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Cartesian product

Figure: The Cartesian product of two graphs.
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Cartesian product

Figure: The Cartesian product of two more interesting graphs (courtesy of Wikipedia).
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Cartesian product

Formally, the Cartesian product GlH of two graphs G and H with vertex
sets V pGq and V pHq and edge sets EpGq and EpHq is the graph with
vertex set V pGlHq :� V pGq � V pHq and edge set

EpGlHq :� tppg1, hq, pg2, hqq : pg1, g2q P EpGq, h P V pHqu

Y tppg, h1q, pg, h2qq : g P V pGq, ph1, h2q P EpHqu.

This operation is commutative and associative with the trivial graph as
identity element if we treat isomorphic graphs as being equal.
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Cartesian product

A nontrivial graph is irreducible if it is not the Cartesian product of two
nontrivial graphs.

Sabidussi (1960) showed that any �nite graph is a Cartesian product of
irreducible graphs and the factorization is unique up to order.

Factoring graphs and, more generally, embedding them in Cartesian
products is widely studied in computer science following Graham and
Winkler (1984, 1985).
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Shortest path metric

Figure: A shortest path between two points in the Cartesian product of two graphs.
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Shortest path metric

If two connected �nite graphs G and H are equipped with the shortest
path metrics rG and rH , then the shortest path metric on the Cartesian
product is given by

rG�H � rG ` rH ,

where

prG ` rHqppg
1, h1q, pg2, h2qq :� rGpg

1, g2q � rHph
1, h2q,

pg1, h1q, pg2, h2q P G�H.

What happens if we extend this binary operation to more general metric
spaces?
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Cartesian product of two intervals and the Manhattan/taxi-cab/`1 metric

Figure: Equipping the Cartesian product of two intervals with the sum of the usual
metrics gives a rectangle equipped with the Manhattan or taxi-cab metric (courtesy of
Wolfram).
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Irreducibles

The metric space pX, rXq is irreducible if there is no nontrivial factorization

pX, rXq � pY � Z, rY ` rZq.
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Uniqueness of factorization into irreducibles

If a metric space is isometric to a product of �nitely many irreducible metric
spaces, then this factorization is unique up to the order of the factors � Tardif
(1992).
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A little about Tardif's proof

Tardif uses ideas/results from the world of median algebras, Chebyshev sets,
gated spaces from Isbell (1980), Helíková (1983), Dress & Scharlau (1987).
A subset W of a metric space pX, rXq is gated if for each x P X there is a
(necessarily unique) w PW such that rXpx, vq � rXpx,wq � rXpw, vq for all
v PW (for any v PW , we can always choose a shortest path from x to v that
passes through the gate w).

X 

W 

x 
w 

v 
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Limitations of factorization

There are certainly compact metric spaces that are not isometric to a
�nite product of �nitely many irreducible compact metric spaces (e.g.
X :�

±
kPNr0, aks, where

°
kPN ak   8, with

rXpx
1, x2q :�

°
kPN |x

1
k � x2k|).

Are there (unique) factorizations using some sort of in�nite product?
What does this mean?

The study of this binary operation seems to be generally rather di�cult.

Steven N. Evans Metric measure spaces



Limitations of factorization

There are certainly compact metric spaces that are not isometric to a
�nite product of �nitely many irreducible compact metric spaces (e.g.
X :�

±
kPNr0, aks, where

°
kPN ak   8, with

rXpx
1, x2q :�

°
kPN |x

1
k � x2k|).

Are there (unique) factorizations using some sort of in�nite product?
What does this mean?

The study of this binary operation seems to be generally rather di�cult.

Steven N. Evans Metric measure spaces



Limitations of factorization

There are certainly compact metric spaces that are not isometric to a
�nite product of �nitely many irreducible compact metric spaces (e.g.
X :�

±
kPNr0, aks, where

°
kPN ak   8, with

rXpx
1, x2q :�

°
kPN |x

1
k � x2k|).

Are there (unique) factorizations using some sort of in�nite product?
What does this mean?

The study of this binary operation seems to be generally rather di�cult.

Steven N. Evans Metric measure spaces



Metric measure spaces

A metric measure space is just a complete separable metric space pX, rXq
equipped with a probability measure µX that has full support.

Two such spaces are equivalent if they are isometric as metric spaces via
an isometry that maps the probability measure on the �rst space to the
probability measure on the second.

