Free transport for interpolated free group factors

Mike Hartglass
Joint with Brent Nelson

November 11, 2017

Free group factors

- Voiculescu's construction:

Free group factors

- Voiculescu's construction:
- Real Hilbert space, $\mathcal{H}_{\mathbb{R}}$, with complexification \mathcal{H}

Free group factors

- Voiculescu's construction:
- Real Hilbert space, $\mathcal{H}_{\mathbb{R}}$, with complexification \mathcal{H}
- Form the full Fock Space $\mathcal{F}(\mathcal{H})=\mathbb{C} \Omega \oplus \bigoplus_{n \geq 1} \mathcal{H}^{\otimes^{n}}$

Free group factors

- Voiculescu's construction:
- Real Hilbert space, $\mathcal{H}_{\mathbb{R}}$, with complexification \mathcal{H}
- Form the full Fock Space $\mathcal{F}(\mathcal{H})=\mathbb{C} \Omega \oplus \bigoplus_{n \geq 1} \mathcal{H}^{\otimes^{n}}$
- For $\xi \in \mathcal{H}_{\mathbb{R}}$, have the creation operator $\ell(\xi)$:

$$
\ell(\xi)(\Omega)=\xi \text { and } \ell(\xi)\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}\right)=\xi \otimes \xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}
$$

Free group factors

- Voiculescu's construction:
- Real Hilbert space, $\mathcal{H}_{\mathbb{R}}$, with complexification \mathcal{H}
- Form the full Fock Space $\mathcal{F}(\mathcal{H})=\mathbb{C} \Omega \oplus \bigoplus_{n \geq 1} \mathcal{H}^{\otimes^{n}}$
- For $\xi \in \mathcal{H}_{\mathbb{R}}$, have the creation operator $\ell(\xi)$:

$$
\ell(\xi)(\Omega)=\xi \text { and } \ell(\xi)\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}\right)=\xi \otimes \xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}
$$

- Pick ξ_{1}, ξ_{2}, \ldots and o.n.b of $\mathcal{H}_{\mathbb{R}}$.

Free group factors

- Voiculescu's construction:
- Real Hilbert space, $\mathcal{H}_{\mathbb{R}}$, with complexification \mathcal{H}
- Form the full Fock Space $\mathcal{F}(\mathcal{H})=\mathbb{C} \Omega \oplus \bigoplus_{n \geq 1} \mathcal{H}^{\otimes^{n}}$
- For $\xi \in \mathcal{H}_{\mathbb{R}}$, have the creation operator $\ell(\xi)$:

$$
\ell(\xi)(\Omega)=\xi \text { and } \ell(\xi)\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}\right)=\xi \otimes \xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}
$$

- Pick ξ_{1}, ξ_{2}, \ldots and o.n.b of $\mathcal{H}_{\mathbb{R}}$. Set $X_{i}=\ell\left(\xi_{i}\right)+\ell\left(\xi_{i}\right)^{*}$. (Semicircular element)

Free group factors

- Voiculescu's construction:
- Real Hilbert space, $\mathcal{H}_{\mathbb{R}}$, with complexification \mathcal{H}
- Form the full Fock Space $\mathcal{F}(\mathcal{H})=\mathbb{C} \Omega \oplus \bigoplus_{n \geq 1} \mathcal{H}^{\otimes^{n}}$
- For $\xi \in \mathcal{H}_{\mathbb{R}}$, have the creation operator $\ell(\xi)$:

$$
\ell(\xi)(\Omega)=\xi \text { and } \ell(\xi)\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}\right)=\xi \otimes \xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}
$$

- Pick ξ_{1}, ξ_{2}, \ldots and o.n.b of $\mathcal{H}_{\mathbb{R}}$. Set $X_{i}=\ell\left(\xi_{i}\right)+\ell\left(\xi_{i}\right)^{*}$. (Semicircular element)
- $W^{*}\left(X_{1}, X_{2}, \cdots\right) \cong L\left(\mathbb{F}_{n}\right), n=\operatorname{dim}(\mathcal{H})$.

