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Free and Boolean de Finetti theorems

Free and Boolean de Finetti theorems:
© Free de Finetti theorem for A; (C. KOSTLER AND R. SPEICHER,
2009)

@ Free de Finetti theorems for free quantum groups (T. BANICA,
S. CURRAN AND R. SPEICHER, 2012)

© Boolean de Finetti theorem for Bs (W.L1u, 2015)
Our result: Find general Boolean de Finetti theorem for a Boolean
analogue of free quantum groups.

Our strategy: Find a nice class of interval partitions and use BCS's
framework.

Liu himself proved Boolean de Finetti theorems for quantum semigroups
by a different way.
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De Finetti theorems for free quantum groups

(M, ) : v.N.alg and faithful normal state
Xn € Ms5 (neN)

] Invariant under \ iff \ (Xn) nen is ‘

Sy free i.i.d. over tail (*)

O, (*) & centered semicircular
B (*) & semicircular

Hp (*) & even

] Symmetries \ Categories of partitions \ Distributions ‘

Sy NC free i.i.d. over tail (*)

(M NG, (*) & centered semicircular
By NCp (*) & semicircular

H, NCp (*) & even

Tannaka-Klein duality : A sequence of free quantum groups

1:1
(Ax(n))nen <= A category of noncrossing partitions NCy

Cumulants-Moments formula 3/21



Review on conditional Boolean independence

n:N <= M : a normal embedding of v.N. algebras w/ n(1y) # 1y,
E:M — N : a normal conditional expecation w/ E on = idy.

(xj € Ms.5.)jey is Boolean independent w.r.t. E if
E[f(x;) 2205 )i (xi,)] = E[A (X)) ]E[f20x;)]E[f (x5,) ],
whenever ji # jo # -+ # ji and
Ay, fe N(X)°.

(i.e. N — polynomials without constant terms)
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Liu’s Boolean de Finetti theorem

Liu defined a quantum semigroup Bs(n) as the universal unital C*-algebra
generated by projections P, U; j(i,j =1,...,n) and relations such that

ZE: UjP = F’,:E: UjP =P,
j=1 i=1
Ui,jUyj =0, if b # i, Ui, Ui, =0, if j1#jo.

Theorem (Liu, 2015)

(M, ) : a v.N.algebra & a nondegenerate normal state.
Xj € Ms.a, j €N with M = W* (ev(ZS,)) where

P ={f e C((Xj)jen) | £(0) = 0}

TFAE.

@ The joint distribution of (x;)jen is invariant under the coaction of Bs.

@ There exists a normal conditional exveectat/on
Etall M — Mtall = 1eVX(°@>n)
and (X;)jen is Boolean i.i.d. over tail.

v
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Aim : Fill the missing piece in Boolean de Finetti theorem.

Our strategy : Find a nice class of interval partitions and use BCS's
framework.

Difficulity: Bad-behavors of non-unital embeddings and non-faithful states
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Review on category of partitions

P(k,I): the set of all partitions of the disjoint union [k] u [/], where
(k] ={1,2,...,k} for keN.
Such a partition will be pictured as

1...k
p=y P
1...1
where P is a diagram joining the elements in the same block of the
partition. Categorical operations:

p®q = {PQ}:Horizontal concatenation
pg = {7%} — {closed blocks} : Vertical concatenation
p* = {P7}:Upside-down turning
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category of interval partitions

NC := (NC(k, 1))k, : the family of all noncrossing partitions
NC = {NC(k, 1)}k, NCc(k,I) € NC(k,!) is a category of noncrossing
partitions if

@ It is stable by categorical operations
@ ne NC,(0,2)
@ | NC.(1,1)
I(k) :={m e P(k) | interval partition}, | := (I(k) x1(I))k,

Definition (Category of interval partitions)

e = {l(k, 1) }i1, Ic(k, 1) € I(k,I) is a category of interval partitions if
© It is stable by categorical operations
Q@ nel(0,2)
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Category of interval partitions
IX(k7I)=IX(kaO)XIX(OaI) \

Lo (k) := 1,(0, k)

The followings are categories of interval partitions.
Q L =({mel(k)|block size 2})
Q Iy = ({mel(k)| block size <2})x
© /= ({mel(k) | block size even})y
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To find the class of interval partitions suited to de Finetti, review on NC,.
NC, NG, NCp, and NC, are block-stable,
i.e. forany me NC; and V e,

< | e NG (V).

—_—

Vi

These four categories of noncrossing partitions are also closed under
taking an interval in NC, i.e.

p,0 € NCy(k),me NC(k),p<m<o=—meNC(k).

This condtition appears in Mobius inversions:
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Review on Mobius function

Let (Q,<) be a finite poset. The Mobius function
i {(m,0) € Q2| m <o} >C
is defined by the following relations: for any 7,0 € Q with 7 < o,

E: /LQ(W’p)::é(an)a
pe@

m<p<o

> nglp.o) =d(m,0),

where if 7 =0 then d(m,0) =1, otherwise, §(m,0) =0.