Denote by M the set of such equivalence classes.

We do not distinguish between an equivalence class X P M and a
representative triple pX, rX , µXq.
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When are two metric measures spaces equivalent?

Gromov and Vershik showed that, in probabilist-speak, a metric measure
space pX, rX , µXq is uniquely determined by the probability distribution of
the in�nite random matrix of distances

prXpξi, ξjqqpi,jqPN�N,

where pξkqkPN is an i.i.d. sample of points in X with common probability
distribution µX .

In non-probabilist-speak, pX, rX , µXq is determined by the push-forward of
the probability measure µbN

X by the function

XN Q pxkqkPN ÞÑ prXpxi, xjqqi,jPN�N P RN�N
� .

This concise condition for equivalence makes metric measure spaces
considerably easier to study than complete separable metric spaces per se.
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A binary operation

Given two elements Y � pY, rY , µY q and Z � pZ, rZ , µZq of M, let Y `Z
be X � pX, rX , µXq P M, where

X :� Y � Z,
rX :� rY ` rZ , where
prY ` rZqppy

1, z1q, py2, z2qq � rY py
1, y2q � rZpz

1, z2q for
py1, z1q, py2, z2q P Y � Z),
µX :� µY b µZ .

This binary operation is associative and commutative.

The isometry class of metric measure spaces E that each consist of a
single point with the only possible metric and probability measure on them
is the identity element.

Thus, pM,`q is a commutative semigroup with an identity (i.e. a monoid).
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To paraphrase T.W. Körner

�The ease with which we proved [the central limit theorem] explains why
Fourier analysis plays a rôle in probability theory that in other branches of
mathematics is played by thought.�
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Semicharacters

A semicharacter is a map χ : MÑ r0, 1s such that χpY `Zq � χpYqχpZq
for all Y,Z P M.

Denote by A the family of arrays of the form A � paijq1¤i j¤n P Rp
n
2q
� for

n P N.
For each A P A de�ne a semicharacter χA by

χAppX, rX , µXqq :�

»
Xn

exp

�
�

¸
1¤i j¤n

aijrXpxi, xjq

�
µbnX pdxq.

Two elements X ,Y P M are equal if and only if χApX q � χApYq for all
A P A.
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Putting a metric on M

Equip M with the Gromov-Prohorov metric of Greven, Pfa�elhuber &
Winter (2009). Two elements of M are close if their random distance
matrices are close in distribution.

The space pM, dGPrq is complete and separable (e.g. �nite metric spaces
with rational distances are dense).

dGPrpX1 ` X2,Y1 ` Y2q ¤ dGPrpX1,Y1q � dGPrpX2,Y2q and so
pX ,Yq ÞÑ X ` Y is continuous.

limnÑ8 Xn � X if and only if limnÑ8 χApXnq � χApX q for all A P A.
Note: Knowing that limnÑ8 χApXnq exists for all A P A does not imply
that limnÑ8 Xn exists.
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Putting a partial order on M

De�ne a partial order ¤ on M by declaring that Y ¤ Z if Z � Y ` X for
some X P M. That is, Y ¤ Z if Y is a �divisor� of Z.

For any Z P M, the set tY P M : Y ¤ Zu is compact.
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Cancellativity

The commutative semigroup pM,`q is cancellative; that is, if
X ,Y,Z 1,Z2 P M satisfy

X � Y ` Z 1

and
X � Y ` Z2,

then
Z 1 � Z2.

This is because for all A P A

χApYqχApZ 1q � χApXq � χApYqχApZ2q,

and so χApZ 1q � χApZ2q.

Alternatively, one can show that

0 � dGPrpX ,X q � dGPrpY ` Z 1,Y ` Z2q � dGPrpZ 1,Z2q.

Steven N. Evans Metric measure spaces



Cancellativity

The commutative semigroup pM,`q is cancellative; that is, if
X ,Y,Z 1,Z2 P M satisfy

X � Y ` Z 1

and
X � Y ` Z2,

then
Z 1 � Z2.

This is because for all A P A

χApYqχApZ 1q � χApXq � χApYqχApZ2q,

and so χApZ 1q � χApZ2q.

Alternatively, one can show that

0 � dGPrpX ,X q � dGPrpY ` Z 1,Y ` Z2q � dGPrpZ 1,Z2q.