Free group factors

- Voiculescu's construction:
- Real Hilbert space, $\mathcal{H}_{\mathbb{R}}$, with complexification \mathcal{H}
- Form the full Fock Space $\mathcal{F}(\mathcal{H})=\mathbb{C} \Omega \oplus \bigoplus_{n \geq 1} \mathcal{H}^{\otimes^{n}}$
- For $\xi \in \mathcal{H}_{\mathbb{R}}$, have the creation operator $\ell(\xi)$:

$$
\ell(\xi)(\Omega)=\xi \text { and } \ell(\xi)\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}\right)=\xi \otimes \xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}
$$

- Pick ξ_{1}, ξ_{2}, \ldots and o.n.b of $\mathcal{H}_{\mathbb{R}}$. Set $X_{i}=\ell\left(\xi_{i}\right)+\ell\left(\xi_{i}\right)^{*}$. (Semicircular element)
- $W^{*}\left(X_{1}, X_{2}, \cdots\right) \cong L\left(\mathbb{F}_{n}\right), n=\operatorname{dim}(\mathcal{H})$.
- Trace vector: $\operatorname{tr}(x)=\langle\Omega \mid x \Omega\rangle, x \in W^{*}\left(X_{1}, X_{2}, \cdots\right)$.

Free group factors

- Voiculescu's construction:
- Real Hilbert space, $\mathcal{H}_{\mathbb{R}}$, with complexification \mathcal{H}
- Form the full Fock Space $\mathcal{F}(\mathcal{H})=\mathbb{C} \Omega \oplus \bigoplus_{n \geq 1} \mathcal{H}^{\otimes^{n}}$
- For $\xi \in \mathcal{H}_{\mathbb{R}}$, have the creation operator $\ell(\xi)$:

$$
\ell(\xi)(\Omega)=\xi \text { and } \ell(\xi)\left(\xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}\right)=\xi \otimes \xi_{i_{1}} \otimes \cdots \otimes \xi_{i_{n}}
$$

- Pick ξ_{1}, ξ_{2}, \ldots and o.n.b of $\mathcal{H}_{\mathbb{R}}$. Set $X_{i}=\ell\left(\xi_{i}\right)+\ell\left(\xi_{i}\right)^{*}$. (Semicircular element)
- $W^{*}\left(X_{1}, X_{2}, \cdots\right) \cong L\left(\mathbb{F}_{n}\right), n=\operatorname{dim}(\mathcal{H})$.
- Trace vector: $\operatorname{tr}(x)=\langle\Omega \mid x \Omega\rangle, x \in W^{*}\left(X_{1}, X_{2}, \cdots\right)$.
- Key property:

$$
\operatorname{tr}\left(X_{i_{1}} X_{i_{2}} \cdots X_{i_{n}}\right)=\sum_{i_{k}=i_{1}} \operatorname{tr}\left(X_{i_{2}} \cdots X_{i_{k-1}}\right) \operatorname{tr}\left(X_{i_{k+1}} \cdots X_{i_{n}}\right)
$$

Interpolated free group factors

- Factors $L\left(\mathbb{F}_{t}\right) t \in(1, \infty]$ discovered independently by Dykema and Rǎdulescu.

Interpolated free group factors

- Factors $L\left(\mathbb{F}_{t}\right) t \in(1, \infty]$ discovered independently by Dykema and Rǎdulescu.
- Properties

1. Agree with the usual free group factors when

$$
t \in\{2,3, \ldots\} \cup\{\infty\}
$$

Interpolated free group factors

- Factors $L\left(\mathbb{F}_{t}\right) t \in(1, \infty]$ discovered independently by Dykema and Rǎdulescu.
- Properties

1. Agree with the usual free group factors when
$t \in\{2,3, \ldots\} \cup\{\infty\}$
2. $L\left(\mathbb{F}_{s}\right) * L\left(\mathbb{F}_{t}\right)=L\left(\mathbb{F}_{s+t}\right)$

Interpolated free group factors

- Factors $L\left(\mathbb{F}_{t}\right) t \in(1, \infty]$ discovered independently by Dykema and Rǎdulescu.
- Properties

