Bi-free Infinite Divisibility

James Mingo (Queen's University at Kingston)

joint work with Jerry Gu (Queen's) and Hao-Wei Huang (Kaohsiung) (on the arXiv)

Free Probability and the Large N Limit, V Berkeley, March 22, 2016

Kaohsiung Harbour



classical infinite divisibility (de Finetti, Kolmogorov, Lévy, Hinčin, 1928-1937^(*))

- ► *X* real random variable,
- $\varphi(t) = E(e^{itX})$ characteristic function
- ► X is infinitely divisible if for all n there exist X_1, \ldots, X_n independent and identically distributed such that

$$X \stackrel{\mathcal{D}}{\sim} X_1 + \cdots + X_n$$

► *X* is infinitely divisible $\Leftrightarrow \exists \alpha \in \mathbb{R}$ and σ pos. measure s.t.

$$\log(\varphi(t)) = \alpha t + \int \left(e^{itx} - 1 - \frac{itx}{1+x^2}\right) \frac{1+x^2}{x^2} d\sigma(t)$$

such an *X* is 'manifestly' infinite divisible

(*) according to Steutel & van Harn, 2004

free version, Bercovici-Voiculescu (1993)

Compactly supported case

- ► $R(z) = \kappa_1 + \kappa_2 z + \kappa_3 z^2 + \cdots$ is the R-transform of a compactly supported measure on \mathbb{R}
- ► *X* is freely infinitely divisible $\Leftrightarrow \exists$ and σ pos. measure s.t.

$$R(z) = \kappa_1 + \int \frac{z}{1 - tz} \, d\sigma(t)$$

- \Leftrightarrow *R* can be extended to \mathbb{C}^+ and maps \mathbb{C}^+ to \mathbb{C}^+
- ⇔ other equivalences . . .

such an *X* is 'manifestly' infinite divisible

Triangular Arrays (Nica-Speicher, 2006)

- ▶ suppose that for each N, $a_{N,1}, \ldots, a_{N,N} \in (A_N, \varphi_N)$ free and identically dist.
- $a_{N,1} + \cdots + a_{N,N} \xrightarrow{\text{dist}} b \in (\mathcal{A}, \varphi)$
- $\Leftrightarrow \lim_{N} N \varphi_{N}(a_{N,1}^{n}) \text{ exists} \qquad (\text{and} = \kappa_{n}(b, \ldots, b) \text{ if limit exists})$

(use moment-cumulant formula and find leading order terms)

this condition implies

• $\{\kappa_n\}_n$ (*cumulants of b*) are conditionally positive, which means

$$\sum_{m,n\geqslant 1} \alpha_m \overline{\alpha_n} \kappa_{m+n} = \lim_N N \varphi_N \Big(\Big(\sum_m \alpha_m a^m \Big) \Big(\sum_n \alpha_n a^n \Big)^* \Big) \geqslant 0$$

▶ which implies that \exists a finite pos. measure σ s.t.

$$\kappa_{n+2} = \int t^n \, d\sigma(t)$$

conditionally positive sequences

► if the cumulants of *b* satisfy

$$\kappa_{n+2} = \int t^n \, d\sigma(t)$$

▶ then the *R*-transform of *b* can be written

$$R(z) = \sum_{n \geqslant 0} \kappa_{n+1} z^n = \kappa_1 + z \sum_{n \geqslant 0} \kappa_{n+2} z^n = \kappa_1 + \int \sum_{n \geqslant 0} (tz)^n d\sigma(t)$$
$$= \kappa_1 + \int \frac{z}{1 - tz} d\sigma(t)$$

▶ also such a $\{\kappa_n\}_n$ produces an inner product on $\mathbb{C}_0[X]$ = poly. variable X without constant term, let \mathcal{H} be the corresponding Hilbert space and $\mathcal{F}(\mathcal{H})$ the full Fock space over \mathcal{H}

Fock space

- ► H a Hilbert space,
- $\xi \in \mathcal{H}$, $\ell(\xi)$ = left creation operator and
- $\ell(\xi)^*$ = left annihilation operator
- ► $T \in B(\mathcal{H})$, $\Lambda(T)\Omega = 0$, $\Lambda(T)(\xi_1 \otimes \cdots \otimes \xi_n) = T(\xi_1) \otimes \cdots \otimes \xi_n$
- for $Y_1 = \ell(\xi)$, $Y_2 = \ell(\eta)^*$, $Y_3 = \Lambda(T_*)$, $Y_4 = \alpha I$ then the only non-vanishing cumulant of $\kappa_n(Y_{i_1}, \ldots, Y_{i_n})$ is $\kappa_n(\ell(\eta)^*, \Lambda(T_1), \ldots, \Lambda(T_{n-2}), \ell(\xi)) = \langle T_1 \cdots T_{n-1} \xi, \eta \rangle$ (use limit theorem from 2 pages back)

circle closed

▶ if $\{t_n\}_n$ is conditionally positive and \mathcal{H} the Hilbert space obtained from $\mathbf{C}_0[X]$ we let X be the operator of left multiplication on \mathcal{H} (bounded because of growth assumptions on $\{t_n\}_n$), also we let

$$b = \ell(X) + \ell(X)^* + \Lambda(X) + t_1 \in B(\mathcal{F}(\mathcal{H}))$$

then $\kappa_n(b,...,b) = t_n$ so $\{t_n\}_n$ is the cumulant sequence of a bounded self-adjoint operator

