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Introduction
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Chordal Loewner Chains

Definition

A normalized chordal Loewner chain on [0,T ] is a family of analytic
functions Ft ∶ H→ H such that

F0(z) = z .

The Ft ’s are analytic in a neighborhood of ∞.

If Ft(z) = z + t/z + O(1/z2).

For s < t, we have Ft = Fs ◦ Fs,t for some Fs,t ∶ H→ H.

Fact

The Ft ’s are conformal maps from H onto H \ Kt , where Kt is a growing
compact region touching the real line, e.g. a growing slit.
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Chordal Loewner Chains

Theorem (Bauer 2005)

Every normalized Loewner chain satisfies the generalized Loewner equation

∂tFt(z) = DzFt(z) ⋅ V (z , t)

where V (z , t) is some vector field of the form V (z , t) = −Gνt(z).
Conversely, given such a vector field, the Loewner equation has a unique
solution.

History

Loewner chains in the disk were studied by Loewner in 1923 in the case Ft
maps D onto D minus a slit. Kufarev and Pommerenke considered more
general Loewner chains in the disk. Loewner chains in the half-plane were
studied by Schramm in the case V (z , t) = −1/(z − Bt) where Bt is a
Brownian motion (SLE).
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Loewner Chains and Free Probability

Theorem (Voiculescu, Biane)

If X and Y are freely independent, then GX+Y = GX ◦ F for some analytic
F ∶ H→ H.

Observation (Bauer 2004, Schleißinger 2017)

If Xt is a process with freely independent increments, and if E(Xt) = 0
and E(X 2

t ) = t, then FXt
(z) = 1/GXt

(z) is a normalized chordal Loewner
chain.

Remark

The converse is not true. In fact, if σ is the semicircle law and if
Fµ = Fσ ◦ Fσ, then µ cannot be written as σ ⊞ ν.
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Loewner Chains and Monotone Probability

Theorem (Muraki 2000-2001)

If X and Y are monotone independent, then FX+Y = FX ◦ FY .

Observation (Schleißinger 2017)

If Xt is a process with monotone independent increments, and if
E(Xt) = 0 and E(X 2

t ) = t, then Ft(z) = 1/GXt
(z) is a normalized chordal

Loewner chain. Every normalized Loewner chain arises in this way.

History

The differential equation ∂tFt(z) = DFt(z)[V (z)] was studied earlier by
Muraki and Hasebe, and Schleißinger connected it with the Loewner
equation.
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Overview

Goal

Adapt the theory of Loewner chains to the non-commutative upper
half-plane H(A) for a C

∗
algebra A.

Overview:

1 Background on operator-valued laws.

2 Loewner chains Ft = Fµt and the Loewner equation.

3 Combinatorial computation of moments for µt .

4 Central limit theorem describing behavior for large t.
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Operator-valued Laws and Cauchy Transforms
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A-valued Probability Spaces

Definition

Let A be a C
∗

-algebra. An A-valued probability space (B,E) is a C
∗

algebra B ⊇ A together with a bounded, completely positive, unital,
A-bimodule map E ∶ B → A, called the expectation.

Definition

A⟨X ⟩ denotes the ∗-algebra generated by A and a non-commutating
self-adjoint indeterminate X .

David A. Jekel (UCLA) Operator-valued Loewner Chains EPOAS 2017 9 / 43



A-valued Laws

Definition

A linear map µ ∶ A⟨X ⟩→ A is called a (bounded) law if

1 µ is a unital A-bimodule map.

2 µ is completely positive.

3 There exist C > 0 and M > 0 such that

∥µ(a0Xa1X . . . an−1Xan)∥ ≤ CM
n∥a0∥ . . .∥an∥.

Definition

We call µ a (bounded) generalized law if it satisfies (2) and (3) but not
necessarily (1).
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A-valued Laws

Definition

For a generalized law µ, we define

rad(µ) = inf{M > 0 ∶ ∃C > 0 s.t. condition (3) is satisfied}.

Theorem (Popa-Vinnikov 2013, Williams 2013)

For a generalized law µ, there exists a C
∗

-algebra B, a ∗-homomorphism
π ∶ A⟨X ⟩→ B which is bounded on A, and a completely positive
µ̃ ∶ B → A such that µ = µ̃ ◦ π and ∥π(X )∥ = rad(µ).

In particular, every law µ is realized as the law of a self-adjoint π(X ) in a
probability space (B, µ̃).
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Matricial Upper Half-Plane

Definition

The matricial upper half-plane is defined by

H(n)(A) =⋃
ε>0

{z ∈ Mn(A) ∶ Im z ≥ ε}

H(A) = {H(n)(A)}n≥1.

