Free Multiplicative Brownian Motion, and Brown Measure

Extended Probabilistic Operator Algebras Seminar UC Berkeley
Todd Kemp
UC San Diego

November 10, 2017

Giving Credit where Credit is Due

Based partly on joint work with Bruce Driver and Brian Hall, and highlighting the work of Philippe Biane.

- Biane, P.: Free Brownian motion, free stochastic calculus and random matrices. Fields Inst. Commun. vol. 12, Amer. Math. Soc., PRovidence, RI, 1-19 (1997)
- Biane, P.: Segal-Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems. J. Funct. Anal. 144, 1, 232-286 (1997)
- Driver; Hall; K: The large- N limit of the Segal-Bargmann transform on \mathbb{U}_{N}. J. Funct. Anal. 265, 2585-2644 (2013)
- K: The Large- N Limits of Brownian Motions on $\mathbb{G L}_{N}$. Int. Math. Res. Not. IMRN, no. 13, 4012-4057 (2016)
- K: Heat kernel empirical laws on \mathbb{U}_{N} and \mathbb{G}_{N}. J. Theoret. Probab. 30, no. 2, 397-451 (2017)
- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free+BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

Brownian Motion on $\mathrm{U}(N)$, $\mathrm{GL}(N, \mathbb{C})$, and the Large- N Limit

Brownian Motion on Lie Groups

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free + BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann
On any Riemannian manifold M, there's a Laplace operator Δ_{M}. And where there's a Laplacian, there's a Brownian motion: the Markov process $\left(B_{t}^{x}\right)_{t \geq 0}$ on M with generator $\frac{1}{2} \Delta_{M}$, started at $B_{0}^{x}=x \in M$.

Brownian Motion on Lie Groups

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free + BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

On any Riemannian manifold M, there's a Laplace operator Δ_{M}. And where there's a Laplacian, there's a Brownian motion: the Markov process $\left(B_{t}^{x}\right)_{t \geq 0}$ on M with generator $\frac{1}{2} \Delta_{M}$, started at $B_{0}^{x}=x \in M$.
Let Γ be a (matrix) Lie group. Any inner product on $\operatorname{Lie}(\Gamma)=T_{I} \Gamma$ gives rise to a unique left-invariant Riemannian metric, and corresponding Laplacian Δ_{Γ}. On Γ we canonically start the Brownian motion $\left(B_{t}\right)_{t \geq 0}$ at $I \in \Gamma$.

Brownian Motion on Lie Groups

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free + BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

On any Riemannian manifold M, there's a Laplace operator Δ_{M}. And where there's a Laplacian, there's a Brownian motion: the Markov process $\left(B_{t}^{x}\right)_{t \geq 0}$ on M with generator $\frac{1}{2} \Delta_{M}$, started at $B_{0}^{x}=x \in M$.
Let Γ be a (matrix) Lie group. Any inner product on $\operatorname{Lie}(\Gamma)=T_{I} \Gamma$ gives rise to a unique left-invariant Riemannian metric, and corresponding Laplacian Δ_{Γ}. On Γ we canonically start the Brownian motion $\left(B_{t}\right)_{t \geq 0}$ at $I \in \Gamma$.

There is a beautiful relationship between the Brownian motion W_{t} on the Lie algebra $\operatorname{Lie}(\Gamma)$ and the Brownian motion B_{t} : the rolling map

$$
d B_{t}=B_{t} \circ d W_{t}, \quad \text { i.e. } \quad B_{t}=I+\int_{0}^{t} B_{t} \circ d W_{t} .
$$

Here \circ denotes the Stratonovich stochastic integral. This can always be converted into an Itô integral; but the answer depends on the structure of the group Γ (and the chosen inner product).

Brownian Motion on $\mathrm{U}(N)$ and $\mathrm{GL}(N, \mathbb{C})$

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free + BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

Fix the reverse normalized Hilbert-Schmidt inner product on $\mathbb{M}_{N}(\mathbb{C})$ for all matrix Lie algebras:

$$
\langle A, B\rangle=N \operatorname{Tr}\left(B^{*} A\right) .
$$

Let $X_{t}=X_{t}^{N}$ and $Y_{t}=Y_{t}^{N}$ be independent Hermitian Brownian motions of variance t / N.

Brownian Motion on $\mathrm{U}(N)$ and $\mathrm{GL}(N, \mathbb{C})$

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free + BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

Fix the reverse normalized Hilbert-Schmidt inner product on $\mathbb{M}_{N}(\mathbb{C})$ for all matrix Lie algebras:

$$
\langle A, B\rangle=N \operatorname{Tr}\left(B^{*} A\right) .
$$

Let $X_{t}=X_{t}^{N}$ and $Y_{t}=Y_{t}^{N}$ be independent Hermitian Brownian motions of variance t / N.

The Brownian motion on $\operatorname{Lie}(\mathrm{U}(N))$ is $i X_{t}$; the Brownian motion U_{t} on $\mathrm{U}(N)$ satisfies

$$
d U_{t}=i U_{t} d X_{t}-\frac{1}{2} U_{t} d t
$$

Brownian Motion on $\mathrm{U}(N)$ and $\mathrm{GL}(N, \mathbb{C})$

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free + BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

Fix the reverse normalized Hilbert-Schmidt inner product on $\mathbb{M}_{N}(\mathbb{C})$ for all matrix Lie algebras:

$$
\langle A, B\rangle=N \operatorname{Tr}\left(B^{*} A\right)
$$

Let $X_{t}=X_{t}^{N}$ and $Y_{t}=Y_{t}^{N}$ be independent Hermitian Brownian motions of variance t / N.

The Brownian motion on $\operatorname{Lie}(\mathrm{U}(N))$ is $i X_{t}$; the Brownian motion U_{t} on $\mathrm{U}(N)$ satisfies

$$
d U_{t}=i U_{t} d X_{t}-\frac{1}{2} U_{t} d t
$$

The Brownian motion on $\operatorname{Lie}(\mathrm{GL}(N, \mathbb{C}))=\mathbb{M}_{N}(\mathbb{C})$ is $Z_{t}=2^{-1 / 2} i\left(X_{t}+i Y_{t}\right)$; the Brownian motion G_{t} on $\operatorname{GL}(N, \mathbb{C})$ satisfies

$$
d G_{t}=G_{t} d Z_{t}
$$

Free Additive Brownian Motion

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free+BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

If $X_{t}=X_{t}^{N}$ is a Hermitian Brownian motion process, then at each time $t>0$ it is a GUE_{N} with entries of variance t / N. Wigner's law then shows that the empirical spectral distribution of X_{t}^{N} converges to the semicircle law $\varsigma_{t}=\frac{1}{2 \pi t} \sqrt{\left(4 t-x^{2}\right)_{+}} d x$.

Free Additive Brownian Motion

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free+BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

If $X_{t}=X_{t}^{N}$ is a Hermitian Brownian motion process, then at each time $t>0$ it is a GUE_{N} with entries of variance t / N. Wigner's law then shows that the empirical spectral distribution of X_{t}^{N} converges to the semicircle law $\varsigma_{t}=\frac{1}{2 \pi t} \sqrt{\left(4 t-x^{2}\right)_{+}} d x$. In fact, it converges as a process.

Free Additive Brownian Motion

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free + BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

If $X_{t}=X_{t}^{N}$ is a Hermitian Brownian motion process, then at each time $t>0$ it is a GUE_{N} with entries of variance t / N. Wigner's law then shows that the empirical spectral distribution of X_{t}^{N} converges to the semicircle law $s_{t}=\frac{1}{2 \pi t} \sqrt{\left(4 t-x^{2}\right)_{+}} d x$. In fact, it converges as a process.

A process $\left(x_{t}\right)_{t \geq 0}$ (in a W^{*}-probability space with trace τ) is a free additive Brownian motion if its increments are freely independent $-x_{t}-x_{s}$ is free from $\left\{x_{r}: r \leq s\right\}-$ and $x_{t}-x_{s}$ has the semicircular distribution ς_{t-s}, for all $t>s$.

Free Additive Brownian Motion

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free + BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

If $X_{t}=X_{t}^{N}$ is a Hermitian Brownian motion process, then at each time $t>0$ it is a GUE_{N} with entries of variance t / N. Wigner's law then shows that the empirical spectral distribution of X_{t}^{N} converges to the semicircle law $s_{t}=\frac{1}{2 \pi t} \sqrt{\left(4 t-x^{2}\right)_{+}} d x$. In fact, it converges as a process.

A process $\left(x_{t}\right)_{t \geq 0}$ (in a W^{*}-probability space with trace τ) is a free additive Brownian motion if its increments are freely independent $-x_{t}-x_{s}$ is free from $\left\{x_{r}: r \leq s\right\}$ - and $x_{t}-x_{s}$ has the semicircular distribution ς_{t-s}, for all $t>s$. It can be constructed on the free Fock space over $L^{2}\left(\mathbb{R}_{+}\right)$: $x_{t}=l\left(\mathbb{1}_{[0, t]}\right)+l^{*}\left(\mathbb{1}_{[0, t]}\right)$.

Free Additive Brownian Motion

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free + BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

If $X_{t}=X_{t}^{N}$ is a Hermitian Brownian motion process, then at each time $t>0$ it is a GUE_{N} with entries of variance t / N. Wigner's law then shows that the empirical spectral distribution of X_{t}^{N} converges to the semicircle law $\varsigma_{t}=\frac{1}{2 \pi t} \sqrt{\left(4 t-x^{2}\right)_{+}} d x$. In fact, it converges as a process.