Steven N. Evans Metric measure spaces



Cancellativity

The commutative semigroup pM,`q is cancellative; that is, if
X ,Y,Z 1,Z2 P M satisfy

X � Y ` Z 1

and
X � Y ` Z2,

then
Z 1 � Z2.

This is because for all A P A

χApYqχApZ 1q � χApXq � χApYqχApZ2q,

and so χApZ 1q � χApZ2q.

Alternatively, one can show that

0 � dGPrpX ,X q � dGPrpY ` Z 1,Y ` Z2q � dGPrpZ 1,Z2q.

Steven N. Evans Metric measure spaces



Measuring the size of a metric measure space

Put DApX q :� � logχApX q ¥ 0 and

DpX q :� D1pX q � � logχ1pX q � � log

»
X2

exp p�rXpx1, x2qq µ
b2
X pdxq.

Put

RpX q :�

»
X2

prXpx1, x2q ^ 1qµb2
X pdxq.

For suitable constants, aDpX q ¤ DApX q ¤ bDpX q.
1
4
RpX q ¤ dGPrpX , Eq ¤

a
RpX q.

For suitable constants, αpDpX q ^ 1q ¤ RpX q ¤ βpDpX q ^ 1q.
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Convergence of sums

Suppose that pXnqnPN is a sequence such that limnÑ8 X0 ` � � �`Xn � Y
for some Y P M. If pX 1

nqnPN is a sequence that is obtained by re-ordering
the sequence pXnqnPN, then limnÑ8 X 1

0 ` � � �` X 1
n � Y also.

The limit limnÑ8 X0 ` � � �` Xn exists if and only if
°
nDpXnq   8

(equivalently,
°
nRpXnq   8).

So, we can make sense of
Ð

sPS Xs for any family pX qsPS without
specifying the �order of summation�.
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Irreducible elements

An element X P M is irreducible if X � E and Y ¤ X for Y P M implies
that Y is either E or X .

It is not clear a priori that there are irreducible elements. For example, the
semigroup R� with the usual addition operation has no irreducible
elements in the analogous sense.

If X P MztEu, then there is an irreducible element Y P M with Y ¤ X �
this seems to be not at all obvious and to rely on some nontrivial
stochastic analysis.

In particular, if X P MztEu, then it is not possible that for all n P N there
exists Xn such that X � Xn ` � � �` Xn (n terms).
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Concrete examples of irreducible elements: totally geodesic spaces

A metric space pW, rW q is totally geodesic if any two points of W are
joined by a unique geodesic segment.

Any nontrivial closed subset X of a totally geodesic, complete, separable
metric space pW, rW q is irreducible, no matter what measure it is
equipped with.

Why? If pX, rW q is isometric to pY � Z, rY ` rZq for nontrivial Y and Z,
then there will be four distinct points a, b, c, d in X that are isometric
images of points of the form py1, z1q, py2, z1q, py1, z2q, py2, z2q in Y � Z.
Thus,

rW pa, bq � rW pc, dq, rW pa, cq � rW pb, dq,

rW pa, dq � rW pa, bq � rW pb, dq, rW pa, dq � rW pa, cq � rW pc, dq,

rW pb, cq � rW pa, bq � rW pc, aq, rW pb, cq � rW pb, dq � rW pc, dq.

It follows from the third and fourth equalities that b and c are on the
geodesic segment between a and d. We may therefore suppose that
pW, rW q is a closed subinterval of R and, without loss of generality, that
a   b   c   d. The �fth and sixth equalities are then impossible.
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Examples of totally geodesic spaces

A Banach space pX, } }q is totally geodesic if and only if it is strictly
convex; that is, x � y and }x1} � }x2} � 1 imply that
}ax1 � p1� aqx2}   1 for all 0   a   1.

Strict convexity of pX, } }q is implied by uniform convexity; that is, for
every ε ¡ 0 there exists a δ ¡ 0 such that }x1} � }x2} � 1 and

}x1 � x2} ¥ ε imply }x
1�x2

2
} ¤ 1� δ.

Any Hilbert space and the Banach spaces LppS,S, λq, 1   p   8, where
λ is a σ-�nite measure, are uniformly convex.
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How many irreducible elements are there?

The set of irreducible elements is a dense Gδ subset (i.e. countable
intersection of open sets) of M.

In particular, the set of irreducible elements is uncountable.
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Prime elements

An element X P M is prime if X � E and X ¤ Y ` Z for Y,Z P M
implies that X ¤ Y or X ¤ Z.

