A Moment Method for Invariant Ensembles

Jonathan Novak

- A real invariant ensemble is a sequence

$$
X^{(N)}=\left[\begin{array}{c}
\vdots \\
\cdots X_{i j}^{(N)} \cdots \\
\vdots
\end{array}\right]_{i, j=1}^{N}, \quad N=1,2,3, \ldots
$$

of random real selfadjoint matrices such that $X^{(N)} \stackrel{\text { law }}{=} O X^{(N)} O^{-1}$ for any $O \in O(N)$.

- A complex invariant ensemble is a sequence $X^{(N)}$ of random complex selfadjoint matrices such that $X^{(N)} \stackrel{l_{\text {aw }}}{=} U X^{(N)} U^{-1}$ for any $U \in U(N)$.
- A quaternionic invariant ensemble is a sequence $X^{(N)}$ of randomquaternionic selfadjoint matrices such that $X^{(N)} \stackrel{\operatorname{law}}{=} S X^{(N)} S^{-1}$ for any $S \in S_{p}(N)$.
- Dyson Ensembles: distribution of $X^{(N)}$ has density proportional to

$$
e^{-\frac{\beta}{2} \operatorname{Tr} V(X)}
$$

where $V: \mathbb{R} \rightarrow \mathbb{R}$ is the potential and $\beta \in\{1,2,4\}$ is the Dyson index.

- Joint distribution of eigenvalues $E_{1}^{(N)} \geq \ldots \geq E_{N}^{(N)}$ proportional to $e^{-\frac{\beta}{2} N^{2} H}$, where

$$
H\left(E_{1}, \ldots, E_{N}\right)=\frac{1}{N} \sum_{i=1}^{N} V\left(E_{i}\right)-\frac{1}{N^{2}} \sum_{i \neq j} \log \left|E_{i}-E_{j}\right| .
$$

Coulomb GAs

$$
H\left(E_{1}, \ldots, E_{N}\right)=\frac{1}{N} \sum_{i=1}^{N} V\left(E_{i}\right)-\frac{1}{N^{2}} \sum_{i \neq j} \log \left|E_{i}-E_{j}\right|
$$

Theorem (Johansson): Under mild hypotheses on V, the spectral measure $\mu^{(N)}$ of $X^{(N)}$ converges weakly, in probability, to a nonrandom probability measure $\mu^{(\infty)}$, which is the unique minimizer of

$$
\mu \mapsto \int V(x) \mu(d x)-\iint \log |x-y| \mu(d x) \mu(d y)
$$

- Dyson ensembles form a small island in the vast sea of invariant ensembles.
- Newton observables:

$$
P_{d}^{(N)}=\frac{1}{N} \sum_{i=1}^{N}\left(E_{i}^{(N)}\right)^{d}, \quad d \in \mathbb{N} .
$$

- Moments of $\mu^{(\omega)}: p_{d}^{(N)}=\int x^{d} \mu^{(\omega)}(d x)$.
- Moment method: any technique relating distribution of Newton observables to joint distribution of $X_{i j}^{(N)}$.
- Wigner's moment method: $p_{d}^{(N)}=\frac{1}{N} \sum_{\phi\{\{1, \ldots, d\} \rightarrow\{\{1, \ldots, N\}} X_{\phi(1)(2)}^{(N)} X_{\phi(2) \phi(3)}^{(N)} \ldots X_{\phi(d) \phi(1)}^{(N)}$.
- Let $X^{(N)}$ be any selfadjoint ensemble. Consider the Fourier transform,

$$
A \mapsto \mathbb{E}\left[e^{i \operatorname{Tr} A X^{\omega}}\right]
$$

- Diagonalize selfadjoint matrix A :

$$
\mathbb{E}\left[e^{i \operatorname{Tr} A X^{(\omega)}}\right]=\mathbb{E}\left[e^{i \operatorname{Tr} u\left[{ }^{\left[a_{1}\right.} \cdot a_{, ~}\right] u^{-1} X^{(\omega)}}\right]=\mathbb{E}\left[e^{\left.i T_{r}\left[^{a_{1}} \cdot a_{0}\right] u^{-1} X^{\omega \omega} u\right]}\right.
$$

- If $X^{(N)}$ conjugation invariant, then

$$
\mathbb{E}\left[e^{\left.i \operatorname{Tr}\left[a_{1} \cdot a_{N}\right] u^{-1} X^{(\omega)} u\right]}=\mathbb{E}\left[e^{i \operatorname{Tr}\left[a_{1}\right.} \cdot a_{N}\right] X^{\omega \omega}\right]
$$

Proposition: The distribution of $X^{(N)}$ is completely determined by the joint distribution of the real random variables

$$
X_{11}^{(N)}, \ldots, X_{N N}^{(N)}
$$

which are identically distributed and exchangeable.