A process $\left(x_{t}\right)_{t \geq 0}$ (in a W^{*}-probability space with trace τ) is a free additive Brownian motion if its increments are freely independent $-x_{t}-x_{s}$ is free from $\left\{x_{r}: r \leq s\right\}-$ and $x_{t}-x_{s}$ has the semicircular distribution ς_{t-s}, for all $t>s$. It can be constructed on the free Fock space over $L^{2}\left(\mathbb{R}_{+}\right): x_{t}=l\left(\mathbb{1}_{[0, t]}\right)+l^{*}\left(\mathbb{1}_{[0, t]}\right)$.

In 1991, Voiculescu showed that the Hermitian Brownian motion $\left(X_{t}^{N}\right)_{t \geq 0}$ converges to $\left(x_{t}\right)_{t \geq 0}$ in finite-dimensional non-commutative distributions:

$$
\frac{1}{N} \operatorname{Tr}\left(P\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)\right) \rightarrow \tau\left(P\left(x_{t_{1}}, \ldots, x_{t_{n}}\right)\right) \quad \forall P
$$

Free Unitary and Free Multiplicative Brownian Motion

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free+BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

There is now a well-developed theory of free stochastic differential equations. Initially constructed in the free Fock space setting (by Kümmerer and Speicher in the early 1990s), it was used by Biane in 1997 to define "free versions" of U_{t} and G_{t}.

Free Unitary and Free Multiplicative Brownian Motion

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free+BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

There is now a well-developed theory of free stochastic differential equations. Initially constructed in the free Fock space setting (by Kümmerer and Speicher in the early 1990s), it was used by Biane in 1997 to define "free versions" of U_{t} and G_{t}.

Let x_{t}, y_{t} be freely independent free additive Brownian motions, and $z_{t}=2^{-1 / 2} i\left(x_{t}+i y_{t}\right)$. The free unitary Brownian motion is the process started at $u_{0}=1$ defined by

$$
d u_{t}=i u_{t} d x_{t}-\frac{1}{2} u_{t} d t
$$

The free multiplicative Brownian motion is the process started at $g_{0}=1$ defined by

$$
d g_{t}=g_{t} d z_{t}
$$

Free Unitary and Free Multiplicative Brownian Motion

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free + BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

There is now a well-developed theory of free stochastic differential equations. Initially constructed in the free Fock space setting (by Kümmerer and Speicher in the early 1990s), it was used by Biane in 1997 to define "free versions" of U_{t} and G_{t}.

Let x_{t}, y_{t} be freely independent free additive Brownian motions, and $z_{t}=2^{-1 / 2} i\left(x_{t}+i y_{t}\right)$. The free unitary Brownian motion is the process started at $u_{0}=1$ defined by

$$
d u_{t}=i u_{t} d x_{t}-\frac{1}{2} u_{t} d t
$$

The free multiplicative Brownian motion is the process started at $g_{0}=1$ defined by

$$
d g_{t}=g_{t} d z_{t}
$$

It is natural to expect that these processes should be the large- N limits of the $\mathrm{U}(N)$ and $\mathrm{GL}(N, \mathbb{C})$ Brownian motions.

Free Unitary Brownian Motion

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free+BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

Theorem. [Biane, 1997] For all non-commutative (Laurent) polynomials P in n variables and times $t_{1}, \ldots, t_{n} \geq 0$,

$$
\frac{1}{N} \operatorname{Tr}\left(P\left(U_{t_{1}}^{N}, \ldots, U_{t_{n}}^{N}\right)\right) \rightarrow \tau\left(P\left(u_{t_{1}}, \ldots, u_{t_{n}}\right)\right) \text { a.s. }
$$

Free Unitary Brownian Motion

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free + BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

Theorem. [Biane, 1997] For all non-commutative (Laurent) polynomials P in n variables and times $t_{1}, \ldots, t_{n} \geq 0$,

$$
\frac{1}{N} \operatorname{Tr}\left(P\left(U_{t_{1}}^{N}, \ldots, U_{t_{n}}^{N}\right)\right) \rightarrow \tau\left(P\left(u_{t_{1}}, \ldots, u_{t_{n}}\right)\right) \text { a.s. }
$$

Biane also computed the moments of u_{t}, and its spectral measure ν_{t} : it has a density (smooth on the interior of its support), supported on a compact arc for $t<4$, and fully supported on \mathbb{U} for $t \geq 4$.

Free Unitary Brownian Motion

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free+BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

Theorem. [Biane, 1997] For all non-commutative (Laurent) polynomials P in n variables and times $t_{1}, \ldots, t_{n} \geq 0$,

$$
\frac{1}{N} \operatorname{Tr}\left(P\left(U_{t_{1}}^{N}, \ldots, U_{t_{n}}^{N}\right)\right) \rightarrow \tau\left(P\left(u_{t_{1}}, \ldots, u_{t_{n}}\right)\right) \text { a.s. }
$$

Biane also computed the moments of u_{t}, and its spectral measure ν_{t} : it has a density (smooth on the interior of its support), supported on a compact arc for $t<4$, and fully supported on \mathbb{U} for $t \geq 4$.

Analytic Transforms Related to u_{t}

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free+BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

Biane's approach to understanding the measure ν_{t} was through its moment-generating function

$$
\psi_{t}(z)=\int_{\mathbb{U}} \frac{u z}{1-u z} \nu_{t}(d u)=\sum_{n \geq 1} m_{n}\left(\nu_{t}\right) z^{n}
$$

(the second $=$ holds for $|z|<1$; the integral converges for $\left.1 / z \notin \operatorname{supp} \nu_{t}\right)$.

Analytic Transforms Related to u_{t}

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free + BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

Biane's approach to understanding the measure ν_{t} was through its moment-generating function

$$
\psi_{t}(z)=\int_{\mathbb{U}} \frac{u z}{1-u z} \nu_{t}(d u)=\sum_{n \geq 1} m_{n}\left(\nu_{t}\right) z^{n}
$$

(the second $=$ holds for $|z|<1$; the integral converges for $\left.1 / z \notin \operatorname{supp} \nu_{t}\right)$. Then define

$$
\chi_{t}(z)=\frac{\psi_{t}(z)}{1+\psi_{t}(z)}
$$

The function χ_{t} is injective on \mathbb{D}, and has a one-sided inverse f_{t} : $f_{t}\left(\chi_{t}(z)\right)=z$ for $z \in \mathbb{D}$ (but $\chi_{t} \circ f_{t}$ is only the identity on a certain region in \mathbb{C}; more on this later).

Analytic Transforms Related to u_{t}

- Citations

Brownian Motion

- BM on Lie Groups
- U \& GL
- Free + BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Brown Measure
Segal-Bargmann

Biane's approach to understanding the measure ν_{t} was through its moment-generating function

$$
\psi_{t}(z)=\int_{\mathbb{U}} \frac{u z}{1-u z} \nu_{t}(d u)=\sum_{n \geq 1} m_{n}\left(\nu_{t}\right) z^{n}
$$

(the second $=$ holds for $|z|<1$; the integral converges for $\left.1 / z \notin \operatorname{supp} \nu_{t}\right)$. Then define

$$
\chi_{t}(z)=\frac{\psi_{t}(z)}{1+\psi_{t}(z)}
$$

The function χ_{t} is injective on \mathbb{D}, and has a one-sided inverse f_{t} : $f_{t}\left(\chi_{t}(z)\right)=z$ for $z \in \mathbb{D}$ (but $\chi_{t} \circ f_{t}$ is only the identity on a certain region in \mathbb{C}; more on this later).

Using the SDE for u_{t} and some clever complex analysis, Biane showed that

$$
f_{t}(z)=z e^{\frac{t}{2} \frac{1+z}{1-z}}
$$

The Large- N Limit of G_{t}^{N}

In 1997 Biane conjectured a similar large- N limit should hold for the Brownian motion on $\mathrm{GL}(N, \mathbb{C})$, but the ideas of his U_{t}^{N} proof (spectral theorem, representation theory of $\mathrm{U}(N)$) did not translate well to the a.s. non-normal process G_{t}^{N}.

The Large- N Limit of G_{t}^{N}

In 1997 Biane conjectured a similar large- N limit should hold for the Brownian motion on $\mathrm{GL}(N, \mathbb{C})$, but the ideas of his U_{t}^{N} proof (spectral theorem, representation theory of $\mathrm{U}(N)$) did not translate well to the a.s. non-normal process G_{t}^{N}.

Theorem. [K, 2014 (2016)] For all non-commutative Laurent polynomials P in $2 n$ variables, and times $t_{1}, \ldots, t_{n} \geq 0$,

$$
\frac{1}{N} \operatorname{Tr}\left(P\left(G_{t_{1}}^{N},\left(G_{t_{1}}^{N}\right)^{*}, \ldots, G_{t_{n}}^{N},\left(G_{t_{n}}^{N}\right)^{*}\right)\right) \rightarrow \tau\left(P\left(g_{t_{1}}, g_{t_{1}}^{*}, \ldots, g_{t_{n}}, g_{t_{n}}^{*}\right)\right) \text { a.s. }
$$

The Large- N Limit of G_{t}^{N}

In 1997 Biane conjectured a similar large- N limit should hold for the Brownian motion on $\mathrm{GL}(N, \mathbb{C})$, but the ideas of his U_{t}^{N} proof (spectral theorem, representation theory of $\mathrm{U}(N)$) did not translate well to the a.s. non-normal process G_{t}^{N}.