▶ operators of the form $\ell(X) + \ell(X)^* + \Lambda(X) + t_1$ are 'manifestly' freely infinitely divisible^(*):

$$\ell\left(\frac{X\oplus 0\oplus \cdots 0}{\sqrt{N}}\right) + \ell\left(\frac{X\oplus 0\oplus \cdots 0}{\sqrt{N}}\right)^* + \Lambda(X\oplus 0\oplus \cdots 0) + \frac{t_1}{N}$$

:

$$\ell\Big(\frac{0\oplus 0\oplus \cdots X}{\sqrt{N}}\Big) + \ell\Big(\frac{0\oplus 0\oplus \cdots X}{\sqrt{N}}\Big)^* + \Lambda(0\oplus 0\oplus \cdots X) + \frac{t_1}{N}$$

 $^{(*)}$ because Hilbert space is infinitely divisible

bi-freeness (slightly simplified)

- $X_i = \mathbf{C}\xi_i \oplus \mathring{X}_i$ vector spaces with distinguished subspace of co-dimension 1
- $(\mathfrak{X}, \mathring{\mathfrak{X}}, \xi) = *_i(\mathfrak{X}_i, \mathring{\mathfrak{X}}_i, \xi_i) = \mathbf{C}\xi \oplus \sum_{n \geqslant 1} \sum_{i_1 \neq \cdots \neq i_n} \mathring{\mathfrak{X}}_{i_1} \otimes \cdots \otimes \mathring{\mathfrak{X}}_{i_n}$
- ▶ $l_r, r_i : \mathcal{L}(\mathcal{X}_i) \longrightarrow \mathcal{L}(\mathcal{X})$ "left" and "right" actions
- ▶ $(A_i, B_i) \subset \mathcal{L}(X_i)$, a pair of faces, act on X via l_i and r_i
- $\langle \cdot \xi, \xi \rangle$ gives a state on the pairs $(l_i(A_i), r_i(B_i))$
- ▶ the pairs of faces (algebras) are *bi-free* by construction
- ► ∃? a description of bi-freeness without explicit use of free products, a challenge no cumulantologist can resist

bi-free cumulants (Mastnak-Nica)

- given $\chi : [n] \to \{l, r\} \text{ let } \chi^{-1}(l) = \{i_1 < \dots < i_p\} \text{ and } \chi^{-1}(r) = \{j_1 < \dots < j_{n-p}\}$
- ► usual non-crossing partitions are with respect to the order (1,2,3,...,n)
- ► $NC_{\chi}(n)$ are non-crossing with respect to $(i_1, \ldots, i_p, j_{n-p}, \ldots, j_i)$

(moment-cumulant formula)

► bi-freeness ⇔ vanishing of mixed bi-free cumulants (*Charlesworth, Nelson & Skoufranis*)

bi-variate case: [a, b] = 0

- suppose a and b are commuting self-adjoint operators in a C*-algebra with a state φ
- get $\mu \in \mathcal{M}(\mathbb{R}^2)$ a compactly supported probability measure
- ▶ given χ : [n] → $\{l, r\}$ let c_1, \ldots, c_n be defined by $c_i = a$ if $\chi_i = l$ and $c_i = b$ if $\chi_i = r$
- $\kappa_n^{\chi}(c_1,\ldots,c_n)$ only depends on $\#(\chi^{-1}(l))$ and $\#(\chi^{-1}(r))$
- ► $\kappa_{m,n}(a,b)$ means m occurrences of a and n occurrences of b

$$R_{a,b}(z,w) = \sum_{\substack{m,n \geqslant 0 \\ m+n \geqslant 1}} \kappa_{m,n} z^m w^n, G(z,w) = \varphi((z-a)^{-1}(w-b)^{-1})$$

$$R_{a,b}(z,w) = zR_a(z) + wR_b(w) + 1 - \frac{zw}{G(K_a(z), K_b(w))}$$

▶ $\mu_1 \boxplus \boxplus \mu_2$ is the distribution of the pair $(a_1 + a_2, b_1 + b_2)$ where (a_1, b_1) and (a_2, b_2) are bi-free

bi-free infinite divisibility

• if for every N we can find μ_N such that $\mu = \mu_N^{\text{BBB}N}$ then μ is bi-freely infinitely divisible

THM: T.F.A.E.