Proof: For any selfadjoint A,

$$
\mathbb{E}\left[e^{i \operatorname{Tr} A X^{(N)}}\right]=\mathbb{E}\left[e^{i\left(a_{1}, \ldots, a_{N}\right) \cdot\left(X_{11}^{(N)}, \ldots, X_{N N}^{(N)}\right)}\right]
$$

where a_{1}, \ldots, a_{N} is any enumeration of the eigenvalues of A.

- An invariant ensemble $X^{(N)}$ is smooth if $X_{11}^{(N)}, X_{N N}^{(N)}$ admit joint moments of all orders.
- By exchangeability, suffices to consider joint moments indexed by Young diagrams: if $|\lambda|=d$ and $\ell(\lambda)=r$, put

$$
m_{\lambda}^{(N)}=m_{d}(\underbrace{X_{11}^{(N)}, \ldots, X_{i n}^{(N)}}_{\lambda_{1}}, \ldots, \underbrace{X_{r r}^{(N)}, \ldots, X_{r r}^{(N)}}_{\lambda_{r}})=\mathbb{E}\left[\prod_{i=1}^{r}\left(X_{i i}^{(N)}\right)^{\lambda_{i}}\right] .
$$

- Example: if $\lambda=\square$, then $m_{\lambda}^{(N)}=\mathbb{E}\left[\left(X_{11}^{(N)}\right)^{5}\left(X_{22}^{(N)}\right)^{3}\left(X_{33}^{(N)}\right)^{2}\right]$.

Equivalently, $m_{\lambda}^{(\omega)}$ is coefficient of $\frac{a_{1}^{5}}{5!} \frac{a_{2}^{3}}{3!} \frac{a_{3}^{2}}{2!}$ in $\mathbb{E}\left[e^{i\left(a_{1}, a_{2}, a_{3}\right) \cdot\left(X_{11}^{(\omega)}, X_{22}^{(\omega)}, X_{33}^{(\omega)}\right)}\right]$.

- General principle: cumulants are better than moments.
- Trade $m_{\lambda}^{(N)}$ for $C_{\lambda}^{(N)}=C_{d}(\underbrace{X_{11}^{(N)}, \ldots, X_{1}^{(N)}}_{\lambda_{1}}, \ldots, \underbrace{X_{r r}^{(N)}, \ldots, X_{r r}^{(N)}}_{\lambda_{r}})$.
- Example: if $\lambda=\square \square$, then

$$
c_{\lambda}^{(N)}=c_{10}(\underbrace{X_{11}^{(N)}, X_{11}^{(N)}, X_{11}^{(N)}, X_{11}^{(N)}, X_{11}^{(N)}}_{5}, \underbrace{X_{22}^{(N)}, X_{22}^{(N)}, X_{22}^{(N)}}_{3}, \underbrace{X_{33}^{(N)} X_{33}^{(N)}}_{2}) .
$$

Coefficient of $\frac{a_{1}^{5}}{5!} \frac{a_{2}^{3}}{3!} \frac{a_{3}^{2}}{2!}$ in Maclaurin series of $\log \mathbb{E}\left[e^{i\left(a_{1}, a_{2}, a_{3}\right) \cdot\left(X_{11}^{(\omega)}, X_{22}^{(\omega)}, X_{33}^{(\omega)}\right)}\right]$.

Theorem (Matsumoto-N.): For a smooth invariant ensemble $X^{(\omega)}$, the following are equivalent:

1) For each $d, p_{d}^{(\nu)}$ converges in probability to a deterministic limit $p_{d}^{(\infty)}$;
2) For each λ, the limit $c_{\lambda}^{(\infty)}=\lim _{N \rightarrow \infty} N^{|\lambda|-1} c_{\lambda}^{(N)}$ exists, and vanishes if $l(\lambda)>1$.

- What is the relationship between $p_{1}^{(\infty)}, p_{2}^{(\infty)}, p_{3}^{(\infty)}, \ldots$ and $c_{1}^{(\infty)}, c_{2}^{(\infty)}, c_{3}^{(\infty)}, \ldots$?