Theorem. [K, 2014 (2016)] For all non-commutative Laurent polynomials P in $2 n$ variables, and times $t_{1}, \ldots, t_{n} \geq 0$,

$$
\frac{1}{N} \operatorname{Tr}\left(P\left(G_{t_{1}}^{N},\left(G_{t_{1}}^{N}\right)^{*}, \ldots, G_{t_{n}}^{N},\left(G_{t_{n}}^{N}\right)^{*}\right)\right) \rightarrow \tau\left(P\left(g_{t_{1}}, g_{t_{1}}^{*}, \ldots, g_{t_{n}}, g_{t_{n}}^{*}\right)\right) \text { a.s. }
$$

The proof required several new ingredients: a detailed understanding of the Laplacian on $\mathrm{GL}(N, \mathbb{C})$, and concentration of measure for trace polynomials. Putting these together with an iteration scheme from the SDE, together with requisite covariance estimates, yielded the proof.

The Large- N Limit of G_{t}^{N}

In 1997 Biane conjectured a similar large- N limit should hold for the Brownian motion on $\mathrm{GL}(N, \mathbb{C})$, but the ideas of his U_{t}^{N} proof (spectral theorem, representation theory of $\mathrm{U}(N)$) did not translate well to the a.s. non-normal process G_{t}^{N}.

Theorem. [K, 2014 (2016)] For all non-commutative Laurent polynomials P in $2 n$ variables, and times $t_{1}, \ldots, t_{n} \geq 0$,

$$
\frac{1}{N} \operatorname{Tr}\left(P\left(G_{t_{1}}^{N},\left(G_{t_{1}}^{N}\right)^{*}, \ldots, G_{t_{n}}^{N},\left(G_{t_{n}}^{N}\right)^{*}\right)\right) \rightarrow \tau\left(P\left(g_{t_{1}}, g_{t_{1}}^{*}, \ldots, g_{t_{n}}, g_{t_{n}}^{*}\right)\right) \text { a.s. }
$$

The proof required several new ingredients: a detailed understanding of the Laplacian on $\mathrm{GL}(N, \mathbb{C})$, and concentration of measure for trace polynomials. Putting these together with an iteration scheme from the SDE, together with requisite covariance estimates, yielded the proof.

This is convergence of the (multi-time) $*$-distribution, of a non-normal matrix process. What about the eigenvalues?

The Eigenvalues of Brownian Motion GL(N, \mathbb{C})

Because U_{t}^{N} and u_{t} are normal, their $*$-distributions encode their ESDs, so the bulk eigenvalue behavior is fully understood.

The Eigenvalues of Brownian Motion $\mathrm{GL}(N, \mathbb{C})$

Because U_{t}^{N} and u_{t} are normal, their $*$-distributions encode their ESDs, so the bulk eigenvalue behavior is fully understood.

The $\operatorname{GL}(N, \mathbb{C})$ Brownian motion G_{t}^{N} eigenvalues are much more challenging.

The Eigenvalues of Brownian Motion $\mathrm{GL}(N, \mathbb{C})$

Because U_{t}^{N} and u_{t} are normal, their $*$-distributions encode their ESDs, so the bulk eigenvalue behavior is fully understood.

The $\operatorname{GL}(N, \mathbb{C})$ Brownian motion G_{t}^{N} eigenvalues are much more challenging.

Because U_{t}^{N} and u_{t} are normal, their $*$-distributions encode their ESDs, so the bulk eigenvalue behavior is fully understood.

The $\operatorname{GL}(N, \mathbb{C})$ Brownian motion G_{t}^{N} eigenvalues are much more challenging.

The Eigenvalues of Brownian Motion $\mathrm{GL}(N, \mathbb{C})$

Because U_{t}^{N} and u_{t} are normal, their $*$-distributions encode their ESDs, so the bulk eigenvalue behavior is fully understood.

The $\operatorname{GL}(N, \mathbb{C})$ Brownian motion G_{t}^{N} eigenvalues are much more challenging.

- Citations

Brownian Motion

Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Brown's Spectral Measure in Tracial von Neumann Algebras

If (\mathcal{A}, τ) is a W^{*}-probability space, then any normal operator $a \in \mathcal{A}$ has a spectral measure $\mu_{a}=\tau \circ E^{a}$. If A is a normal matrix, μ_{A} is its ESD. It is characterized (nicely) by the $*$-distribution of a :

$$
\int_{\mathbb{C}} z^{k} \bar{z}^{\ell} \mu_{a}(d z d \bar{z})=\tau\left(a^{k} a^{* \ell}\right) .
$$

Brown's Spectral Measure in Tracial von Neumann Algebras

If (\mathcal{A}, τ) is a W^{*}-probability space, then any normal operator $a \in \mathcal{A}$ has a spectral measure $\mu_{a}=\tau \circ E^{a}$. If A is a normal matrix, μ_{A} is its ESD. It is characterized (nicely) by the $*$-distribution of a :

$$
\int_{\mathbb{C}} z^{k} \bar{z}^{\ell} \mu_{a}(d z d \bar{z})=\tau\left(a^{k} a^{* \ell}\right)
$$

If a is not normal, there is no such measure. But there is a substitute: Brown's spectral measure. Let $L(a)$ denote the (log) Kadison-Fuglede determinant:

$$
L(a)=\int_{\mathbb{R}} \log t \mu_{|a|}(d t)=\tau\left(\int_{\mathbb{R}} \log t E^{|a|}(d t)\right)
$$

Brown's Spectral Measure in Tracial von Neumann Algebras

If (\mathcal{A}, τ) is a W^{*}-probability space, then any normal operator $a \in \mathcal{A}$ has a spectral measure $\mu_{a}=\tau \circ E^{a}$. If A is a normal matrix, μ_{A} is its ESD. It is characterized (nicely) by the $*$-distribution of a :

$$
\int_{\mathbb{C}} z^{k} \bar{z}^{\ell} \mu_{a}(d z d \bar{z})=\tau\left(a^{k} a^{* \ell}\right)
$$

If a is not normal, there is no such measure. But there is a substitute: Brown's spectral measure. Let $L(a)$ denote the (log) Kadison-Fuglede determinant:

$$
L(a)=\int_{\mathbb{R}} \log t \mu_{|a|}(d t)=\tau\left(\int_{\mathbb{R}} \log t E^{|a|}(d t)\right)=\tau(\log |a|)
$$

(the last $=$ holds if $a^{-1} \in \mathcal{A}$).

Brown's Spectral Measure in Tracial von Neumann Algebras

If (\mathcal{A}, τ) is a W^{*}-probability space, then any normal operator $a \in \mathcal{A}$ has a spectral measure $\mu_{a}=\tau \circ E^{a}$. If A is a normal matrix, μ_{A} is its ESD. It is characterized (nicely) by the $*$-distribution of a :

$$
\int_{\mathbb{C}} z^{k} \bar{z}^{\ell} \mu_{a}(d z d \bar{z})=\tau\left(a^{k} a^{* \ell}\right)
$$

If a is not normal, there is no such measure. But there is a substitute: Brown's spectral measure. Let $L(a)$ denote the (log) Kadison-Fuglede determinant:

$$
L(a)=\int_{\mathbb{R}} \log t \mu_{|a|}(d t)=\tau\left(\int_{\mathbb{R}} \log t E^{|a|}(d t)\right)=\tau(\log |a|)
$$

(the last $=$ holds if $a^{-1} \in \mathcal{A}$). Then $\lambda \mapsto L(a-\lambda)$ is subharmonic on \mathbb{C}, and

$$
\mu_{a}=\frac{1}{2 \pi} \nabla_{\lambda}^{2} L(a-\lambda)
$$

is a probability measure on \mathbb{C}. If A is any matrix, μ_{A} is its ESD.

Properties of Brown Measure

- Citations

Brownian Motion

Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

The Brown measure has some nice properties analogous to the spectral measure, but not all:

- $\tau\left(a^{k}\right)=\int_{\mathbb{C}} z^{k} \mu_{a}(d z d \bar{z})$ and $\tau\left(a^{* k}\right)=\int_{\mathbb{C}} \bar{z}^{k} \mu_{a}(d z d \bar{z})$ but you cannot max and match.

Properties of Brown Measure

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

The Brown measure has some nice properties analogous to the spectral measure, but not all:

- $\tau\left(a^{k}\right)=\int_{\mathbb{C}} z^{k} \mu_{a}(d z d \bar{z})$ and $\tau\left(a^{* k}\right)=\int_{\mathbb{C}} \bar{z}^{k} \mu_{a}(d z d \bar{z})$ but you cannot max and match.
- $\tau(\log |a-\lambda|)=L(a-\lambda)=\int_{\mathbb{C}} \log |z-\lambda| \mu_{a}(d z d \bar{z})$ for large λ, and this characterizes μ_{a}.

