A MOMENT METHOD FOR INVARIANT ENSEMBLES

Jonathan Novak

• A real invariant ensemble is a sequence

$$\chi^{(N)} = \begin{bmatrix} \vdots \\ \cdots \chi^{(N)}_{ij} \cdots \\ \vdots \end{bmatrix}_{i,j=1}^{N}, \qquad N = l, 2, 3, \dots$$

of random real selfadjoint matrices such that $X^{(N)} \stackrel{|_{aw}}{=} O X^{(N)} O^{-1}$ for any $O \in O(N)$.

• A complex invariant ensemble is a sequence $X^{(N)}$ of random complex selfadjoint matrices such that $X^{(N)} \stackrel{I_{am}}{=} U X^{(N)} U^{-1}$ for any $U \in U(N)$.

• A quaternionic invariant ensemble is a sequence $X^{(N)}$ of random quaternionic selfadjoint matrices such that $X^{(N)} \stackrel{I_{am}}{=} SX^{(N)}S^{-1}$ for any $S \in Sp(N)$.

• Dyson Ensembles: distribution of
$$X^{(N)}$$
 has density proportional to $e^{-\frac{\mathcal{B}}{2}Tr}V(X)$

where $V:\mathbb{R} \to \mathbb{R}$ is the potential and $\mathcal{B} \in \{1, 2, 4\}$ is the Dyson index.

• Joint distribution of eigenvalues $E_1^{(N)} \ge ... \ge E_N^{(N)}$ proportional to $e^{-\frac{B}{2}N^2H}$, where

$$\mathcal{H}(\mathsf{E}_{i},\ldots,\mathsf{E}_{N}) = \frac{1}{N}\sum_{i=1}^{N} \bigvee(\mathsf{E}_{i}) - \frac{1}{N^{2}}\sum_{i\neq j} \log|\mathsf{E}_{i}-\mathsf{E}_{j}|.$$

$$\mathcal{H}(\mathsf{E}_{i},\ldots,\mathsf{E}_{N}) = \frac{1}{N}\sum_{i=1}^{N} \mathcal{V}(\mathsf{E}_{i}) - \frac{1}{N^{2}}\sum_{i\neq j} \log|\mathsf{E}_{i}-\mathsf{E}_{j}|$$

Theorem (Johansson): Under mild hypotheses on V, the spectral measure $\mu^{(N)}$ of $\chi^{(N)}$ converges weakly, in probability, to a nonrandom probability measure $\mu^{(m)}$, which is the unique minimizer of

$$\mathcal{M} \mapsto \int V(x) \mu(dx) - \iint \log |x-y| \mu(dx) \mu(dy).$$

• Dyson ensembles form a small island in the vast sea of invariant ensembles.

$$P_{d}^{(N)} = \frac{1}{N} \sum_{i=1}^{N} (E_{i}^{(N)})^{d} , \quad d \in [N].$$

• Moments of
$$\mu^{(N)}$$
: $p_d^{(N)} = \int x^d \mu^{(N)} (dx)$.

• Moment method: any technique relating distribution of Newton observables to joint distribution of $X_{ij}^{(w)}$.

• Wigner's moment method:
$$p_d^{(N)} = \frac{1}{N} \sum_{\substack{\emptyset: \{1, \dots, d\} \to \{1, \dots, N\}}} X_{\substack{\emptyset(1) \ \emptyset(2)}}^{(N)} X_{\substack{\emptyset(2) \ \emptyset(3)}}^{(N)} \dots X_{\substack{\emptyset(d) \ \emptyset(1)}}^{(N)}.$$

• Let $X^{(N)}$ be any selfadjoint ensemble. Consider the Fourier transform, $A \mapsto \mathbb{E}[e^{i \operatorname{Tr} A X^{(\omega)}}]$

$$A \mapsto \mathbb{E}[e^{irAA}]$$

• Diagonalize selfadjoint matrix A:

$$\mathbb{E}\left[e^{i\operatorname{Tr} AX^{(n)}}\right] = \mathbb{E}\left[e^{i\operatorname{Tr} U\left[a_{1} \cdot a_{n}\right]}U^{-1}X^{(n)}\right] = \mathbb{E}\left[e^{i\operatorname{Tr} \left[a_{1} \cdot a_{n}\right]}U^{-1}X^{(n)}U\right]$$