Definition

A matricial analytic function on H(A) is a sequence of analytic

functions F
(n)(z) defined on H(n)(A) such that F preserves direct sums of

matrices and conjugation by scalar matrices.

David A. Jekel (UCLA) Operator-valued Loewner Chains EPOAS 2017 12 / 43



Cauchy Transforms

Definition (Voiculescu)

The Cauchy transform of a generalized law µ is defined by

G
(n)
µ (z) = µ⊗ idMn(C)[(z − X ⊗ 1Mn(C))−1].

Theorem (Williams 2013, Williams-Anshelevich 2015)

A matricial analytic function G ∶ H(A)→ −H(A) is the Cauchy transform
of a generalized law µ with rad(µ) ≤ M if and only if

1 G is matricial analytic.

2 G̃(z) ∶= G(z−1) extends to be matricial analytic on {∥z∥ < 1/M}.

3 ∥G (n)(z)∥ ≤ Cε for ∥z∥ < 1/(M + ε), where Cε is independent of n.

4 G̃(z∗) = G̃(z)∗.

5 G̃(0) = 0.

Also, µ is a generalized law if and only if limz→0 z
−1
G̃

(n)(z) = 1 for each n.
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A-valued Chordal Loewner Chains
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Definition

Definition

An A-valued chordal Loewner chain on [0,T ] is a family of matricial
analytic functions Ft(z) = F (z , t) on H(A) such that

F0 = id

Ft is the recriprocal Cauchy transform of an A-valued law µt .

If s < t, then Ft = Fs ◦ Fs,t for some matricial analytic
Fs,t ∶ H(A)→ H(A).

µt(X ) and µt(X 2) are continuous functions of t.
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Basic Properties

Remark

Loewner chains relate to free and monotone independence over A just as
in the scalar case.

Lemma

Fs,t is unique.

F0,t = Ft .

Fs,t ◦ Ft,u = Fs,u.

Fs,t is the F -transform of a law µs,t .

sups,t rad(µs,t) ≤ C rad(µT ) + C supt∥µt(X )∥.
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Basic Properties

Lemma

There exists a generalized law σs,t such that

Fs,t(z) = z − µs,t(X ) − Gσs,t(z).

We have rad(σs,t) ≤ 2 rad(µs,t) and

σs,t(1) = µs,t(X 2) = µt(X 2) − µs(X 2).
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Biholomorphicity

Theorem

Each Fs,t is a biholomorphic map onto a matricial domain and the inverse
is matricial analytic. Moreover, given ε > 0, there exists δ > 0 depending
only on ε and the modulus of continuity of t ↦ µt(X 2), such that

1 Im z ≥ ε ⟹ ∥DFs,t(z)−1∥ ≤ 1/δ.

2 Im z , Im z
′
≥ ε ⟹ ∥Fs,t(z) − Fs,t(z ′)∥ ≥ δ∥z − z

′∥.

Proof:

By the inverse function theorem, it suffices to prove the estimates (1)
and (2).

Renormalize so that µt has mean zero.
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Biholomorphicity

Fix ε > 0.

If t − s is small, then Fs,t(z) ≈ z because

Fs,t(z) − z = Gσs,t(z) = O(γ),

where
γ = ε

−1∥σs,t(1)∥ = ε−1∥µt(X 2) − µs(X 2)∥,
which goes to zero as t − s → 0.

Similar estimates show that DFs,t(z) = id+O(γ) and

Fs,t(z) − Fs,t(z ′) = z − z
′ + O(γ∥z − z

′∥).
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Biholomorphicity

Hence, the claims hold when t − s is sufficiently small.

The claims hold for arbitrary s < t using iteration:

Fs,t = Fs,t1 ◦ Ft1,t2 ◦ ⋅ ⋅ ⋅ ◦ Ftn−1,t

and each function maps {Im z ≥ ε} into {Im z ≥ ε}.
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The Loewner Equation
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The Loewner Equation

The operator-valued version of the Loewner equation is

∂tF (z , t) = DF (z , t)[V (z , t)],

where DF (z , t) is the Fréchet derivative with respect to z , and
V (z , t) is a vector field of the form V (z , t) = −Gνt(z) for a
generalized law νt .

We want to show that the Loewner equation defines a bijection
between Loewner chains F (z , t) and Herglotz vector fields V (z , t) on
[0,T ].
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Problems with Pointwise Differentiation

We should allow Loewner chains which are Lipschitz in t, so we need
to differentiate Lipschitz functions [0,T ]→ Mn(A).

A C
∗

-algebra A is a bad Banach space for differentiation.

It would not be enough to differentiate for a.e. t for each fixed z ; we
would also need to have the same exceptional set of times for every z
in an open set in our huge Banach space.

Pointwise differentiation won’t work.

