the map would be called weakly nuclear). This is the first step on the
bridge between nuclearity for C⇤-algebras and semidiscreetness/ hyperfiniteness for von Neumann
algebras (ask Brent and Rolando what those terms mean), but we are getting ahead of ourselves.

This is really a local property, as the following proposition shows.

Proposition 10.3. A cpc map ✓ : A ! B is nuclear i↵ for any ✏ > 0 and finite set F ⇢ A, there exists

n � 0 and cpc maps  : A ! Mn(C) and � : Mn(C) ! B such that

k�( (a))� ✓(a)k < ✏

for each a 2 F .

Proof. Suppose there exist cpc maps  i : A ! Mk(i)(C) and �i : Mk(i)(C) ! B for i 2 I so that �i� i ! ✓ in
the point norm topology. Then for any ✏ > 0 and F ⇢ A finite, we choose i 2 I so that k�i( i(a))�✓(a)k < ✏

for each a 2 F .
Now, we assume the localized version. As in Examples 5.3 and 5.8 in the Prerequisite materials, we form

a directed set
{(✏, F ) : ✏ > 0, F ⇢ A finite}.

For each (✏, F ), let �(✏,F ) be a cpc map so that k�(✏,F )( (✏,F )(a))� ✓(a)k < ✏ for each a 2 F . Then for each
a 2 A, we have the desired convergence. ⇤
Exercise 10.4. Show that a map ✓ : A ! B is nuclear if there exist finite dimensional C⇤-algebras Fi and
cpc maps  i : A ! Fi and �i : Fi ! B so that �i �  i converges pointwise in norm to ✓.
Hint: Recall that a finite dimensional C⇤-algebra has the form F = �m

j=1Mlj (C) ⇢ ML(C) where L =
P

lj ,
and use Example 9.11.

Exercise 10.5. Let A and B be C⇤-algebras and C ⇢ B a C⇤-subalgebra. Show that if ✓ : A ! C is a
nuclear map, then so is ✓ when viewed as a map from A to B. Suppose we have a map ⇢ : A ! C that is
nuclear as a map from A to B. What could prevent ⇢ from being a nuclear map as a map from A to C?

10.2. Completely Positive Approximation Property.

Definition 10.6. A C⇤-algebra is nuclear if the identity map idA : A ! A is nuclear, i.e. there exists cpc

maps A
 i�! Mk(i)(C)

�i�! A for i 2 I such that for each a 2 A,

ka� �i( i(a))k ! 0.

In the separable setting, the usual image one presents is something like the following approximately
commutative diagram.

A A A ...

Mk(0)(C) Mk(1)(C) Mk(2)(C) ...

id

 0

id

 1

id

 2�0 �1

Remark 10.7. Sometimes these C⇤-algebras are called amenable. Sometimes for mathematical reasons—
sometimes because the word “nuclear” in a grant application means one must fill out many many more
forms.

A C⇤-algebra satisfying Definition 10.6 is also said to satisfy the completely positive approximation property

(CPAP).

Example 10.8. It follows from Exercise 10.4 that finite dimensional C⇤-algebras are nuclear.

Proposition 10.9. Ideals of nuclear C⇤
-algebras are nuclear.

Proof. Suppose A is nuclear with completely positive approximation A
 i�! Mk(i)(C)

�i�! A for i 2 I. Let J/A
be an ideal and {e�}⇤ an approximate unit of J (with 0  e�  e�  1 when �  �). Let ◆ : J ! A denote
the inclusion of J into A (i.e. ◆(a) = a for all a 2 J). For each �, define ⇢� : A ! J by ⇢�(a) = e�ae�. Since
each e� is self-adjoint and contractive, the maps ⇢� are cpc by Exercise 9.9. Since the compositions of cpc
maps are cpc (Exercise 9.6), for each i,�, the maps  0

i,�
:=  i � ◆ : J ! Mk(i) and �

0

i,�
:= ⇢� ��i : Mk(i) ! J
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are cpc. (Yes, the � is a superflous index on  0

i
.) Moreover, {(i,�)}I⇥⇤ is a directed set with (i,�)  (j, �)

when i  j and �  �.
Let a 2 J and ✏ > 0, and choose (i0,�0) 2 I ⇥ � so that ka � �i �  ik < ✏/2 and ka � ⇢�(a)k < ✏/2 for

each i � i0 and � � �0. Then for each (i,�) � (i0,�0),

ka� �
0

i,�
�  0

i,�
k = ka� e�(�i �  i(a))e�k
 ka� e�ae�k+ ke�ae� � e�(�i �  i(a))e�k
 ka� e�ae�k+ ke�kka� �i �  i(a)kke�k
 ka� e�ae�k+ ka� �i �  i(a)k
< ✏.

⇤

In approximately commutative diagrams, the picture from the above proof looks like this.

J J

A A

Mk(i)(C)

idJ

◆

idA

 i

⇢�

�i

It’s not a proof, but it’s a good intuition to guide the proof.