Properties of Brown Measure

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

The Brown measure has some nice properties analogous to the spectral measure, but not all:

- $\tau\left(a^{k}\right)=\int_{\mathbb{C}} z^{k} \mu_{a}(d z d \bar{z})$ and $\tau\left(a^{* k}\right)=\int_{\mathbb{C}} \bar{z}^{k} \mu_{a}(d z d \bar{z})$ but you cannot max and match.
- $\tau(\log |a-\lambda|)=L(a-\lambda)=\int_{\mathbb{C}} \log |z-\lambda| \mu_{a}(d z d \bar{z})$ for large λ, and this characterizes μ_{a}. In particular, the $*$-distribution of a determines μ_{a} - but with a log discontinuity.

Properties of Brown Measure

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

The Brown measure has some nice properties analogous to the spectral measure, but not all:

- $\tau\left(a^{k}\right)=\int_{\mathbb{C}} z^{k} \mu_{a}(d z d \bar{z})$ and $\tau\left(a^{* k}\right)=\int_{\mathbb{C}} \bar{z}^{k} \mu_{a}(d z d \bar{z})$ but you cannot max and match.
- $\tau(\log |a-\lambda|)=L(a-\lambda)=\int_{\mathbb{C}} \log |z-\lambda| \mu_{a}(d z d \bar{z})$ for large λ, and this characterizes μ_{a}. In particular, the $*$-distribution of a determines μ_{a} - but with a log discontinuity.
- $\operatorname{supp} \mu_{a} \subseteq \operatorname{Spec}(a) \quad$ (can be a strict subset).

Properties of Brown Measure

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

The Brown measure has some nice properties analogous to the spectral measure, but not all:

- $\tau\left(a^{k}\right)=\int_{\mathbb{C}} z^{k} \mu_{a}(d z d \bar{z})$ and $\tau\left(a^{* k}\right)=\int_{\mathbb{C}} \bar{z}^{k} \mu_{a}(d z d \bar{z})$ but you cannot max and match.
- $\tau(\log |a-\lambda|)=L(a-\lambda)=\int_{\mathbb{C}} \log |z-\lambda| \mu_{a}(d z d \bar{z})$ for large λ, and this characterizes μ_{a}. In particular, the $*$-distribution of a determines μ_{a} - but with a log discontinuity.
- $\operatorname{supp} \mu_{a} \subseteq \operatorname{Spec}(a) \quad$ (can be a strict subset).

Let A^{N} be a sequence of matrices with a as limit in $*$-distribution. Since the Brown measure $\mu_{A^{N}}$ is the empirical spectral distribution of A^{N}, it is natural to expect that $\operatorname{ESD}\left(A^{N}\right) \rightarrow \mu_{a}$.

Properties of Brown Measure

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

The Brown measure has some nice properties analogous to the spectral measure, but not all:

- $\tau\left(a^{k}\right)=\int_{\mathbb{C}} z^{k} \mu_{a}(d z d \bar{z})$ and $\tau\left(a^{* k}\right)=\int_{\mathbb{C}} \bar{z}^{k} \mu_{a}(d z d \bar{z})$ but you cannot max and match.
- $\tau(\log |a-\lambda|)=L(a-\lambda)=\int_{\mathbb{C}} \log |z-\lambda| \mu_{a}(d z d \bar{z})$ for large λ, and this characterizes μ_{a}. In particular, the $*$-distribution of a determines μ_{a} - but with a log discontinuity.
- $\operatorname{supp} \mu_{a} \subseteq \operatorname{Spec}(a) \quad$ (can be a strict subset).

Let A^{N} be a sequence of matrices with a as limit in $*$-distribution. Since the Brown measure $\mu_{A^{N}}$ is the empirical spectral distribution of A^{N}, it is natural to expect that $\operatorname{ESD}\left(A^{N}\right) \rightarrow \mu_{a}$. The log discontinuity often makes this exceedingly difficult to prove.

Convergence of the Brown Measure

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Let $\left\{a, a_{n}\right\}_{n \in \mathbb{N}}$ be a uniformly bounded set of operators in some W^{*}-probability spaces, with $a_{n} \rightarrow a$ in $*$-distribution. We would hope that $\mu_{a_{n}} \rightarrow \mu_{a}$. Without some very fine information about the spectral measure of $\left|a_{n}-\lambda\right|$ near the edge of $\operatorname{Spec}\left(a_{n}\right)$, the best that can be said in general is the following.

Convergence of the Brown Measure

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Let $\left\{a, a_{n}\right\}_{n \in \mathbb{N}}$ be a uniformly bounded set of operators in some W^{*}-probability spaces, with $a_{n} \rightarrow a$ in $*$-distribution. We would hope that $\mu_{a_{n}} \rightarrow \mu_{a}$. Without some very fine information about the spectral measure of $\left|a_{n}-\lambda\right|$ near the edge of $\operatorname{Spec}\left(a_{n}\right)$, the best that can be said in general is the following.

Proposition. Suppose that $\mu_{a_{n}} \rightarrow \mu$ weakly for some probability measure μ on \mathbb{C}. Then

$$
\int_{\mathbb{C}} \log |z-\lambda| \mu(d z d \bar{z}) \leq \int_{\mathbb{C}} \log |z-\lambda| \mu_{a}(d z d \bar{z})
$$

for all $\lambda \in \mathbb{C}$; and equality holds for sufficiently large λ.

Convergence of the Brown Measure

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Let $\left\{a, a_{n}\right\}_{n \in \mathbb{N}}$ be a uniformly bounded set of operators in some W^{*}-probability spaces, with $a_{n} \rightarrow a$ in $*$-distribution. We would hope that $\mu_{a_{n}} \rightarrow \mu_{a}$. Without some very fine information about the spectral measure of $\left|a_{n}-\lambda\right|$ near the edge of $\operatorname{Spec}\left(a_{n}\right)$, the best that can be said in general is the following.

Proposition. Suppose that $\mu_{a_{n}} \rightarrow \mu$ weakly for some probability measure μ on \mathbb{C}. Then

$$
\int_{\mathbb{C}} \log |z-\lambda| \mu(d z d \bar{z}) \leq \int_{\mathbb{C}} \log |z-\lambda| \mu_{a}(d z d \bar{z})
$$

for all $\lambda \in \mathbb{C}$; and equality holds for sufficiently large λ.

Corollary. Let V_{a} be the unbounded connected component of $\mathbb{C} \backslash$ supp μ_{a}. Then supp $\mu \subseteq \mathbb{C} \backslash V_{a}$. (In particular, if supp μ_{a} is simply-connected, then supp $\mu \subseteq \operatorname{supp} \mu_{a}$.)

Brown Measure via Regularization

- Citations

Brownian Motion

Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

The function $L(a-\lambda)=\int_{\mathbb{R}} \log t \mu_{|a|}(d t)$ is essentially impossible to compute with. But we can use regularity properties of the spectral resolution to approach it in a different way. Define

$$
L^{\epsilon}(a)=\frac{1}{2} \tau\left(\log \left(a^{*} a+\epsilon\right)\right), \quad \epsilon>0
$$

Brown Measure via Regularization

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

The function $L(a-\lambda)=\int_{\mathbb{R}} \log t \mu_{|a|}(d t)$ is essentially impossible to compute with. But we can use regularity properties of the spectral resolution to approach it in a different way. Define

$$
L^{\epsilon}(a)=\frac{1}{2} \tau\left(\log \left(a^{*} a+\epsilon\right)\right), \quad \epsilon>0
$$

The function $\lambda \mapsto L^{\epsilon}(a-\lambda)$ is $C^{\infty}(\mathbb{C})$, and is subharmonic. Define

$$
h_{a}^{\epsilon}(\lambda)=\frac{1}{2 \pi} \nabla_{\lambda}^{2} L_{\epsilon}(a-\lambda)
$$

Then h_{a}^{ϵ} is a smooth probability density on \mathbb{C}, and

$$
\mu_{a}(d \lambda)=\lim _{\epsilon \downarrow 0} h_{a}^{\epsilon}(\lambda) d \lambda
$$

Brown Measure via Regularization

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

The function $L(a-\lambda)=\int_{\mathbb{R}} \log t \mu_{|a|}(d t)$ is essentially impossible to compute with. But we can use regularity properties of the spectral resolution to approach it in a different way. Define

$$
L^{\epsilon}(a)=\frac{1}{2} \tau\left(\log \left(a^{*} a+\epsilon\right)\right), \quad \epsilon>0
$$

The function $\lambda \mapsto L^{\epsilon}(a-\lambda)$ is $C^{\infty}(\mathbb{C})$, and is subharmonic. Define

$$
h_{a}^{\epsilon}(\lambda)=\frac{1}{2 \pi} \nabla_{\lambda}^{2} L_{\epsilon}(a-\lambda)
$$

Then h_{a}^{ϵ} is a smooth probability density on \mathbb{C}, and

$$
\mu_{a}(d \lambda)=\lim _{\epsilon \downarrow 0} h_{a}^{\epsilon}(\lambda) d \lambda
$$

It is not difficult to explicitly calculate the density h_{a}^{ϵ} for fixed $\epsilon>0$.