Closed under taking an interval

If Rc Q is closed under taking an interval in Q,

pr(m, o) :/LQ(W7U)'
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Blockwise condition

We define a suitable class of interval partitions.

Definition (Blockwise condition)

Let D be a category of interval partition. D is said to be blockwise if
@ D is block-stable,
@ D is closed under taking an interval in /, i.e.,

p,0€D(k),mel(k),p<m<o=meD(k).

Key condition

If D is blockwise,
MD(k)(W,U) = Nl(k)(ﬂ'ao')'
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By composition with the pair partition m & the unit partition
it holds that

- | e NG(0, k) = - | e NG(0, k- 2).

S

k k-2

l: a category of interval partitions
Becasue the unit partition | ¢ /,(1,1), in general,

| e (0, k) =~ | e (0,k - 2).

—_—

k k-2
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Pairing in blockwise category of interval partition

Lemma

D : a blockwise category of interval partitions

Ifk:even & k>2, or k:odd& k> min{k |1y e D(k)}=:2np-1, we have

- | eD(0, k) = - | eD(0,k-2).

—
k k-2

Consider the case k is odd, k # 2np — 1. We have the following inequalities
among partitions.

U B o B B OO O O R

v

| —
1,1 ol | P 1,
R

By block-stable property, 1, 2® € D.
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Classification

D: blockwise category of interval partitions
Lp:={keN|1,eD(k)}

Ip:=sup{leN|2/elp}.

{sup{m eN|2m-1elp}, if Lp contains some odd numbers,
mp =

00, otherwise.

{min{m eN|2m-1elp}, if Lp contains some odd numbers,
np =

00, otherwise.

By lemma, we have
Q@ mp-np<lpif np# oo.
Q@ Ip<mp+np-1.
And D is determined by /p, mpand np.
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A Boolean analogue of free quantum groups

D : a blockwise category of interval partitions.
C(GP) := #-algebra generated by p, u;j(1<i,j < n) with

ok 2k
p=p*"=p°,u;=uj

and the following relations:

for any k with 1, := e D(k),

~—

k

& P 1= =k,
TS

=il 0, otherwise,

d P, i :"':ik7
D Unj Ui P =

= 0, otherwise.

v
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Notations on C(GP)

Set a *-hom A: C(GP) - C(GP)® C(GP) by

n
A(UU) = Z Uiy ® U,
k=1

A(p) =p®p.

A is a coproduct: (id® A)A = (A ®id)A.

Set 2 := the *-algebra of all nonunital polynomials in noncommutative
countably infinite many variables (X;)jen.

We can define a linear map W,: 222 — 22 ® C(GP) as the extension of

w”(le“'XJ'k) = Z Xil"'Xik ® PUiyj Uiy jy Py Jje [”]k
ie[n]k

WV, is a coaction, that is,
(Vp,®id) oW, =(id® A) o V,,.
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Fixed point algebra

Denote by 22V the fixed point algebra:
PV = {fe P2 |f=Ff®p).
We have
PV = Span{X, € 22 | we D(k), ke N},
where X := Zje[n]k Xj,---Xj,. By this representation of PV there is a
functional h or?gtfgsubspace SD satisfying

(id® h)A = (h®id)A = h.

Define a linear map E,: 22 — Z2V» by E, = (id® h) o V..
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Invariance

(M, ) : a v.N.algebra & a nondegenerate normal state.

Definition

x;i € Ms 5)ien is said to have GP-invariant joint distribution if
J ! J

(poevy®id)oW,=poevy®p.
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Main Theorem

Theorem

(M, ) : av.N.algebra & a nondegenerate normal state.
xj € Ms.5, jeN with M = W*(ev (22,))
For any blockwise category of interval partitions D, TFAE.
Q The joint distribution of (x;)jey is GP-invariant.
@ (xj)jen is Boolean i.i.d. over tail,
& for any k with 1, € D(k), KZ*'[xiby, x1ba, ..., x1] =0
, bl,“' 9 bk € Mtail @] {1}

In particular,
] Symmetries \ Categories of partitions \ Distributions ‘
G! / Boolean i.i.d. over tail (*)
GPh I (*) & centered Bernoulli
G Ip (*) & Bernoulli
G In (*) & even
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Assume the joint distribution of (x;)jen is GP-invariant

Since GP-invariance implies Bs-invariance, there exist a normal c.e
Etail : M — Mysjs given by Epajf = egair(-) ezail

ISTS for any by, ..., b € My u {1}, je[n]¥, and k e N,

Eai
Eiai[Xj bixj, bo--be_1xj ] = Y. K @ [xiby, x1bo, ..., x1].
oeD(k)
o<kerj

Main strategy of the proof:

@ Examine E,,j; can be approximated by E, := (id ® h)V,
@ Use Weingarten estimate

If D is blockwise then p k) = f1j(k)- By using this,

1

h(puiljl"'uikjkp) = Z |7r‘ [Hl(k)(ﬂ' U) + O( )] (as n— OO)
W,UED(/{)

m<keri

o<kerj

© Apply moments-cumulants formula.
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Difficulty 1 : Coaction is non-multiplicative

Since the coaction W, is non-multiplicative :

Vi (F(X)g(X)) # Va(f(X))An(g(X)),
there exist b1, . by € 2V with

W,,[le b1 bk 1 # Z i blxiz b2"‘bk71Xik ® PUjyjy - - Uiy P,

So it is difficult to approximate
Etaﬂl:)glblmbkflek] by En[)<j1b1)<jzb2"'bk71)<jk:|.
idea: By block-stable condition, and since E,,j satisfies E;air = erair(+) €zair,
the following holds; Assume for any j € [n]¥ and k € N,
Etail[)(jl“‘){]'k] = Z KUEtail [Xl, - ,Xl].
oeD(k)
o<kerj

Then for any by, ..., by € M U {1}, je [n]¥, and ke N,

Etaﬂ[le blszb2"'bk—lxjk] = Z KUEm” [lel,lez, c ,Xl].
oeD(k)

o<kerj 227



Difficulty 2

Difficulty 2 : As the state ¢ is non-faithful, we cannot define E, on M
and cannot approximate E;,; by E,.

idea:

en := the orthogonal projection onto ev,(ZVY)Q,. If we prove

L2'|imn eVX(En[Xhij"'XJ'kDQSD = Etai/[XJ'lij.“Xjk]Qﬂo (Je [n]k’ keN)
Then s-lim e, = e4,; and hence

S- “Ln eV (En[ X, Xy Xj 1) en = Evair[Xj, Xjp+-x5, 1(j € [n]¥, k e N)
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Difficulties and key ideas

Difficultyl : As the state is non-faithful, we cannot define E, on M and
cannot approximate E;,y by E,.
Idea : ISTS

n"_)"go Etai/[lesz"'xjk] =17 - J'_)To CVx © En[Xhij"'Xjk]'
Difficulty2 : Coactions are non-multiplicative. Hence it is difficult to
estimate Eqai[Xj, biXj, bo--be_1xj, ] (bo, - .., bk € Miai U {1}).
Idea : ISTS
Etail[Xj1"'Xjk] = Z KUEtail[Xla"')Xl]‘

oeD(k)
o<kerj
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Main Theorem

Theorem

(M, ) : av.N.algebra & a nondegenerate normal state.
xj € Ms.5, jeN with M = W*(ev (22,))
For any blockwise category of interval partitions D, TFAE.
Q The joint distribution of (x;)jey is GP-invariant.
@ (xj)jen is Boolean i.i.d. over tail,
& for any k with 1, € D(k), KZ*'[xiby, x1ba, ..., x1] =0
, bl,“' 9 bk € Mtail @] {1}

In particular,
] Symmetries \ Categories of partitions \ Distributions ‘
G! / Boolean i.i.d. over tail (*)
GPh I (*) & centered Bernoulli
G Ip (*) & Bernoulli
G In (*) & even
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C*-closure

Free case: By Tannaka-Klein duality for compact quantum groups,
Free quantum groups Ay < NC.

Ax(n) = Copiv(u = (uj) | utu ='uu = 1) /relations implied by NC,
C(Xj|je N)"’ﬁx =Span{X; € Z2 | m e NC,}.
Boolean case: C*

univ
ill-defined.

Liu: Bo(n) := C:niv(pv u= (UIJ) | p=p*= P2, utup =fuu = p|lul[ <1)
It is not clear

(p, u = (ujj) | relations implied by D) can be

A Span{X; € 22 | 7€ h}.

Hence h and E, can be changed, it is not obvious that our strategy works
well for B, (n).
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Aim : Prove general Boolean de Finetti theorem.
Our strategy : Find a nice class of interval partitions and use BCS's
framework.
Key condition: D is blockwise i.e. block-stable and closed under taking
an interval in /. Second condition implies

1o(ky (T, 0) = pyy (m,0),m, 0 € D(k).
Difficultyl : As the state ¢ is non-faithful, it is difficult to define E, on
M and approximate E;sy by E,.
Idea : ISTS

Ecait[ %X ] = L? = lim evie o En[ X}, XX, ].

Difficulty2 : Coactions are non-multiplicative. Hence it is difficult to
estimate Eqai[Xj, b1Xj, bo---bi_1xj, ] (bo, - .., b € Miai U {1}).
Idea : By block-stable condition, ISTS

Eal
Eail[Xj % )= Y. Ko#[x1,...,x].
UED(k)
o<kerj
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