Proposition 10.10. Abelian C⇤
-algebras are nuclear.

The proof uses what is known as a “partition of unity argument.” Generalizing the idea of a partition of
unity has proved very fruitful in certain areas of research in recent years, so we give this proof as an example.

We take for granted the fact from topology that, given any compact Hausdor↵ space X with open cover
U1, ..., Un, there exist continuous functions h1, ..., hn : X ! [0, 1] so that supphj ⇢ Uj and

P
j
hj = 1. (See

[Theorem 2.13, Rudin, Real and Complex Analysis].) This is a partition of unity (in fact a rather nice one).

Proof. Let A be an abelian C⇤-algebra. If A is not unital, then A / Ã, and by Propositon 10.9, it su�ces
to show that Ã is nuclear. So, we assume A is unital and moreover that A = C(X) for some compact
Hausdor↵ space X. Combining Proposition 10.3 and Exercise 10.4, we conclude that it su�ces to show that
for any F ⇢ C(X) finite and ✏ > 0, there exists a finite dimensional C⇤-algebra C (in our case, it will be

Cn = �n

1M1(C)) and cpc maps C(X)
 �! C

��! C(X) so that kf � � �  (f)k < ✏ for every f 2 F .
Let F ⇢ C(X) be a finite subset and ✏ > 0. For each x 2 X, let

Ux :=
\

f2F

f
�1(B✏/2(f(x))).

Then Ux ⇢ X is an open neighborhood of x such that for each y 2 Ux and f 2 F , we have |f(y)�f(x)| < ✏/2.
Since X is compact, we choose x1, ..., xn so that a finite subcover Ux1 , ..., Uxn covers X, and moreover for
each f 2 F and y 2 Ui,

|f(y)� f(xi)| < ✏.

Then we choose a partition of unity h1, ..., hn : X ! [0, 1] so that supphj ⇢ Uxj and
P

j
hj = 1.

Define  : C(X) ! Cn by  (g) = (g(x1), ..., g(xn)) = �n

j=1evxj , where evxj denotes the point evaluation
g 7! g(xj). Then  is a unital ⇤-homomorphism. Define � : Cn ! C(X) by

(�1, ...,�n) 7!
X

�ihi.

Then � is a positive map, which is moreover unital since �(1) =
P

hi = 1. Hence by Proposition 9.14, it is
ucp, and, in particular, cpc by Corollary 9.18.
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So, we estimate for f 2 F ,

kf � � �  (f)k = k
⇣X

hi

⌘
f �

X
f(xi)hik = k

X
fhi � f(xi)hik

= sup
y2X

|
X

(f(y)� f(xi))hi(y)|  sup
y2X

X
|f(y)� f(xi)|hi(y)


X

✏hi(y) = ✏.

⇤

Remark 10.11. There has been a significant push in the classification program for nuclear C⇤-algebras (that
satisfy a nice list of adjectives) to come up with a non-commutative version of this partition of unity argument.
With it comes certain non-commutative dimension theories (see for example Winter and Zacharias’s paper
on Nuclear Dimension). Some of this may be featured in José Carrion’s conference talk.

Exercise 10.12. Partitions of unity are nicer when you have a concrete example. For each n � 2, cover
[0, 1] by 2n � 1 open intervals of equal length. (What are they? Also, we could start with n = 1, but it’s too
simple to pick up on a pattern.) Call this cover Un. Define (sketch) a partition of unity for Un. (Hint: think
zig-zags.)

Now, construct a sequence of completely positive maps C([0, 1])
 n��! Ckn

�n��! C([0, 1]), (what is kn?) that
give a completely positive approximation of C([0, 1]).

Proposition 10.13. Suppose for each finite subset F ⇢ A and ✏ > 0, there exists a nuclear C⇤
-subalgebra

B ⇢ A such that for each a 2 F , there exists a b 2 B such that ka� bk < ✏. Then A is nuclear.

Proof. By Proposition 10.3, it su�ces to show that for any ✏ > 0 and finite set F ⇢ A, there exists n � 0
and cpc maps  : A ! Mn(C) and � : Mn(C) ! B such that

k�( (a))� ✓(a)k < ✏

for each a 2 F . Let {a1, ..., am} ⇢ A be a finite subset ✏ > 0 and let B ⇢ A nuclear so that for each aj ,
there exists a bj 2 B such that kaj � bjk < ✏/3. Let n � 0 and  B : B ! Mn(C) and �B : B ! Mn(C) be
cpc maps so that kbj � �B B(bj)k < ✏/3 for each 1  j  m.

But how do we get a map  defined on all of A? Easy, since Mn(C) = B(Cn), the cpc map  B : B !
Mn(C) extends to a cpc map  : A ! Mn(C) by Arveson’s Extension Theorem.9 Since �B : Mn(C) ! B ⇢ A,
we don’t need to change it, so we choose � = �B .