So consider ∂tF (z , ⋅) as an Mn(A)-valued distribution on [0,T ].
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Distributional Differentiation

But we need to manipulate ∂tF (z , ⋅) like a pointwise defined
function, e.g. we want:

∂t[F (G(z , t), t)] = ∂tF (G(z , t), t) + DF (G(z , t), t)[∂tG(z , t)].

Luckily, since F (z , ⋅) is Lipschitz, it makes sense to pair ∂tF (z , ⋅)
with an L

1
function φ ∶ [0,T ]→ C.

Thus, ∂tF (z , t) is an element of L(L1[0,T ],Mn(A)), which is
“almost as nice” as an L

∞
function [0,T ]→ Mn(A).
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Distributional Differentiation

A family of Banach-valued analytic functions F (z , t) for t ∈ [0,T ] is
a called a locally Lipschitz family if it is Lipschitz in t with uniform
Lipschitz constants for z in a neighborhood of each z0 in the domain.

If F (z , t) and G(z , t) are locally Lipschitz families, then we can define

∂tF (G(z , t), t) ∈ L(L1[0,T ],X )

by approximating G(z , t) with step-functions of t.

We can define DF (G(z , t), t)[∂tG(z , t)] similarly.

The chain rule computation above is correct in L(L1[0,T ],X ).
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The Loewner Equation: Setup

Definition

A Lipschitz, normalized Loewner chain is a Loewner chain such that
µt(X ) = 0 and µt(X 2) is a Lipschitz function of t.

Definition

A Herglotz vector field V (z , t) to be a matricial analytic function
H(A)→ L(L1[0,T ],Mn(A)) such that for each nonnegative
φ ∈ L

1[0,T ], the function − ∫ V (z , t)φ(t) dt is the Cauchy transform of
a generalized law ν[φ] with supφ rad(ν[φ]) < +∞.

Definition

In this case, we call the map ν ∶ L1[0,T ] ×A⟨X ⟩→ A a distributional
generalized law and denote rad(ν) = supφ≥0 rad(ν[φ]).
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The Loewner Equation: Main Theorem

Theorem

On an interval [0,T ], the Loewner equation
∂tF (z , t) = DF (z , t)[V (z , t)] defines a bijection between Lipschitz,
normalized A-valued Loewner chains and Herglotz vector fields (and hence
distributional generalized laws).

We sketch of the proof in two parts:

Differentiation of Loewner chains F (z , t)↝ V (z , t).

Integration of the Loewner equation V (z , t)↝ F (z , t).
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Differentiation of Loewner Chains

We write Fs,t(z) = z − Gσs,t(z). Note σs,t(1) = µt(X 2) − µs(X 2).

A priori estimates on Cauchy transforms show that F (z , t) is a locally
Lipschitz family.

We know DF (z , t) is invertible for Im z ≥ ε, so we can define

V (z , t) = DF (z , t)−1[∂tF (z , t)].

To check that V (z , t) is Herglotz vector field, we approximate
V (z , t) by the step-function Herglotz vector field

Vm(z , t) = −
m

∑
j=1

mχ[tj−1,tj ](t)Gσtj−1,tj (z), where tj =
jT
m .
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Integration of the Loewner Equation

The proof proceeds the same way as in the scalar case (Bauer 2005).

Using a chain rule argument, it is sufficient to solve the ODE

−∂sFs,t(z) = V (Fs,t(z), s) for s ∈ [0, t], Ft,t(z) = z .

We use Picard iteration and make explicit estimates to show that the
Picard iterates converge uniformly on Im z ≥ ε.

We verify analytically that the iterates and the limit are reciprocal
Cauchy transforms.
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The Moments of µt
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Combinatorial Formula

Definition

NC≤2(n) is the set of non-crossing partitions of [n] where each block is a
pair or a singleton. NC

0
≤2(n) is the subset consisting of partitions where

each singleton block is “inside” some pair block.

Definition

Let C = C([0,T ],A). For a distributional generalized law ν, define
I = Iν ∶ C⟨X ⟩→ C by

Iν[f (X , t)](t) = ∫
T

t
νs[f (X , s)] ds.
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Combinatorial Formula

Definition

For π ∈ NC≤2, we define Qπ(z , t) by replacing each singleton by X and
each pair by Iν(. . . ) and inserting z between any two consecutive elements
of {1, . . . , n}. For example, with n = 5,

π = {{1, 5}, {2, 3}, {4}} ⟹ Qπ(z) = Iν(zIν(z)zXz).

Theorem

Let F (z , t) = Gµt(z)
−1

be the Loewner chain corresponding to
V (z , t) = −Gνt(z). Then

Gµt(z
−1) = ∑

π∈NC0
≤2

zQπ(z)z .
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Fock Space Construction

Goal

Realize µt by creating self-adjoint operators on a Fock space with the
correct moments.