1. Agree with the usual free group factors when
$t \in\{2,3, \ldots\} \cup\{\infty\}$
2. $L\left(\mathbb{F}_{s}\right) * L\left(\mathbb{F}_{t}\right)=L\left(\mathbb{F}_{s+t}\right)$
3. $p L\left(\mathbb{F}_{t}\right) p=L\left(\mathbb{F}\left(1+\frac{t-1}{\operatorname{tr}(p)^{2}}\right)\right)$ for $p \in \mathcal{P}\left(L\left(\mathbb{F}_{t}\right)\right)$

Constructions

- Rǎduescu's and Dykema's constructions:
- Rǎdulescu (1990s) Ingredients:

Constructions

- Rǎduescu's and Dykema's constructions:
- Rǎdulescu (1990s) Ingredients:
- Free semicircular family $\left(X_{s}\right)_{s \in S}$.

Constructions

- Rǎduescu's and Dykema's constructions:
- Rǎdulescu (1990s) Ingredients:
- Free semicircular family $\left(X_{s}\right)_{s \in S}$.
- $\sigma_{0}, \sigma_{1} \in S$

Constructions

- Rǎduescu's and Dykema's constructions:
- Rǎdulescu (1990s) Ingredients:
- Free semicircular family $\left(X_{s}\right)_{s \in S}$.
- $\sigma_{0}, \sigma_{1} \in S$
- Projections $e_{s}, f_{s} \in\left(X_{\sigma_{1}}\right)^{\prime \prime}$ mutually orthogonal or equal.

Constructions

- Rǎduescu's and Dykema's constructions:
- Rǎdulescu (1990s) Ingredients:
- Free semicircular family $\left(X_{s}\right)_{s \in S}$.
- $\sigma_{0}, \sigma_{1} \in S$
- Projections $e_{s}, f_{s} \in\left(X_{\sigma_{1}}\right)^{\prime \prime}$ mutually orthogonal or equal.
$-\mathrm{vN}\left(X_{\sigma_{0}},\left(e_{s} X_{s^{\prime}} f_{s}\right)_{s^{\prime} \in S \backslash\left\{\sigma_{0}, \sigma_{1}\right\}}\right)$ depends only on

$$
t=1+\sum_{s} k_{s} \operatorname{tr}\left(e_{s}\right) \operatorname{tr}\left(f_{s}\right)
$$

with $k_{s}=1$ if $e_{s}=f_{s}$ and $k_{2}=2$ if $e_{s} \perp f_{s}$.

Constructions

- Rǎduescu's and Dykema's constructions:
- Rǎdulescu (1990s) Ingredients:
- Free semicircular family $\left(X_{s}\right)_{s \in S}$.
- $\sigma_{0}, \sigma_{1} \in S$
- Projections $e_{s}, f_{s} \in\left(X_{\sigma_{1}}\right)^{\prime \prime}$ mutually orthogonal or equal.
$-\mathrm{vN}\left(X_{\sigma_{0}},\left(e_{s} X_{s^{\prime}} f_{s}\right)_{s^{\prime} \in S \backslash\left\{\sigma_{0}, \sigma_{1}\right\}}\right)$ depends only on

$$
t=1+\sum_{s} k_{s} \operatorname{tr}\left(e_{s}\right) \operatorname{tr}\left(f_{s}\right)
$$

with $k_{s}=1$ if $e_{s}=f_{s}$ and $k_{2}=2$ if $e_{s} \perp f_{s}$. This is $L\left(\mathbb{F}_{t}\right)$.

Constructions

- Rǎduescu's and Dykema's constructions:
- Rǎdulescu (1990s) Ingredients:
- Free semicircular family $\left(X_{s}\right)_{s \in S}$.
- $\sigma_{0}, \sigma_{1} \in S$
- Projections $e_{s}, f_{s} \in\left(X_{\sigma_{1}}\right)^{\prime \prime}$ mutually orthogonal or equal.
$-\mathrm{vN}\left(X_{\sigma_{0}},\left(e_{s} X_{s^{\prime}} f_{s}\right)_{s^{\prime} \in S \backslash\left\{\sigma_{0}, \sigma_{1}\right\}}\right)$ depends only on

$$
t=1+\sum_{s} k_{s} \operatorname{tr}\left(e_{s}\right) \operatorname{tr}\left(f_{s}\right)
$$

with $k_{s}=1$ if $e_{s}=f_{s}$ and $k_{2}=2$ if $e_{s} \perp f_{s}$. This is $L\left(\mathbb{F}_{t}\right)$.