Now, all that’s left is to compute for each 1  j  m:

kaj � � (aj)k  kaj � bjk+ kbj � � (bj)k+ k� (bj)� � (aj)k
 kaj � bjk+ kbj � � (bj)k+ kbj � ajk
< ✏

⇤

Exercise 10.14. Using the above proposition, show that nuclearity is closed under taking direct limits.
Conclude that AF algebras are nuclear.

The above proof is perhaps a little abstract. Here’s a version that’s a little more tangible. First, we recall
once more the construction of the CAR algebra:

Let M2n(C) be the algebra of 2n ⇥ 2n matrices with maps �n,n+1 : M2n(C) ! M2n+1(C) defined by

x 7!
✓
x 0
0 x

◆
.

The inductive limit is denoted M21 =
S

n
M2n(C). Note that by construction, for each n � 0, the copys of

M2n in M21 is unital.

Proposition 10.15. The CAR algebra is nuclear.

9Acutally, it’s overkill here– one of the preliminary results leading up to Arveson’s would work in finite dimensions.
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Proof. For each n � 0, define �n : M2n(C) ! M21 be the inclusion where we identify M2n with its copy inside
M21 . The restriction of this map to its image is a ⇤-isomorphism, so we call its inverse ��1

n
: �n(M2n(C)) !

M2n(C). This is a unital ⇤-homomorphism from a C⇤-subalgebra of M21 to M2n(C) = B(C2n). So Arveson’s
Extension theorem says ��1

n
has a ucp extension  n : M21 ! M2n(C). So, we have ucp maps  n : M21 !

M2n(C) and �n : M2n(C) ! M21 . Moreover, for each a 2
S

n
M2n(C), there exists an N � 0 so that

a 2 M2n(C) for all n � N , which means �n �  n(a) = �n � ��1
n

(a) = a for all n � N .
Now, suppose a 2 M21 , and a0 2

S
n
M2n(C) so that ka�a0k < ✏/2. Choose N � 0 so that �n � n(a0) =

a0 for all n � N . Then for all n � N ,

ka� �n �  n(a)k  ka� a0k+ ka0 � �n �  n(a0)k+ k�n �  n(a0 � a)k < ✏

⇤
Exercise 10.16. Generalize the proof or Proposition 10.15 to get another proof that all separable AF
algebras are nuclear.
Hint: Consider a inductive (aka directed) system of finite dimensional C⇤-algebras (An, ◆mn) where ◆mn :
An ! Am is the inclusion map, and let A be the direct (inductive) limit of this system. Then use Exercise
9.32.

Chapter 2 in [3] does an excellent job of introducing the operations that do and do not preserve nuclearity.
Since we do not wish to re-write their book. We will just collect them here. These range from easy exercises
to deep theorems.

(1) Nuclearity passes to direct limits and direct sums (
L

i
Ai) (but not direct products

Q
i
Ai).

(2) Nuclearity passes to quotients.
There are essentially two proofs for this. The first is a consequence of Connes’ Fields Medal work
involving showing hyperfinite , injective– ask Brent and Rolando. Otherwise, it follows from the
fact that exactness (defined soon) passes to quotients. The proof of this (due to Kirchberg) is one
of the most di�cult proofs in C⇤-algebras, resting some of the deepest and most di�cult theorems
in von Neumann algebra theory. – See [3, Chapter 9] for an (not self-contained) outline.

(3) Nuclearity does not necessarily pass to subalgebras.
The easiest examples come from crossed products, which we’ll see next week. (See [3, Remark 4.4.4].)
For a more sophisticated appeal, we have Kirchberg’s O2 embeddability theorem, which implies that
the non-nuclear C⇤-algebra C⇤

r
(F2) embeds into the nuclear C⇤-algebra O2. (We will see next week

why C⇤

r
(F2) is not nuclear. We take for granted that the Cuntz-Pimsner algebras are nuclear.)

(4) Nuclearity passes to ideals (Proposition 10.9) (even hereditary subalgebras) and C⇤-subalgebras to
which there exists a conditional expectation.

(5) Nuclearity passes to extensions, i.e. if 0 ! J ! A ! B ! 0 is short exact and both J and B are
nuclear, then so is A. (This one is easier with next week’s characterization.)

We wrap up this section with a slight weakening of nuclearity that is still a very powerful property.
As we saw in Exercise 10.5, the range of a cpc map has a lot of bearing on whether or not it is nuclear.

It may be that a C⇤-algebra fails to be nuclear but still has a faithful nuclear representation. These are still
a nice class of C⇤-algebras.

Definition 10.17. A C⇤-algebra A is exact if there exists a faithful nuclear representation ⇡ : A ! B(H).

Every nuclear C⇤-algebra is exact– moreover for nuclear C⇤-algebras, the map ⇡ : A ! ⇡(A) is nuclear.
A non-nuclear example is C⇤(F2) (due to Wasserman).

Exercise 10.18. Show that exactness does pass to C⇤-subalgebras. What does that tell you about every
C⇤-subalgebra of a nuclear C⇤-algebra?

The name “exact” is hardly justified here. We will see it again later in the tensor product section, where
it will make more sense.
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