The Density h_{a}^{ϵ} and the Spectrum of a

- Citations

Brownian Motion

Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Lemma. Let $\lambda \in \mathbb{C}$, and denote $a_{\lambda}=a-\lambda$. Then

$$
h_{a}^{\epsilon}(\lambda)=\frac{1}{\pi} \epsilon \tau\left(\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right) .
$$

The Density h_{a}^{ϵ} and the Spectrum of a

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Lemma. Let $\lambda \in \mathbb{C}$, and denote $a_{\lambda}=a-\lambda$. Then

$$
h_{a}^{\epsilon}(\lambda)=\frac{1}{\pi} \epsilon \tau\left(\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right) .
$$

From here it is easy to see why supp $\mu_{a} \subseteq \operatorname{Spec}(a)$. If $\lambda \in \operatorname{Res}(a)$ so that $a_{\lambda}^{-1} \in \mathcal{A}$, we quickly estimate

$$
\begin{aligned}
& \left|\tau\left(\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right)\right| \\
\leq & \left\|\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right\|
\end{aligned}
$$

The Density h_{a}^{ϵ} and the Spectrum of a

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Lemma. Let $\lambda \in \mathbb{C}$, and denote $a_{\lambda}=a-\lambda$. Then

$$
h_{a}^{\epsilon}(\lambda)=\frac{1}{\pi} \epsilon \tau\left(\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right) .
$$

From here it is easy to see why supp $\mu_{a} \subseteq \operatorname{Spec}(a)$. If $\lambda \in \operatorname{Res}(a)$ so that $a_{\lambda}^{-1} \in \mathcal{A}$, we quickly estimate

$$
\begin{aligned}
& \left|\tau\left(\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right)\right| \\
\leq & \left\|\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right\| \\
\leq & \left\|\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\right\|\left\|\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right\|
\end{aligned}
$$

The Density h_{a}^{ϵ} and the Spectrum of a

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Lemma. Let $\lambda \in \mathbb{C}$, and denote $a_{\lambda}=a-\lambda$. Then

$$
h_{a}^{\epsilon}(\lambda)=\frac{1}{\pi} \epsilon \tau\left(\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right) .
$$

From here it is easy to see why supp $\mu_{a} \subseteq \operatorname{Spec}(a)$. If $\lambda \in \operatorname{Res}(a)$ so that $a_{\lambda}^{-1} \in \mathcal{A}$, we quickly estimate

$$
\begin{aligned}
& \left|\tau\left(\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right)\right| \\
\leq & \left\|\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right\| \\
\leq & \left\|\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\right\|\left\|\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right\| \\
\leq & \left\|\left(a_{\lambda}^{*} a_{\lambda}\right)^{-1}\right\|\left\|\left(a_{\lambda} a_{\lambda}^{*}\right)^{-1}\right\|
\end{aligned}
$$

The Density h_{a}^{ϵ} and the Spectrum of a

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Lemma. Let $\lambda \in \mathbb{C}$, and denote $a_{\lambda}=a-\lambda$. Then

$$
h_{a}^{\epsilon}(\lambda)=\frac{1}{\pi} \epsilon \tau\left(\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right) .
$$

From here it is easy to see why supp $\mu_{a} \subseteq \operatorname{Spec}(a)$. If $\lambda \in \operatorname{Res}(a)$ so that $a_{\lambda}^{-1} \in \mathcal{A}$, we quickly estimate

$$
\begin{aligned}
& \left|\tau\left(\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right)\right| \\
\leq & \left\|\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right\| \\
\leq & \left\|\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\right\|\left\|\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right\| \\
\leq & \left\|\left(a_{\lambda}^{*} a_{\lambda}\right)^{-1}\right\|\left\|\left(a_{\lambda} a_{\lambda}^{*}\right)^{-1}\right\| \\
\leq & \left\|(a-\lambda)^{-1}\right\|^{4}
\end{aligned}
$$

The Density h_{a}^{ϵ} and the Spectrum of a

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Lemma. Let $\lambda \in \mathbb{C}$, and denote $a_{\lambda}=a-\lambda$. Then

$$
h_{a}^{\epsilon}(\lambda)=\frac{1}{\pi} \epsilon \tau\left(\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right) .
$$

From here it is easy to see why supp $\mu_{a} \subseteq \operatorname{Spec}(a)$. If $\lambda \in \operatorname{Res}(a)$ so that $a_{\lambda}^{-1} \in \mathcal{A}$, we quickly estimate

$$
\begin{aligned}
& \left|\tau\left(\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right)\right| \\
\leq & \left\|\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right\| \\
\leq & \left\|\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\right\|\left\|\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right\| \\
\leq & \left\|\left(a_{\lambda}^{*} a_{\lambda}\right)^{-1}\right\|\left\|\left(a_{\lambda} a_{\lambda}^{*}\right)^{-1}\right\| \\
\leq & \left\|(a-\lambda)^{-1}\right\|^{4} .
\end{aligned}
$$

This is locally uniformly bounded in λ; so taking $\epsilon \downarrow 0$, the factor of ϵ in $h_{a}^{\epsilon}(\lambda)$ kills the term; we find $\mu_{a}=0$ in a neighborhood of λ.

Invertibility in $L^{p}(\mathcal{A}, \tau)$

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Recall that $L^{p}(\mathcal{A}, \tau)$ is the closure of \mathcal{A} in the norm

$$
\|a\|_{p}^{p}=\tau\left(|a|^{p}\right)=\tau\left(\left(a^{*} a\right)^{p / 2}\right)
$$

(It can be realized as a set of densely-defined unbounded operators, acting on the same Hilbert space as \mathcal{A}). The non-commutative L^{p}-norms satisfy the same Hölder inequality as the classical ones.

- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Recall that $L^{p}(\mathcal{A}, \tau)$ is the closure of \mathcal{A} in the norm

$$
\|a\|_{p}^{p}=\tau\left(|a|^{p}\right)=\tau\left(\left(a^{*} a\right)^{p / 2}\right)
$$

(It can be realized as a set of densely-defined unbounded operators, acting on the same Hilbert space as \mathcal{A}). The non-commutative L^{p}-norms satisfy the same Hölder inequality as the classical ones.

It is perfectly possible for $a \in \mathcal{A}$ to be invertible in $L^{p}(\mathcal{A}, \tau)$ without having a bounded inverse. That is: there can exist $b \in L^{p}(\mathcal{A}, \tau) \backslash \mathcal{A}$ with $a b=b a=1$ (viewed as an equation in $\left.L^{p}(\mathcal{A}, \tau)\right)$.

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Recall that $L^{p}(\mathcal{A}, \tau)$ is the closure of \mathcal{A} in the norm

$$
\|a\|_{p}^{p}=\tau\left(|a|^{p}\right)=\tau\left(\left(a^{*} a\right)^{p / 2}\right)
$$

(It can be realized as a set of densely-defined unbounded operators, acting on the same Hilbert space as \mathcal{A}). The non-commutative L^{p}-norms satisfy the same Hölder inequality as the classical ones.

It is perfectly possible for $a \in \mathcal{A}$ to be invertible in $L^{p}(\mathcal{A}, \tau)$ without having a bounded inverse. That is: there can exist $b \in L^{p}(\mathcal{A}, \tau) \backslash \mathcal{A}$ with $a b=b a=1$ (viewed as an equation in $\left.L^{p}(\mathcal{A}, \tau)\right)$.

The preceding proof (with very little change) shows that $h_{a}^{\epsilon}(\lambda) \rightarrow 0$ at any point λ where $a-\lambda$ is invertible in $L^{4}(\mathcal{A}, \tau)$.

- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Recall that $L^{p}(\mathcal{A}, \tau)$ is the closure of \mathcal{A} in the norm

$$
\|a\|_{p}^{p}=\tau\left(|a|^{p}\right)=\tau\left(\left(a^{*} a\right)^{p / 2}\right)
$$

(It can be realized as a set of densely-defined unbounded operators, acting on the same Hilbert space as \mathcal{A}). The non-commutative L^{p}-norms satisfy the same Hölder inequality as the classical ones.

It is perfectly possible for $a \in \mathcal{A}$ to be invertible in $L^{p}(\mathcal{A}, \tau)$ without having a bounded inverse. That is: there can exist $b \in L^{p}(\mathcal{A}, \tau) \backslash \mathcal{A}$ with $a b=b a=1$ (viewed as an equation in $L^{p}(\mathcal{A}, \tau)$).

The preceding proof (with very little change) shows that $h_{a}^{\epsilon}(\lambda) \rightarrow 0$ at any point λ where $a-\lambda$ is invertible in $L^{4}(\mathcal{A}, \tau)$.

Definition. The $L^{p}(\mathcal{A}, \tau)$ resolvent $\operatorname{Res}_{p, \tau}(a)$ is the interior of the set of $\lambda \in \mathbb{C}$ for which $a-\lambda$ has an inverse in $L^{p}(\mathcal{A}, \tau)$. The $L^{p}(\mathcal{A}, \tau)$ spectrum $\operatorname{Spec}_{p, \tau}(a)$ is $\mathbb{C} \backslash \operatorname{Res}_{p, \tau}(a)$.

The $L^{p}(\mathcal{A}, \tau)$ Spectrum

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

From Hölder's inequality, we have the inclusions

$$
\operatorname{Spec}_{p, \tau}(a) \subseteq \operatorname{Spec}_{q, \tau}(a) \subseteq \operatorname{Spec}(a)
$$

for $1 \leq p \leq q<\infty$. Without including the closure in the definition, these inclusions can be strict; with the closure, my (wild) conjecture is that $\operatorname{Spec}_{1, \tau}(a)=\operatorname{Spec}(a)$ for all a.