- Dykema (1990s) Ingredients:

Constructions

- Rǎduescu's and Dykema's constructions:
- Rǎdulescu (1990s) Ingredients:
- Free semicircular family $\left(X_{s}\right)_{s \in S}$.
- $\sigma_{0}, \sigma_{1} \in S$
- Projections $e_{s}, f_{s} \in\left(X_{\sigma_{1}}\right)^{\prime \prime}$ mutually orthogonal or equal.
$-\mathrm{vN}\left(X_{\sigma_{0}},\left(e_{s} X_{s^{\prime}} f_{s}\right)_{s^{\prime} \in S \backslash\left\{\sigma_{0}, \sigma_{1}\right\}}\right)$ depends only on

$$
t=1+\sum_{s} k_{s} \operatorname{tr}\left(e_{s}\right) \operatorname{tr}\left(f_{s}\right)
$$

with $k_{s}=1$ if $e_{s}=f_{s}$ and $k_{2}=2$ if $e_{s} \perp f_{s}$. This is $L\left(\mathbb{F}_{t}\right)$.

- Dykema (1990s) Ingredients:
- The hyperfinite II_{1} factor R

Constructions

- Rǎduescu's and Dykema's constructions:
- Rǎdulescu (1990s) Ingredients:
- Free semicircular family $\left(X_{s}\right)_{s \in S}$.
- $\sigma_{0}, \sigma_{1} \in S$
- Projections $e_{s}, f_{s} \in\left(X_{\sigma_{1}}\right)^{\prime \prime}$ mutually orthogonal or equal.
$-\mathrm{vN}\left(X_{\sigma_{0}},\left(e_{s} X_{s^{\prime}} f_{s}\right)_{s^{\prime} \in S \backslash\left\{\sigma_{0}, \sigma_{1}\right\}}\right)$ depends only on

$$
t=1+\sum_{s} k_{s} \operatorname{tr}\left(e_{s}\right) \operatorname{tr}\left(f_{s}\right)
$$

with $k_{s}=1$ if $e_{s}=f_{s}$ and $k_{2}=2$ if $e_{s} \perp f_{s}$. This is $L\left(\mathbb{F}_{t}\right)$.

- Dykema (1990s) Ingredients:
- The hyperfinite II_{1} factor R
- Projections $\left\{p_{s}\right\}_{s \in S}$ in R

Constructions

- Rǎduescu's and Dykema's constructions:
- Rǎdulescu (1990s) Ingredients:
- Free semicircular family $\left(X_{s}\right)_{s \in S}$.
- $\sigma_{0}, \sigma_{1} \in S$
- Projections $e_{s}, f_{s} \in\left(X_{\sigma_{1}}\right)^{\prime \prime}$ mutually orthogonal or equal.
$-\mathrm{vN}\left(X_{\sigma_{0}},\left(e_{s} X_{s^{\prime}} f_{s}\right)_{s^{\prime} \in S \backslash\left\{\sigma_{0}, \sigma_{1}\right\}}\right)$ depends only on

$$
t=1+\sum_{s} k_{s} \operatorname{tr}\left(e_{s}\right) \operatorname{tr}\left(f_{s}\right)
$$

with $k_{s}=1$ if $e_{s}=f_{s}$ and $k_{2}=2$ if $e_{s} \perp f_{s}$. This is $L\left(\mathbb{F}_{t}\right)$.

- Dykema (1990s) Ingredients:
- The hyperfinite II_{1} factor R
- Projections $\left\{p_{s}\right\}_{s \in S}$ in R
- A free semicircular family $\left\{X_{s}\right\}_{s \in S}$ free from R.

