- 1. Show that $v \in B(\mathcal{H})$ is a partial isometry if and only if v^*v is a projection. [Hint: expand $||(v - vv^*v)\xi||^2$ for $\xi \in \mathcal{H}$.]
- **2**. For $x \in B(\mathcal{H})$ with $x = x^*$, show that

$$\sup_{\|\xi\|=1} |\langle x\xi,\xi\rangle| = \|x\|.$$

[**Hint:** show Re $\langle x\xi,\eta\rangle = \frac{1}{2} \langle x(\xi+\eta),\xi+\eta\rangle + \frac{1}{2} \langle x(\xi-\eta),\xi-\eta\rangle$ for all $\xi,\eta\in\mathcal{H}$.]

3. For a Hilbert space \mathcal{H} , prove the inclusions

$$FR(\mathcal{H}) \subset L^1(B(\mathcal{H})) \subset HS(\mathcal{H}) \subset K(\mathcal{H}).$$

[Hint: approximate by finite-rank operators in the appropriate norm.]

- 4. Show that $v \in B(\mathcal{H})$ is a partial isometry if and only if there exists a closed subspace $\mathcal{K} \subset \mathcal{H}$ such that $v|_{\mathcal{K}^{\perp}} \equiv 0$.
- 5. Let $x \in B(\mathcal{H})$. We say x is bounded below if there exists $\epsilon > 0$ such that $||x\xi|| \ge \epsilon ||\xi||$ for all $\xi \in \mathcal{H}$. Determine the implications between the following properties for $x \in B(\mathcal{H})$:
 - (i) x is injective (i.e. $ker(x) = \{0\}$)
 - (ii) x is left-invertible (i.e. $\exists y \in B(\mathcal{H})$ with yx = 1)
 - (iii) x is bounded below.
- **6.** Let \mathcal{H} be a Hilbert space and $1 \leq n < \infty$. We denote $\mathcal{H}^n = \bigoplus_{j=1}^n \mathcal{H}$. For $x_{i,j} \in B(\mathcal{H})$ for $1 \leq i, j \leq n$, define $[x_{i,j}] : \mathcal{H}^n \to \mathcal{H}^n$ by

$$[x_{i,j}]\begin{pmatrix} \xi_1\\ \vdots\\ \xi_n \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^n x_{1,j}\xi_j\\ \vdots\\ \sum_{j=1}^n x_{n,j}\xi_j \end{pmatrix}.$$

Check that this gives an operator in $B(\mathcal{H}^n)$ (in fact $||[x_{i,j}]|| \leq (\sum ||x_{i,j}||)^{1/2}$). We denote by $M_n(B(\mathcal{H}))$ the operators in $B(\mathcal{H}^n)$ that can be written as $[x_{i,j}]$ for some $x_{i,j} \in B(\mathcal{H})$. Show $M_n(B(\mathcal{H})) = B(\mathcal{H}^n)$. [**Hint:** How would you do this for $\mathcal{H} = \mathbb{C}^m$?]

- 7. Here's an intuition building exercise to think about for Wednesday:
 - (a) Show that all maximal ideals in C([0,1]) are of the form $\{f \in C([0,1]) : f(t) = 0\}$ for some $t \in [0,1]$.
 - (b) For each $t \in [0,1]$, define the map $ev_t : C([0,1]) \to \mathbb{C}$ by $ev_t(f) = f(t)$. Show that $C([0,1]) = \{ev_t : t \in [0,1]\}.$
 - (c) Recall that for $A = C_0((0, 1])$, its unitization is $\tilde{A} := C([0, 1])$. That means we can identify $C_0((0, 1])$ with a maximal ideal inside C([0, 1]). To which character $\phi \in \hat{A}$ does this ideal correspond? Show that this character agrees with the functional $\phi_0 : \tilde{A} \to \mathbb{C}$ given by $\phi(f + \lambda 1) = \lambda$ for all

Show that this character agrees with the functional $\phi_0 : \hat{A} \to \mathbb{C}$ given by $\phi(f + \lambda 1) = \lambda$ for all $f \in A$.