Theorem (Matsumoto - N.): Under the same hypotheses, we have

$$
R\left(p_{1}^{(\infty)}, p_{2}^{(\infty)}, p_{3}^{(\infty)}, \ldots\right)=\left(\frac{1}{0!} c_{1}^{(\infty)}, \frac{1}{1!} c_{2}^{(\infty)}, \frac{1}{2!} c_{3}^{(\infty)}, \ldots\right) .
$$

- Idea of proof: use $X_{i i}^{(N)}=\sum_{j=1}^{N} U_{i j}^{(N)} E_{j}^{(N)} \bar{U}_{i j}^{(N)}$, where $U^{(N)}=\left[U_{i j}^{(N)}\right]_{i j=1}^{N}$ is uniformly random in $O(N), U(N)$, or $S_{p}(N)$ according to whether $\beta=1,2$, or 4 .
- "Integrate out" eigenvectors using Weingarten Calculus.
- Olshanski- Vershik: considered the case $N=\infty$.
- Collins: considered the case where eigenvalues of $X^{(N)}$ are deterministic.
- Guionnet - Maida: considered $Z^{(N)}=X^{(N)}+Y^{(N)}$, where eigenvalues of $X^{(N)}, Y^{(N)}$ deterministic.
- Bufetov-Gorin: related results for discrete particle systems.

Example: Let $X^{(N)}$ be an invariant ensemble such that $X_{11}^{(N)}, \ldots, X_{N N}^{(N)}$ are lid Gaussian of mean c_{1}, variance $c_{2} N^{-1}$.

Easy: higher pure cumulants vanish by Gaussianity, mixed cumulants vanish by independence. Thus limits

$$
c_{\lambda}^{(\infty)}=\lim _{N \rightarrow \infty} N^{|\lambda|-1} c_{\lambda}^{(N)}, \lambda \in Y
$$

exist, with $c_{1}^{(\infty)}=c_{1}, c_{2}^{(\infty)}=c_{2}$, and $c_{\lambda}^{(\infty)}=0$ otherwise.

Conclusion: each $p_{d}^{(N)}$ converges in probability to deterministic $p_{d}^{(0)}$, and

$$
R\left(p_{1}^{(\infty)}, p_{2}^{(\infty)}, p_{3}^{(\infty)} \ldots\right)=\left(c_{1}, c_{2}, 0,0, \ldots\right) .
$$

Example: Let $X^{(N)}, Y^{(N)}$ be independent invariant ensembles with

$$
p_{d}\left(X^{(N)}\right) \rightarrow X_{d} \text { and } p_{d}\left(Y^{(N)}\right) \rightarrow y_{d .} .
$$

Form $Z^{(N)}=X^{(N)}+Y^{(N)}$ Then for any $\lambda(Y, \quad|\lambda|=d, \ell(\lambda)=r$, independence yields

$$
\begin{aligned}
& C_{d}(\underbrace{Z_{\omega}^{(N)}, \ldots, Z_{1}^{(N)}}_{\lambda_{1}}, \ldots, \underbrace{Z_{r r}^{(N)}, \ldots, Z_{r}^{(N)}}_{\lambda_{r}}) \\
& =C_{d}(\underbrace{X_{n}^{(\omega)}, \ldots, X_{r}^{(N)}}_{\lambda_{1}}, \ldots, \underbrace{X_{r r}^{(\omega)}, X_{r}^{(N)}}_{\lambda_{r}})+C_{d}(\underbrace{Y_{0}^{(\omega)}, \ldots, Y^{(N)}}_{\lambda_{1}}, \ldots, \underbrace{Y_{(r)}^{(N)}, Y_{r}^{(\omega)}}_{\lambda_{r}}) .
\end{aligned}
$$

Get that $p_{d}\left(Z^{(N)}\right) \rightarrow Z_{d}$, and

$$
R\left(z_{1}, z_{2}, z_{3}, \ldots\right)=R\left(x_{1}, x_{2}, x_{3}, \ldots\right)+R\left(y_{1}, y_{2}, y_{3}, \ldots\right) .
$$

- Two ingredients:
(1) A tiling of the plane by equilateral triangles;
(2) A triangular array of integers,

$$
\begin{aligned}
& b_{1}^{(1)} \\
& b_{1}^{(2)} \\
& b_{1}^{(3)} \\
& b_{1}^{(2)} \\
& b_{2}
\end{aligned}
$$

- Using this data, build a sequence of simply-connected planar domains.

$$
\Omega^{(b)}, \Omega^{\left(a^{m},\right.} \Omega^{m}, \ldots
$$

- STEP ZERO: Introduce a coordinate system,

- STEP Two: Construct N outward facing unit triangles on the line such that the midpoints of their bases have horizontal coordinates $b_{1}^{(N)} \geqslant \ldots>b_{N}^{(N)}$.

- Step Three: Erase the bases of the triangles,

- You have now constructed the sawtooth domain of rank N with boundary conditions $b_{1}^{(\omega)}>\ldots \rightarrow b_{s}^{(\omega)}$.
- FACT: $\Omega^{(N)}$ can be tessellated using tiles of three types, called lozenges.

- FACT: $\Omega^{(\omega)}$ admits finitely many lozenge tilings.