• If X^(N) conjugation invariant, then

$$\mathbb{E}\left[e^{i\operatorname{Tr}\left[a_{1},\ldots,a_{N}\right]}\mathcal{U}^{-1}X^{(N)}\mathcal{U}\right] = \mathbb{E}\left[e^{i\operatorname{Tr}\left[a_{1},\ldots,a_{N}\right]}X^{(N)}\right]$$

Proposition: The distribution of
$$X^{(m)}$$
 is completely determined by the
joint distribution of the real random variables
 $X^{(m)}_{n}, \dots, X^{(m)}_{nN}$,
which are identically distributed and exchangeable.
Proof: For any selfadjoint A,
 $\mathbb{E}[e^{i\operatorname{Tr} AX^{(m)}}] = \mathbb{E}[e^{i(\alpha_1,\dots,\alpha_N)\cdot(X^{(m)}_n,\dots,X^{(m)}_{NN})}]$
where α_1,\dots,α_N is any enumeration of the eigenvalues of A.

• An invariant ensemble $X^{(N)}$ is smooth if $X^{(N)}_{11}, \ldots, X^{(N)}_{NN}$ admit joint moments of all orders.

• By exchangeability, suffices to consider joint moments indexed by Young diagrams: if
$$|\lambda|=d$$
 and $l(\lambda)=r$, put

$$m_{\lambda}^{(N)} = m_{d} \left(\underbrace{X_{\mu}^{(N)}}_{\lambda_{1}}, \underbrace{X_{\mu}^{(N)}}_{\lambda_{1}}, \ldots, \underbrace{X_{rr}^{(N)}}_{\lambda_{r}}, \underbrace{X_{rr}^{(N)}}_{\lambda_{r}} \right) = \mathbb{E} \left[\underbrace{\prod_{i=1}^{r}}_{i=1} \left((X_{\mu}^{(N)})^{\lambda_{i}} \right].$$

• Example: if
$$\lambda = \prod_{n}^{(N)}$$
, then $m_{\lambda}^{(N)} = \mathbb{E}\left[\left(\chi_{11}^{(N)}\right)^{5}\left(\chi_{22}^{(N)}\right)^{3}\left(\chi_{33}^{(N)}\right)^{2}\right]$.
Equivalently, $m_{\lambda}^{(N)}$ is coefficient of $\frac{a_{1}^{5}}{5!} \frac{a_{2}^{3}}{3!} \frac{a_{3}^{2}}{2!}$ in $\mathbb{E}\left[e^{i(a_{1}, a_{2}, a_{3})}\left(\chi_{11}^{(N)}, \chi_{22}^{(N)}, \chi_{33}^{(N)}\right)\right]$.

• General principle: cumulants are better than moments.

• Trade
$$m_{\lambda}^{(N)}$$
 for $C_{\lambda}^{(N)} = C_d \left(\underbrace{X_{\mu}^{(N)}}_{\lambda_1}, \underbrace{X_{\mu}^{(N)}}_{\lambda_1}, \ldots, \underbrace{X_{rr}^{(N)}}_{\lambda_r}, \underbrace{X_{rr}^{(N)}}_{\lambda_r} \right)$.

$$C_{\lambda}^{(N)} = C_{10} \left(X_{11}^{(N)}, X_{11}^{(N)}, X_{11}^{(N)}, X_{11}^{(N)}, X_{11}^{(N)}, X_{11}^{(N)}, X_{11}^{(N)}, X_{22}^{(N)}, X_{22}^{(N)}, X_{22}^{(N)}, X_{33}^{(N)}, X_{33}^{(N)}, X_{33}^{(N)} \right).$$

Coefficient of $\frac{a_1^5}{5!} \frac{a_2^3}{3!} \frac{a_3^2}{2!}$ in Maclaurin series of $\log \mathbb{E}[e^{i(a_1, a_2, a_3) \cdot (X_{11}^{(N)}, X_{22}^{(N)}, X_{33}^{(N)})]$.

Theorem (Matsumoto - N.): For a smooth invariant ensemble $X_{,,}^{(N)}$ the following are equivalent:

1) For each d,
$$p_d^{(N)}$$
 converges in probability to a deterministic limit $p_d^{(\infty)}$;

2) For each
$$\lambda$$
, the limit $C_{\lambda}^{(\infty)} = \lim_{N \to \infty} N^{|\lambda|-1} C_{\lambda}^{(N)}$ exists,
and vanishes if $\ell(\lambda)^{\gamma}$!.