We define a Fock space Hν =⨁∞
n=0Hn, where

Hn = C⟨X ⟩⊗ ⋅ ⋅ ⋅ ⊗ C⟨X ⟩⊗ C

with the C-valued inner product

⟨fn ⊗ ⋅ ⋅ ⋅ ⊗ f0, gn ⊗ ⋅ ⋅ ⋅ ⊗ g0⟩ = f
∗
0 Iν(f ∗1 . . . Iν(f ∗n gn) . . . g1)g0.

We denote the creation and annihilation operators by `(f ) and `(f )∗.
Every f (X , t) ∈ C⟨X ⟩ defines a multiplication operator acting on the
left-most coordinate, where the action on H0 = C is defined to be
multiplication by f (0, t).
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Fock Space Construction

Theorem

Let Yt1,t2 = `(χ[t1,t2)) + `(χ[t1,t2))
∗ + χ[t1,t2)(t)X . Define an expectation

by
E(T ) = ⟨Ω,TΩ⟩Hν

∣t=0.
Then

1 Yt1,t3 = Yt1,t2 + Yt2,t3 .

2 Yt1,t2 and Yt2,t3 are monotone independent over A with respect to E .

3 Yt1,t2 has the law µt1,t2 with respect to E .
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Central Limit Theorem for Loewner Chains
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Background for CLT

Muraki showed that the central limit object for monotone
independence is the arcsine law.

The arcsine law of variance t has reciprocal Cauchy transform

Ft(z) =
√
z2 − 2t which maps H onto H minus a vertical slit.

Ft solves the Loewner equation with V (z , t) = −1/z .

Definition

Let η ∶ A× L
1[0,T ]→ A be a distributional completely positive map. We

define the corresponding A-valued generalized arcsine law µη as the law
obtained by running the Loewner equation up to time T with
V (z , t) = −ηt(z−1).
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CLT via Coupling

Let ν be a distributional generalized law and let ηt = νt∣A. Using the Fock
space Hν , define

Yt1,t2 = `(χ[t1,t2)) + `(χ[t1,t2))
∗ + χ[t1,t2)(t)X .

Zt1,t2 = `(χ[t1,t2)) + `(χ[t1,t2))
∗

.

Let Ft = Fµt be the solution to the Loewner equation for −Gνt(z).

Theorem

Yt1,t2 has the law µt1,t2 and Zt1,t2 has the generalized arcsine law for
η∣[t1,t2]. Moreover, we have

∥Yt1,t2 − Zt1,t2∥ ≤ rad(ν).

As a consequence, for Im z ≥ ε,

∥T 1/2
GY0,T

(T 1/2
z) − T

1/2
GZ0,T

(T 1/2
z)∥ ≤ T

−1/2
ε
−2

rad(ν).
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CLT via Loewner Equation

Another proof is a“continuous-time Lindeberg exchange” where we
interpolate between Y0,T and Z0,T using Y0,t + Zt,T . In other words, we
write

GY0,T
− GZ0,T

= ∫
T

0
∂t[GY0,t

◦ FZt,T
] dt.

Evaluate this using the chain rule and the Loewner equation and make
some straightforward estimates . . .

Theorem

For Im z ≥ ε, we have

∥T 1/2
GY0,T

(T 1/2
z) − T

1/2
GZ0,T

(T 1/2
z)∥

≤ T
−1/2

ε
−4

rad(ν)∥ν(1)∥L(L1[0,T ],A).

David A. Jekel (UCLA) Operator-valued Loewner Chains EPOAS 2017 38 / 43



Concluding Remarks
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Concluding Remarks

For tensor, free, and boolean independence, there is a similar (but
simpler!) differential equation for the analytic transforms of processes
with independent increments, which can be analyzed using the same
techniques.

The Fock space construction and coupling argument for the CLT
work for other types of independence as well.

Processes for each type of independence are in bijective
correspondence with distributional generalized laws ν, and hence we
get a generalization of the Bercovici-Pata bijection for A-valued
processes with non-stationary increments.
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Concluding Remarks

Conjecture

The same theory will work for multiplicative convolution of unitaries and
positive operators.

Warning

For tensor independence, we need to assume A is commutative (as far as
we know), and we must analyze unbounded laws.

Warning

The coupling is produced on a probability space (B,E), where E is
extremely not faithful and not tracial!
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Concluding Questions

Question

How well do these techniques adapt to operator-valued laws with
unbounded support?

Question

Can every reciprocal A-valued Cauchy transform which is matricially
biholomorphic be embedded into a Loewner chain? (Yes in scalar case,
Bauer 2005.)

Question

Is there a version of the Riemann mapping theorem for matricial domains?
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