Prime elements are clearly irreducible, but the converse is not a priori true.
There are commutative, cancellative semigroups where the analogue of the
converse is false.

All irreducible elements of M are prime.

The analogous result for the integers is the key to proving the fundamental
theorem of arithmetic, and the usual proof uses Euclid's algorithm.
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Prime factorization � the �fundamental theorem of arithmetic�

Given any X P MztEu, there is either a �nite sequence pXnqNn�0 or an
in�nite sequence pXnq8n�0 of irreducible elements of M such that
X � X0 ` � � �` XN in the �rst case and X � limnÑ8 X0 ` � � �` Xn in
the second.

The sequence is unique up to the order of its terms.

Each irreducible element appears a �nite number of times, so the
representation is speci�ed by the irreducible elements that appear and
their �nite multiplicities.

It follows that pM,¤q is a distributive lattice: there is an analogue of the
greatest common divisor (meet) and the least common multiple (join).
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A little about the proof

Existence of factorizations into irreducibles uses general results about
Delphic semigroups from Kendall (1968), Davidson (1969).
An ingredient for uniqueness is the existence of common re�nements: If

X0
 ` X1
 � X � X
0 ` X
1,
then there exist X00,X01,X10,X11 such that

X0
 � X00`X01, X1
 � X10`X11, X
0 � X00`X10, X
1 � X01`X11.

The proof that common re�nements exist uses some of the same ideas as
Tardif's proof and the following elementary fact (where KK denotes
independence of random elements): Let ξ00, ξ01, ξ10, ξ11 be random
elements of the respective complete separable metric spaces
X00, X01, X10, X11. Suppose that

pξ00, ξ01qKKpξ10, ξ11q

and
pξ00, ξ10qKKpξ01, ξ11q.

Then,
ξ00KKξ01KKξ10KKξ11.
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In�nitely divisible random elements � Lévy-Hi�ncin-Itô

A random element Y of M is in�nitely divisible if for each n P N there are
independent, identically distributed, random elements Yn1, . . . ,Ynn such
that Y has the same probability distribution as Yn1 ` � � �`Ynn.

An in�nitely divisible random element Y has the same probability
distribution as ð

tX : pt,X q P Πu,

where Π is a Poisson random measure on r0, 1s � pMztEuq with intensity
measure of the form λb ν, where λ is Lebesgue measure and and ν is a
σ-�nite measure on MztEu such that»

DpX q ^ 1 νpdX q   8.

Conversely, any such measure ν corresponds to an in�nitely divisible
random element in this way.

Constants are not in�nitely divisible and there is no analogue of the
Gaussian probability distribution.
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Scaling

Given X P M and a ¡ 0, set aX :� pX, arX , µXq P M.

This scaling operation operation is continuous and satis�es

apX ` Yq � paX q` paYq.

If
paX q` pbX q � cX

for some X P M and a, b, c ¡ 0, then X � E , so the second distributivity
law certainly does not hold.
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Stable random elements � �LePage� representations

A M-valued random element Y is stable with index α ¡ 0 if for any
a, b ¡ 0 the random element

pa� bq
1
αY

has the same distribution as

a
1
αY1

` b
1
αY2.

A stable random element is necessarily in�nitely divisible.

The index must satisfy 0   α   1.

An α-stable random element has the same distribution asð
nPN

Γ
� 1
α

n Zn,

where pΓnqnPN is the sequence of successive arrivals of a homogeneous
unit intensity Poisson point process on R� and pZnqnPN is a sequence of
i.i.d. random elements of M.
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Future directions

Cancellativity allows us to embed the semigroup M into a group �
analogous to passing from N to Z.
Are there analogues of objects such as Gaussian random variables and
Brownian motion on this group?

What if we combine metrics via

ppy1, z1q, py2, z2qq ÞÑ rY py
1, y2q _ rZpz

1, z2q

instead of
ppy1, z1q, py2, z2qq ÞÑ rY py

1, y2q � rZpz
1, z2q

(that is, �`8� instead of �`1� � corresponds to the strong product of two
graphs)?

Rie�el has shown that one can obtain a quantum analogue of the space of
compact metric spaces equipped with the Gromov�Hausdor� distance by
considering C�-algebras with properties that generalize those of the
algebra of Lipschitz functions on a compact metric space.

Is there a similar quantization for metric measure spaces? Ongoing work
with Benson Au.
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