- Ensemble. For each $N \in \mathbb{N}, T^{(\omega)}$ is a uniformly random lozenge filing of $\Omega^{\text {cow }}$. Ensemble determined by boundary conditions,

- Nordenstam - Young ensemble: boundary conditions which maximize number of clumps, conditional on minimizing spread:

- Closely related to domino tilings of Aztec diamond - partition functions coincide.

- Note: number of sides of the forced polygon increases with N

Fig. by Nordenstam and Young

- Cohn-Larsen-Propp ensemble: minimize number of clumps conditional on getting something non-trivial.

- Forced polygon is a hexagon, number of sides remains fixed.

- Suppose the boundary data

is convergent: have limits

$$
p_{d}^{(\infty)}=\lim _{N \rightarrow \infty} p_{d}\left(\frac{b_{b}^{(N)}}{N}, \cdots, \frac{b_{N}^{(N)}}{N}\right) .
$$

- Does $N^{-1} T^{(x)}$ converge to a deterministic object?

- From particle perspective, $T^{(N)}$ becomes a sequence of N random vectors,

$$
\left(b_{k 1}^{(\omega)}, \ldots, b_{k k}^{(\omega)}\right), 1 \leq k \leq N,
$$

Where $b_{x i}^{(N)}$ is the $i^{\text {th }}$ particle from right on the $k^{\text {th }}$ wire from bottom.

- Joint distribution of particles on a given wire?

- Trade the random vector $\left(b_{k 1}^{(N)}, \ldots, b_{k k}^{(N)}\right)$ for the random matrix

$$
X_{k}^{(N)}=U_{k}\left[\begin{array}{lll}
b_{k 1}^{(N)} & & \\
& \ddots & b_{k k}^{(N)}
\end{array}\right] U_{k}-1
$$

with U_{k} a uniformly random $k \times k$ unitary.

- In case $k=N$, just write $X_{N}^{(N)}=X^{(N)}$ deterministic spectrum of $X^{(N)}$ gives boundary conditions of $\Omega^{(N)}$.
- The joint distribution of $\left(X_{k}^{(N)}\right)_{11}, \ldots,\left(X_{k}^{(N)}\right)_{k k}$ is known.
- The tiling $T^{(N)}$ becomes a chain of invariant ensembles:

- Want: if (non-random) spectral moments of $N^{-1} X_{N}^{(N)}$ converge, then spectral moments of $N^{-1} X_{L+N)}^{(N)}$ converge, for each $f \in(0,1)$.
- Consider the $(N-k) \times k$ matrix

$$
Z=\left[\begin{array}{ccc}
z_{11} & z_{k k} \\
\vdots & \vdots \\
z_{N-k, 1} \cdots & z_{N-k, k}
\end{array}\right]
$$

whose entries are independent uniformly random samples from $[0,1]$.
Theorem (N.): We have

$$
\begin{aligned}
& \left(\left(X_{k}^{(N)}\right)_{11}, \ldots,\left(X_{k}^{(N)}\right)_{N k}\right) \\
& \stackrel{d}{=}\left(Z_{11}, \ldots, Z_{1 k}\right)+\ldots+\left(Z_{N-k, 1}, \ldots, Z_{N-k, N-k}\right)+\left(\left(X_{N}^{(N)}\right)_{11}, \ldots,\left(X_{N}^{(\omega)}\right)_{k k}\right) .
\end{aligned}
$$

Theorem: Suppose that $p_{d}^{(\infty)}=\lim _{N \rightarrow \infty} N^{-1} X^{(N)}$ exists for each $d \in \mathbb{N}$, and let

$$
\left(r_{1}^{(\infty)}, r_{2}^{(\infty)}, r_{3}^{(\infty)}, \ldots\right)=R\left(p_{1}^{(\infty)}, p_{2}^{(\infty)}, p_{3}^{(\infty)}, \ldots\right) .
$$

Then, for each $t \in(0,1)$, the random variables

$$
p_{d, t}^{(N)}=p_{d}\left(N^{-1} X_{(+N)}^{(N)}\right), d \in \mathbb{N}
$$

converge in probability to deterministic limits $p_{d, t}^{(\infty)}$. Writing

$$
\left(r_{1, t}^{(\infty)}, r_{2, t}^{(\infty)}, r_{3, t}^{(\infty)}, \ldots\right)=R\left(p_{1,1}^{(\infty)}, p_{2,1}^{(\infty)}, p_{3,1}^{(\infty)}, \ldots\right),
$$

we have

$$
r_{d, t}^{(\infty)}=t(1-t) \frac{B_{d}}{d}+t^{d-1} r_{d}^{(\infty)} \text {. }
$$