- 1. μ bi-freely infinitely divisible
- 2. $\{\kappa_{m,n}\}_{m,n}$ are conditionally positive and conditionally bounded 2-sequences (to be explained)
- 3. $R_{a,b}$ has the integral representation

$$R_{a,b}(z,w) = zR_1(z) + wR_2(w) + \int \frac{z}{1-zs} \frac{w}{1-wt} d\rho(s,t)$$

with $R_1(z) = \kappa_{1,0} + \int \frac{z}{1-zs} d\rho_1(s,t)$, $R_2(w) = \kappa_{0,1} + \int \frac{w}{1-wt} d\rho_2(s,t)$ ρ_1 and ρ_2 compactly supported, ρ a signed Borel measure with compact support and

$$|\rho(\{0,0\})|^2\leqslant \rho_1(\{0,0\})\rho_2(\{0,0\}), td\rho_1(s,t)=sd\rho(s,t), sd\rho_2(s,t)=td\rho(s,t)$$

conditionally positive and cond. bounded

- ► $C_0[x, y]$ polynomials in commuting variables without constant term
- $\langle x^{m_1}y^{n_1}, x^{m_2}y^{n_2}\rangle = \kappa_{m_1+m_2,n_1+n_2}$ is a positive semi-def. inner product (*conditionally positive*)
- ▶ $\exists L > 0 \text{ s.t. } |\langle x^m y^n p, p \rangle| \leq L^{m+n} \langle p, p \rangle \text{ (conditionally bounded)}$
- ▶ inner product on $C_0[x, y]$ gives Hilbert space \mathcal{H} and two multiplication operators T_1 (by x) and T_2 (by y) with spectral measures E_1 and E_2 (note $T_1(y) = T_2(x)$)

- $\theta_{m,n}^{(1)} = \kappa_{m+2,n}$, $\theta_{m,n}^{(2)} = \kappa_{m,n+2}$ give positive finite compactly supported measures ρ_1 and ρ_2
- ► $\int (s^m t^n) t d\rho_1(s, t) = \kappa_{m+2, n+1} = \int (s^m t^n) s d\rho(s, t)$ (by (*))

bi-partite infinitely divisible operators

- ▶ \mathcal{H} a Hilbert space, $\mathcal{F}(\mathcal{H})$ the full Fock space over \mathcal{H}
- $f,g \in \mathcal{H}, T_1 = T_1^*, T_2 = T_2^* \in B(\mathcal{H})$
- $a = \ell(f) + \ell(f)^* + \Lambda_l(T_1) + \lambda_1 \in B(\mathcal{F}(\mathcal{H}))$
- $b = r(g) + r(g)^* + \Lambda_r(T_2) + \lambda_2 \in B(\mathcal{F}(\mathcal{H}))$
- a, b commute iff $[T_1, T_2] = 0$, $T_1(g) = T_2(f)$, $\langle f, g \rangle \in \mathbb{R}$

$$a_{N,1} = \ell \left(\frac{f \oplus 0 \oplus \cdots \oplus 0}{\sqrt{N}} \right) + \ell \left(\frac{f \oplus 0 \oplus \cdots \oplus 0}{\sqrt{N}} \right)^* + \Lambda_l(T_1 \oplus 0 \oplus \cdots \oplus 0) + \frac{\lambda_1}{N}$$

$$b_{N,1} = r \left(\frac{g \oplus 0 \oplus \cdots \oplus 0}{\sqrt{N}} \right) + r \left(\frac{g \oplus 0 \oplus \cdots \oplus 0}{\sqrt{N}} \right)^* + \Lambda_r (T_2 \oplus 0 \oplus \cdots \oplus 0) + \frac{\lambda_2}{N}$$

- ► (*a*, *b*) bi-freely infinite divisible
- $\qquad \qquad \mathbf{\kappa}_{m,n}(a,b) = \langle T_1^{m-1}f, T_2^{n-1}g \rangle, \ \mathbf{\kappa}_{m,0} = \langle T_1^{m-2}f, f \rangle, \ \mathbf{\kappa}_{1,0} = \lambda_1$

example: bi-free Poisson

- $(\alpha, \beta) \in \mathbb{R}^2, \lambda > 0$
- $\blacktriangleright \mu_N = \left(1 \frac{\lambda}{N}\right) \delta_{(0,0)} + \frac{\lambda}{N} \delta_{(\alpha,\beta)}$
- $ightharpoonup \mu = \lim_N \mu_N^{\text{HH}N}$ is bi-freely infinite divisible
- ► has bi-free cumulants $\kappa_{m,n} = \lambda \alpha^m \beta^n$ (use limit theorem)

and
$$R(z, w) = \sum_{\substack{m,n \geqslant 0 \\ m+n \geqslant 1}} \kappa_{m,n} z^m w_n = \sum_{\substack{m,n \geqslant 0 \\ m+n \geqslant 1}} \lambda(\alpha z)^m (\beta w)^n$$

$$= \lambda z \left(\alpha + \frac{\alpha^2 z}{1 - \alpha z}\right) + \lambda w \left(\beta + \frac{\beta^2 w}{1 - \beta w}\right) + \frac{\lambda \alpha z \beta w}{(1 - \alpha z)(1 - \beta w)}$$

$$\rho_1(s, t) = \lambda s^2 \delta_{(\alpha, \beta)}, \rho_2(s, t) = \lambda t^2 \delta_{(\alpha, \beta)}, \rho(s, t) = \lambda s t \delta_{(\alpha, \beta)}$$
(\$\rho\$ positive when \$\alpha \beta > 0\$)