The $L^{p}(\mathcal{A}, \tau)$ Spectrum

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

From Hölder's inequality, we have the inclusions

$$
\operatorname{Spec}_{p, \tau}(a) \subseteq \operatorname{Spec}_{q, \tau}(a) \subseteq \operatorname{Spec}(a)
$$

for $1 \leq p \leq q<\infty$. Without including the closure in the definition, these inclusions can be strict; with the closure, my (wild) conjecture is that $\operatorname{Spec}_{1, \tau}(a)=\operatorname{Spec}(a)$ for all a.
As noted, $\operatorname{supp} \mu_{a} \subseteq \operatorname{Spec}_{4, \tau}(a)$.

The $L^{p}(\mathcal{A}, \tau)$ Spectrum

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

From Hölder's inequality, we have the inclusions

$$
\operatorname{Spec}_{p, \tau}(a) \subseteq \operatorname{Spec}_{q, \tau}(a) \subseteq \operatorname{Spec}(a)
$$

for $1 \leq p \leq q<\infty$. Without including the closure in the definition, these inclusions can be strict; with the closure, my (wild) conjecture is that $\operatorname{Spec}_{1, \tau}(a)=\operatorname{Spec}(a)$ for all a.
As noted, $\operatorname{supp} \mu_{a} \subseteq \operatorname{Spec}_{4, \tau}(a)$. But we can do better. Recall that

$$
\frac{\pi}{\epsilon} h_{a}^{\epsilon}(\lambda)=\tau\left(\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right)
$$

If we naïvely set $\epsilon=0$ on the right-hand-side, we get (heuristically)

$$
\left.\tau\left(\left(a_{\lambda}^{*} a_{\lambda}\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}\right)^{-1}\right)\right)=\tau\left(\left(a_{\lambda}^{*}\right)^{-1}\left(a_{\lambda}\right)^{-2}\left(a_{\lambda}^{*}\right)^{-1}\right)
$$

The $L^{p}(\mathcal{A}, \tau)$ Spectrum

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

From Hölder's inequality, we have the inclusions

$$
\operatorname{Spec}_{p, \tau}(a) \subseteq \operatorname{Spec}_{q, \tau}(a) \subseteq \operatorname{Spec}(a)
$$

for $1 \leq p \leq q<\infty$. Without including the closure in the definition, these inclusions can be strict; with the closure, my (wild) conjecture is that $\operatorname{Spec}_{1, \tau}(a)=\operatorname{Spec}(a)$ for all a.

As noted, $\operatorname{supp} \mu_{a} \subseteq \operatorname{Spec}_{4, \tau}(a)$. But we can do better. Recall that

$$
\frac{\pi}{\epsilon} h_{a}^{\epsilon}(\lambda)=\tau\left(\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right)
$$

If we naïvely set $\epsilon=0$ on the right-hand-side, we get (heuristically)

$$
\begin{aligned}
\left.\tau\left(\left(a_{\lambda}^{*} a_{\lambda}\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}\right)^{-1}\right)\right) & =\tau\left(\left(a_{\lambda}^{*}\right)^{-1}\left(a_{\lambda}\right)^{-2}\left(a_{\lambda}^{*}\right)^{-1}\right) \\
& =\tau\left(\left(a_{\lambda}^{-2}\right)^{*} a_{\lambda}^{-2}\right)=\left\|a_{\lambda}^{-2}\right\|_{2}^{2}
\end{aligned}
$$

The $L^{p}(\mathcal{A}, \tau)$ Spectrum

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

From Hölder's inequality, we have the inclusions

$$
\operatorname{Spec}_{p, \tau}(a) \subseteq \operatorname{Spec}_{q, \tau}(a) \subseteq \operatorname{Spec}(a)
$$

for $1 \leq p \leq q<\infty$. Without including the closure in the definition, these inclusions can be strict; with the closure, my (wild) conjecture is that $\operatorname{Spec}_{1, \tau}(a)=\operatorname{Spec}(a)$ for all a.
As noted, $\operatorname{supp} \mu_{a} \subseteq \operatorname{Spec}_{4, \tau}(a)$. But we can do better. Recall that

$$
\frac{\pi}{\epsilon} h_{a}^{\epsilon}(\lambda)=\tau\left(\left(a_{\lambda}^{*} a_{\lambda}+\epsilon\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}+\epsilon\right)^{-1}\right)
$$

If we naïvely set $\epsilon=0$ on the right-hand-side, we get (heuristically)

$$
\begin{aligned}
\left.\tau\left(\left(a_{\lambda}^{*} a_{\lambda}\right)^{-1}\left(a_{\lambda} a_{\lambda}^{*}\right)^{-1}\right)\right) & =\tau\left(\left(a_{\lambda}^{*}\right)^{-1}\left(a_{\lambda}\right)^{-2}\left(a_{\lambda}^{*}\right)^{-1}\right) \\
& =\tau\left(\left(a_{\lambda}^{-2}\right)^{*} a_{\lambda}^{-2}\right)=\left\|a_{\lambda}^{-2}\right\|_{2}^{2}
\end{aligned}
$$

Note, this is not equal to $\left\|a_{\lambda}^{-1}\right\|_{4}^{4}$ when a_{λ} is not normal.

The $L_{2, \tau}^{2}$ Spectrum

- Citations

Brownian Motion

Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Proposition. Let $a \in \mathcal{A}$, and suppose a^{2} is invertible in $L^{2}(\mathcal{A}, \tau)$. Then for all $\epsilon>0$,

$$
\tau\left(\left(a^{*} a+\epsilon\right)^{-1}\left(a a^{*}+\epsilon\right)^{-1}\right) \leq\left\|a^{-2}\right\|_{2}^{2} .
$$

(The proof is trickier than you might think.)

The $L_{2, \tau}^{2}$ Spectrum

- Citations

Brownian Motion

Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Proposition. Let $a \in \mathcal{A}$, and suppose a^{2} is invertible in $L^{2}(\mathcal{A}, \tau)$. Then for all $\epsilon>0$,

$$
\tau\left(\left(a^{*} a+\epsilon\right)^{-1}\left(a a^{*}+\epsilon\right)^{-1}\right) \leq\left\|a^{-2}\right\|_{2}^{2}
$$

(The proof is trickier than you might think.)
Definition. The $L_{2, \tau}^{2}$ resolvent of $a, \operatorname{Res}_{2, \tau}^{2}(a)$, is the interior of the set of $\lambda \in \mathbb{C}$ for which $(a-\lambda)^{2}$ is invertible in $L^{2}(\mathcal{A}, \tau)$. The $L_{2, \tau}^{2}$ spectrum of a is $\operatorname{Spec}_{2, \tau}^{2}(a)=\mathbb{C} \backslash \operatorname{Res}_{2, \tau}^{2}(a)$.

The $L_{2, \tau}^{2}$ Spectrum

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Proposition. Let $a \in \mathcal{A}$, and suppose a^{2} is invertible in $L^{2}(\mathcal{A}, \tau)$. Then for all $\epsilon>0$,

$$
\tau\left(\left(a^{*} a+\epsilon\right)^{-1}\left(a a^{*}+\epsilon\right)^{-1}\right) \leq\left\|a^{-2}\right\|_{2}^{2}
$$

(The proof is trickier than you might think.)
Definition. The $L_{2, \tau}^{2}$ resolvent of $a, \operatorname{Res}_{2, \tau}^{2}(a)$, is the interior of the set of $\lambda \in \mathbb{C}$ for which $(a-\lambda)^{2}$ is invertible in $L^{2}(\mathcal{A}, \tau)$. The $L_{2, \tau}^{2}$ spectrum of a is $\operatorname{Spec}_{2, \tau}^{2}(a)=\mathbb{C} \backslash \operatorname{Res}_{2, \tau}^{2}(a)$.
Theorem. supp $\mu_{a} \subseteq \operatorname{Spec}_{2, \tau}^{2}(a)$.

The $L_{2, \tau}^{2}$ Spectrum

- Citations

Brownian Motion
Brown Measure

- Brown Measure
- Properties
- Convergence
- Regularize
- Spectrum
- L^{p} Inverse
- L^{p} Spectrum
- Support

Segal-Bargmann

Proposition. Let $a \in \mathcal{A}$, and suppose a^{2} is invertible in $L^{2}(\mathcal{A}, \tau)$. Then for all $\epsilon>0$,

$$
\tau\left(\left(a^{*} a+\epsilon\right)^{-1}\left(a a^{*}+\epsilon\right)^{-1}\right) \leq\left\|a^{-2}\right\|_{2}^{2}
$$

(The proof is trickier than you might think.)
Definition. The $L_{2, \tau}^{2}$ resolvent of $a, \operatorname{Res}_{2, \tau}^{2}(a)$, is the interior of the set of $\lambda \in \mathbb{C}$ for which $(a-\lambda)^{2}$ is invertible in $L^{2}(\mathcal{A}, \tau)$. The $L_{2, \tau}^{2}$ spectrum of a is $\operatorname{Spec}_{2, \tau}^{2}(a)=\mathbb{C} \backslash \operatorname{Res}_{2, \tau}^{2}(a)$.
Theorem. supp $\mu_{a} \subseteq \operatorname{Spec}_{2, \tau}^{2}(a)$.
Another wild conjecture: this is actually equality. (That depends on showing that, if a^{2} is not invertible in $L^{2}(\mathcal{A}, \tau)$, the above quantity blows up at rate $\Omega(1 / \epsilon)$. This appears to be what happens in the case that a is normal, which would imply $\operatorname{Spec}_{2, \tau}^{2}(a)=\operatorname{Spec}_{4, \tau}(a)$
$=\operatorname{Spec}(a)$ in that case.)