• What is the relationship between $p_1^{(\omega)}, p_2^{(\omega)}, p_3^{(\omega)}, \dots$ and $c_1^{(\omega)}, c_2^{(\omega)}, c_3^{(\omega)}, \dots$?

$$K\left(p_{1}^{(\infty)}, p_{2}^{(\infty)}, p_{3}^{(\infty)}, \ldots\right) = \left(\frac{1}{0!} C_{1}^{(\infty)}, \frac{1}{1!} C_{2}^{(\infty)}, \frac{1}{2!} C_{3}^{(\infty)}, \ldots\right)$$

$$R\left(p_{1}^{(\omega)}, p_{2}^{(\omega)}, p_{3}^{(\omega)}, \ldots\right) = \left(\frac{1}{0!}c_{1}^{(\omega)}, \frac{1}{1!}c_{2}^{(\omega)}, \frac{1}{2!}c_{3}^{(\omega)}, \ldots\right).$$
• Idea of proof: use $X_{ii}^{(u)} = \sum_{j=1}^{N} U_{ij}^{(u)} E_{j}^{(u)} \overline{U}_{ij}^{(u)}$, where $U^{(u)} = [U_{ij}^{(u)}]_{ij=i}^{N}$ is uniformly random in $O(N), U(N)$, or $Sp(N)$ according to whether $\beta = 1, 2,$ or 4 .

• Olshanski-Vershik: considered the case $N = \infty$.

• Collins: considered the case where eigenvalues of $X^{(N)}$ are deterministic.

• Guionnet – Maïda: considered $Z^{(N)} = X^{(N)} + Y^{(N)}$, where eigenvalues of $X^{(N)}$, $Y^{(N)}$ deterministic.

• Bufetov-Gorin: related results for discrete particle systems.

Example: Let X^(W) be an invariant ensemble such that X^(W)₁₁,...,X^(W)_{NN} are
iid Gaussians of mean
$$c_1$$
, variance c_2N^{-1} .
Easy: higher pure cumulants vanish by Gaussianity, mixed
cumulants vanish by independence. Thus limits
 $C_{\lambda}^{(\omega)} = \lim_{N \to \infty} N^{|\lambda|-1} c_{\lambda}^{(W)}$, $\lambda \in Y$
exist, with $c_1^{(\omega)} = c_1$, $c_2^{(\omega)} = c_2$, and $c_{\lambda}^{(\omega)} = 0$ otherwise.
Conclusion: each $p_d^{(W)}$ converges in probability to deterministic $p_a^{(W)}$,
and

$$\mathbb{R}\left(p_{1}^{(\infty)}, p_{2}^{(\infty)}, p_{3}^{(\infty)}, \ldots\right) = \left(c_{1}, c_{2}, 0, 0, \ldots\right).$$

Example: Let $X^{(N)}$, $Y^{(N)}$ be independent invariant ensembles with

$$p_d(X^{(n)}) \rightarrow X_d$$
 and $p_d(Y^{(n)}) \rightarrow y_d$

Form
$$Z^{(N)} = X^{(N)} + Y^{(N)}$$
. Then for any $\lambda \in Y$, $|\lambda| = d$, $\ell(\lambda) = r$, independence yields

$$= C_{d} \left(\underbrace{X_{11}^{(N)}, X_{11}^{(N)}, \dots, X_{rr}^{(N)}}_{\lambda_{1}} \right) + C_{d} \left(\underbrace{Y_{11}^{(N)}, Y_{11}^{(N)}, \dots, Y_{rr}^{(N)}}_{\lambda_{1}} \right) + C_{d} \left(\underbrace{Y_{11}^{(N)}, \dots, Y_{11}^{(N)}, \dots, Y_{rr}^{(N)}}_{\lambda_{1}} \right).$$

Get that $p_d(Z^{(N)}) \rightarrow Z_d$, and

$$R(z_{1}, z_{2}, z_{3}, ...) = R(x_{1}, x_{2}, x_{3}, ...) + R(y_{1}, y_{2}, y_{3}, ...)$$