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

The Segal-Bargmann Transform

The Unitary Segal-Bargmann Transform

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

The Segal-Bargmann (Hall) Transform is a map from functions on $\mathrm{U}(N)$ to holomorphic functions on $\mathrm{GL}(N, \mathbb{C})$. It is defined by the analytic continuation of the action of the heat operator:

$$
\mathbf{B}_{t}^{N} f=\left(e^{\frac{t}{2} \Delta_{\mathrm{U}(N)}} f\right)_{\mathbb{C}}
$$

The Unitary Segal-Bargmann Transform

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

The Segal-Bargmann (Hall) Transform is a map from functions on $\mathrm{U}(N)$ to holomorphic functions on $\mathrm{GL}(N, \mathbb{C})$. It is defined by the analytic continuation of the action of the heat operator:

$$
\mathbf{B}_{t}^{N} f=\left(e^{\frac{t}{2} \Delta_{\mathrm{U}(N)}} f\right)_{\mathbb{C}}
$$

Writing out what this integral formula means in probabilistic terms, here is a nice way to express it: let F already be a holomorphic function on $\operatorname{GL}(N), \mathbb{C})$, and let $f=\left.F\right|_{\mathrm{U}(N)}$. Let U_{t} and G_{t} be independent Brownian motions on $\mathrm{U}(N)$ and $\mathrm{GL}(N, \mathbb{C})$. Then

$$
\left(\mathbf{B}_{t} f\right)\left(G_{t}\right)=\mathbb{E}\left[F\left(G_{t} U_{t}\right) \mid G_{t}\right]
$$

The Unitary Segal-Bargmann Transform

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

The Segal-Bargmann (Hall) Transform is a map from functions on $\mathrm{U}(N)$ to holomorphic functions on $\mathrm{GL}(N, \mathbb{C})$. It is defined by the analytic continuation of the action of the heat operator:

$$
\mathbf{B}_{t}^{N} f=\left(e^{\frac{t}{2} \Delta_{\mathrm{U}(N)}} f\right)_{\mathbb{C}}
$$

Writing out what this integral formula means in probabilistic terms, here is a nice way to express it: let F already be a holomorphic function on $\operatorname{GL}(N), \mathbb{C})$, and let $f=\left.F\right|_{\mathrm{U}(N)}$. Let U_{t} and G_{t} be independent Brownian motions on $\mathrm{U}(N)$ and $\mathrm{GL}(N, \mathbb{C})$. Then

$$
\left(\mathbf{B}_{t} f\right)\left(G_{t}\right)=\mathbb{E}\left[F\left(G_{t} U_{t}\right) \mid G_{t}\right]
$$

This extends beyond f that already possess an analytic continuation; it defines an isometric isomorphism

$$
\mathbf{B}_{t}^{N}: L^{2}\left(\mathrm{U}(N), U_{t}\right) \rightarrow \mathcal{H} L^{2}\left(\mathrm{GL}(N, \mathbb{C}), G_{t}\right)
$$

The Free Unitary Segal-Bargmann Transform

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

In 1997, Biane introduced a free version of the Unitary SBT, which can be described in similar terms: acting on, say, polynomials f in a single variable, $\mathscr{G}_{t} f$ is defined by

$$
\left(\mathscr{G}_{t} f\right)\left(g_{t}\right)=\tau\left[f\left(g_{t} u_{t}\right) \mid g_{t}\right]
$$

He conjectured that \mathscr{G}_{t} is the large- N limit of \mathbf{B}_{t}^{N} in an appropriate sense; this was proven by Driver, Hall, and me in 2013. (It was for this work that we invented trace polynomial concentration.)

The Free Unitary Segal-Bargmann Transform

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

In 1997, Biane introduced a free version of the Unitary SBT, which can be described in similar terms: acting on, say, polynomials f in a single variable, $\mathscr{G}_{t} f$ is defined by

$$
\left(\mathscr{G}_{t} f\right)\left(g_{t}\right)=\tau\left[f\left(g_{t} u_{t}\right) \mid g_{t}\right] .
$$

He conjectured that \mathscr{G}_{t} is the large- N limit of \mathbf{B}_{t}^{N} in an appropriate sense; this was proven by Driver, Hall, and me in 2013. (It was for this work that we invented trace polynomial concentration.)
Biane proved directly (and it follows from the large- N limit) that \mathscr{G}_{t} extends to an isometric isomorphism

$$
\mathscr{G}_{t}: L^{2}\left(\mathbb{U}, \nu_{t}\right) \rightarrow \mathscr{A}_{t}
$$

where \mathscr{A}_{t} is a certain reproducing-kernel Hilbert space of holomorphic functions. The norm on \mathscr{A}_{t} is given by

$$
\|F\|_{\mathscr{A}_{t}}^{2}=\tau\left(\left|F\left(g_{t}\right)\right|^{2}\right)=\tau\left(F\left(g_{t}\right)^{*} F\left(g_{t}\right)\right)=\left\|F\left(g_{t}\right)\right\|_{2}^{2}
$$

The Range of the Free Segal-Bargmann Transform

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

The functions $F \in \mathscr{A}_{t}$ are not all entire functions. They are holomorphic on a bounded region Σ_{t}

$$
\Sigma_{t}=\mathbb{C} \backslash \overline{\chi_{t}\left(\mathbb{C} \backslash \operatorname{supp} \nu_{t}\right)}
$$

where (recall) χ_{t} is the (right-)inverse of $f_{t}(z)=z e^{\frac{t}{2} \frac{1+z}{1-z}}$.

The Range of the Free Segal-Bargmann Transform

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

The functions $F \in \mathscr{A}_{t}$ are not all entire functions. They are holomorphic on a bounded region Σ_{t}

$$
\Sigma_{t}=\mathbb{C} \backslash \overline{\chi_{t}\left(\mathbb{C} \backslash \operatorname{supp} \nu_{t}\right)}
$$

where (recall) χ_{t} is the (right-)inverse of $f_{t}(z)=z e^{\frac{t}{2} \frac{1+z}{1-z}}$.

The Range of the Free Segal-Bargmann Transform

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

The functions $F \in \mathscr{A}_{t}$ are not all entire functions. They are holomorphic on a bounded region Σ_{t}

$$
\Sigma_{t}=\mathbb{C} \backslash \overline{\chi_{t}\left(\mathbb{C} \backslash \operatorname{supp} \nu_{t}\right)}
$$

where (recall) χ_{t} is the (right-)inverse of $f_{t}(z)=z e^{\frac{t}{2} \frac{1+z}{1-z}}$.

$$
+
$$

$$
t=4
$$

The Range of the Free Segal-Bargmann Transform

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

The functions $F \in \mathscr{A}_{t}$ are not all entire functions. They are holomorphic on a bounded region Σ_{t}

$$
\Sigma_{t}=\mathbb{C} \backslash \overline{\chi_{t}\left(\mathbb{C} \backslash \operatorname{supp} \nu_{t}\right)}
$$

where (recall) χ_{t} is the (right-)inverse of $f_{t}(z)=z e^{\frac{t}{2} \frac{1+z}{1-z}}$.

$$
t=4
$$

The Support of The Brown Measure of g_{t}

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

Theorem. (Hall, K, two weeks ago)

$$
\operatorname{supp} \mu_{g_{t}} \subseteq \overline{\Sigma_{t}}
$$

The Support of The Brown Measure of g_{t}

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

Theorem. (Hall, K, two weeks ago)

$$
\operatorname{supp} \mu_{g_{t}} \subseteq \overline{\Sigma_{t}}
$$

Proof. We show that $\operatorname{Spec}_{2, \tau}^{2}\left(g_{t}\right)=\overline{\Sigma_{t}}$. Equivalently, from the definition of Σ_{t}, we show that $\operatorname{Res}_{2, \tau}^{2}\left(g_{t}\right)=\chi_{t}\left(\mathbb{C} \backslash \operatorname{supp} \nu_{t}\right)$.

The Support of The Brown Measure of g_{t}

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

Theorem. (Hall, K, two weeks ago)

$$
\operatorname{supp} \mu_{g_{t}} \subseteq \overline{\Sigma_{t}}
$$

Proof. We show that $\operatorname{Spec}_{2, \tau}^{2}\left(g_{t}\right)=\overline{\Sigma_{t}}$. Equivalently, from the definition of Σ_{t}, we show that $\operatorname{Res}_{2, \tau}^{2}\left(g_{t}\right)=\chi_{t}\left(\mathbb{C} \backslash \operatorname{supp} \nu_{t}\right)$.

By definition, $\lambda \in \operatorname{Res}_{2, \tau}^{2}\left(g_{t}\right)$ iff $\left(g_{t}-\lambda\right)^{2}$ is invertible in $L^{2}(\tau)$, i.e.

$$
\infty>\tau\left(\left|\left(g_{t}-\lambda\right)^{-2}\right|^{2}\right)
$$

The Support of The Brown Measure of g_{t}

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

Theorem. (Hall, K, two weeks ago)

$$
\operatorname{supp} \mu_{g_{t}} \subseteq \overline{\Sigma_{t}}
$$

Proof. We show that $\operatorname{Spec}_{2, \tau}^{2}\left(g_{t}\right)=\overline{\Sigma_{t}}$. Equivalently, from the definition of Σ_{t}, we show that $\operatorname{Res}_{2, \tau}^{2}\left(g_{t}\right)=\chi_{t}\left(\mathbb{C} \backslash \operatorname{supp} \nu_{t}\right)$.

By definition, $\lambda \in \operatorname{Res}_{2, \tau}^{2}\left(g_{t}\right)$ iff $\left(g_{t}-\lambda\right)^{2}$ is invertible in $L^{2}(\tau)$, i.e.

$$
\infty>\tau\left(\left|\left(g_{t}-\lambda\right)^{-2}\right|^{2}\right)=\left\|(z-\lambda)^{-2}\right\|_{\mathscr{A}_{t}}^{2} .
$$

The Support of The Brown Measure of g_{t}

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

Theorem. (Hall, K, two weeks ago)

$$
\operatorname{supp} \mu_{g_{t}} \subseteq \overline{\Sigma_{t}}
$$

Proof. We show that $\operatorname{Spec}_{2, \tau}^{2}\left(g_{t}\right)=\overline{\Sigma_{t}}$. Equivalently, from the definition of Σ_{t}, we show that $\operatorname{Res}_{2, \tau}^{2}\left(g_{t}\right)=\chi_{t}\left(\mathbb{C} \backslash \operatorname{supp} \nu_{t}\right)$.

By definition, $\lambda \in \operatorname{Res}_{2, \tau}^{2}\left(g_{t}\right)$ iff $\left(g_{t}-\lambda\right)^{2}$ is invertible in $L^{2}(\tau)$, i.e.

$$
\infty>\tau\left(\left|\left(g_{t}-\lambda\right)^{-2}\right|^{2}\right)=\left\|(z-\lambda)^{-2}\right\|_{\mathscr{A} t}^{2}
$$

Recall that \mathscr{G}_{t} is an isometry from $L^{2}\left(\mathbb{U}, \nu_{t}\right)$ onto \mathscr{A}_{t}. Can we find a function α_{t}^{λ} on \mathbb{U} with $\mathscr{G}_{t}\left(\alpha_{t}^{\lambda}\right)(z)=(z-\lambda)^{-2}$?

The Support of The Brown Measure of g_{t}

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

Theorem. (Hall, K, two weeks ago)

$$
\operatorname{supp} \mu_{g_{t}} \subseteq \overline{\Sigma_{t}}
$$

Proof. We show that $\operatorname{Spec}_{2, \tau}^{2}\left(g_{t}\right)=\overline{\Sigma_{t}}$. Equivalently, from the definition of Σ_{t}, we show that $\operatorname{Res}_{2, \tau}^{2}\left(g_{t}\right)=\chi_{t}\left(\mathbb{C} \backslash \operatorname{supp} \nu_{t}\right)$.

By definition, $\lambda \in \operatorname{Res}_{2, \tau}^{2}\left(g_{t}\right)$ iff $\left(g_{t}-\lambda\right)^{2}$ is invertible in $L^{2}(\tau)$, i.e.

$$
\infty>\tau\left(\left|\left(g_{t}-\lambda\right)^{-2}\right|^{2}\right)=\left\|(z-\lambda)^{-2}\right\|_{\mathscr{A} t}^{2}
$$

Recall that \mathscr{G}_{t} is an isometry from $L^{2}\left(\mathbb{U}, \nu_{t}\right)$ onto \mathscr{A}_{t}. Can we find a function α_{t}^{λ} on \mathbb{U} with $\mathscr{G}_{t}\left(\alpha_{t}^{\lambda}\right)(z)=(z-\lambda)^{-2}$?

Using PDE techniques, we can compute that

$$
\mathscr{G}_{t}^{-1}\left((z-\lambda)^{-1}\right)=\frac{1}{\lambda} \frac{f_{t}(\lambda)}{f_{t}(\lambda)-u}
$$

The Support of The Brown Measure of g_{t}

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

$$
\mathscr{G}_{t}: \frac{1}{\lambda} \frac{f_{t}(\lambda)}{f_{t}(\lambda)-u} \mapsto \frac{1}{z-\lambda} .
$$

Since $\frac{1}{(z-\lambda)^{2}}=\frac{d}{d \lambda} \frac{1}{z-\lambda}$, using regularity properties of \mathscr{G}_{t} we have

$$
\alpha_{t}^{\lambda}(u)=\frac{d}{d \lambda}\left(\frac{1}{\lambda} \frac{f_{t}(\lambda)}{f_{t}(\lambda)-u}\right)
$$

The Support of The Brown Measure of g_{t}

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

$$
\mathscr{G}_{t}: \frac{1}{\lambda} \frac{f_{t}(\lambda)}{f_{t}(\lambda)-u} \mapsto \frac{1}{z-\lambda} .
$$

Since $\frac{1}{(z-\lambda)^{2}}=\frac{d}{d \lambda} \frac{1}{z-\lambda}$, using regularity properties of \mathscr{G}_{t} we have

$$
\alpha_{t}^{\lambda}(u)=\frac{d}{d \lambda}\left(\frac{1}{\lambda} \frac{f_{t}(\lambda)}{f_{t}(\lambda)-u}\right) .
$$

The question is: for which λ is $\alpha_{t}^{\lambda} \in L^{2}\left(\mathbb{U}, \nu_{t}\right)$? I.e.

$$
\int_{\mathbb{U}}\left|\alpha_{t}^{\lambda}(u)\right|^{2} \nu_{t}(d u)<\infty
$$

The Support of The Brown Measure of g_{t}

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions

$$
\mathscr{G}_{t}: \frac{1}{\lambda} \frac{f_{t}(\lambda)}{f_{t}(\lambda)-u} \mapsto \frac{1}{z-\lambda} .
$$

Since $\frac{1}{(z-\lambda)^{2}}=\frac{d}{d \lambda} \frac{1}{z-\lambda}$, using regularity properties of \mathscr{G}_{t} we have

$$
\alpha_{t}^{\lambda}(u)=\frac{d}{d \lambda}\left(\frac{1}{\lambda} \frac{f_{t}(\lambda)}{f_{t}(\lambda)-u}\right) .
$$

The question is: for which λ is $\alpha_{t}^{\lambda} \in L^{2}\left(\mathbb{U}, \nu_{t}\right)$? I.e.

$$
\int_{\mathbb{U}}\left|\alpha_{t}^{\lambda}(u)\right|^{2} \nu_{t}(d u)<\infty
$$

The answer is: precisely when $f_{t}(\lambda) \notin \operatorname{supp} \nu_{t}$. I.e.

$$
\operatorname{Res}_{2, \tau}^{2}\left(g_{t}\right)=f_{t}^{-1}\left(\mathbb{C} \backslash \operatorname{supp} \nu_{t}\right)=\chi_{t}\left(\mathbb{C} \backslash \operatorname{supp} \nu_{t}\right) .
$$

Remaining Questions

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions
- Explore relations between the $L^{p}(\tau)$-spectra, in general. They are probably all equal to the spectrum for g_{t}.

Remaining Questions

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions
- Explore relations between the $L^{p}(\tau)$-spectra, in general. They are probably all equal to the spectrum for g_{t}.
- What is the density of the Brown measure of g_{t} ?

Remaining Questions

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions
- Explore relations between the $L^{p}(\tau)$-spectra, in general. They are probably all equal to the spectrum for g_{t}.
- What is the density of the Brown measure of g_{t} ?
- Prove that the ESD of G_{t}^{N} actually converges to $\mu_{g_{t}}$. (What we can now say definitively is that the limit ESD is supported in Σ_{t} for $t<4$; for $t \geq 4$, we need more arguments to rule out eigenvalues inside the inner ring.)

Remaining Questions

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions
- Explore relations between the $L^{p}(\tau)$-spectra, in general. They are probably all equal to the spectrum for g_{t}.
- What is the density of the Brown measure of g_{t} ?
- Prove that the ESD of G_{t}^{N} actually converges to $\mu_{g_{t}}$. (What we can now say definitively is that the limit ESD is supported in Σ_{t} for $t<4$; for $t \geq 4$, we need more arguments to rule out eigenvalues inside the inner ring.)
- There is a three parameter family of invariant diffusions on $\mathrm{GL}(N, \mathbb{C})$ that includes U_{t}^{N} and G_{t}^{N}, all of which have large- N limits described by free SDEs. How much of all this extends to the whole family?

Remaining Questions

- Citations

Brownian Motion
Brown Measure
Segal-Bargmann

- SBT
- Free SBT
- Σ_{t}
- Main Theorem
- Proof
- Questions
- Explore relations between the $L^{p}(\tau)$-spectra, in general. They are probably all equal to the spectrum for g_{t}.
- What is the density of the Brown measure of g_{t} ?
- Prove that the ESD of G_{t}^{N} actually converges to $\mu_{g_{t}}$. (What we can now say definitively is that the limit ESD is supported in Σ_{t} for $t<4$; for $t \geq 4$, we need more arguments to rule out eigenvalues inside the inner ring.)
- There is a three parameter family of invariant diffusions on $\mathrm{GL}(N, \mathbb{C})$ that includes U_{t}^{N} and G_{t}^{N}, all of which have large- N limits described by free SDEs. How much of all this extends to the whole family?
l'll let you know what more I know next time we meet.