Constructions

- Rǎduescu's and Dykema's constructions:
- Rǎdulescu (1990s) Ingredients:
- Free semicircular family $\left(X_{s}\right)_{s \in S}$.
- $\sigma_{0}, \sigma_{1} \in S$
- Projections $e_{s}, f_{s} \in\left(X_{\sigma_{1}}\right)^{\prime \prime}$ mutually orthogonal or equal.
$-\mathrm{vN}\left(X_{\sigma_{0}},\left(e_{s} X_{s^{\prime}} f_{s}\right)_{s^{\prime} \in S \backslash\left\{\sigma_{0}, \sigma_{1}\right\}}\right)$ depends only on

$$
t=1+\sum_{s} k_{s} \operatorname{tr}\left(e_{s}\right) \operatorname{tr}\left(f_{s}\right)
$$

with $k_{s}=1$ if $e_{s}=f_{s}$ and $k_{2}=2$ if $e_{s} \perp f_{s}$. This is $L\left(\mathbb{F}_{t}\right)$.

- Dykema (1990s) Ingredients:
- The hyperfinite II_{1} factor R
- Projections $\left\{p_{s}\right\}_{s \in S}$ in R
- A free semicircular family $\left\{X_{s}\right\}_{s \in S}$ free from R.
- $\mathrm{vN}\left(R, p_{s} X_{s} p_{s}\right)$ depends only on $\sum_{s \in S} \operatorname{tr}\left(p_{s}\right)^{2}$.

Constructions

- Rǎduescu's and Dykema's constructions:
- Rǎdulescu (1990s) Ingredients:
- Free semicircular family $\left(X_{s}\right)_{s \in S}$.
- $\sigma_{0}, \sigma_{1} \in S$
- Projections $e_{s}, f_{s} \in\left(X_{\sigma_{1}}\right)^{\prime \prime}$ mutually orthogonal or equal.
$-\mathrm{vN}\left(X_{\sigma_{0}},\left(e_{s} X_{s^{\prime}} f_{s}\right)_{s^{\prime} \in S \backslash\left\{\sigma_{0}, \sigma_{1}\right\}}\right)$ depends only on

$$
t=1+\sum_{s} k_{s} \operatorname{tr}\left(e_{s}\right) \operatorname{tr}\left(f_{s}\right)
$$

with $k_{s}=1$ if $e_{s}=f_{s}$ and $k_{2}=2$ if $e_{s} \perp f_{s}$. This is $L\left(\mathbb{F}_{t}\right)$.

- Dykema (1990s) Ingredients:
- The hyperfinite II_{1} factor R
- Projections $\left\{p_{s}\right\}_{s \in S}$ in R
- A free semicircular family $\left\{X_{s}\right\}_{s \in S}$ free from R.
$\downarrow \mathrm{vN}\left(R, p_{s} X_{s} p_{s}\right)$ depends only on $\sum_{s \in S} \operatorname{tr}\left(p_{s}\right)^{2}$. Get $L\left(\mathbb{F}_{t}\right)$ with $t=1+\sum_{s \in S} \operatorname{tr}\left(p_{s}\right)^{2}$

Weighted graphs, free graph algebra

- (Γ, V, E, μ) a connected, finite, weighted graph.

Weighted graphs, free graph algebra

- (Γ, V, E, μ) a connected, finite, weighted graph. Require $\sum_{v \in V} \mu(v)=1$

Weighted graphs, free graph algebra

- (Γ, V, E, μ) a connected, finite, weighted graph. Require $\sum_{v \in V} \mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$

Weighted graphs, free graph algebra

- (Γ, V, E, μ) a connected, finite, weighted graph. Require $\sum_{v \in V} \mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e.

Weighted graphs, free graph algebra

- ($\Gamma, V, E, \mu)$ a connected, finite, weighted graph. Require $\sum_{v \in V} \mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions $\epsilon, \epsilon^{o p}$

Weighted graphs, free graph algebra

- ($\Gamma, V, E, \mu)$ a connected, finite, weighted graph. Require $\sum_{v \in V} \mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions $\epsilon, \epsilon^{o p}$
- $\ell^{\infty}(V)$: functions on V.

Weighted graphs, free graph algebra

- ($\Gamma, V, E, \mu)$ a connected, finite, weighted graph. Require $\sum_{v \in V} \mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions $\epsilon, \epsilon^{o p}$
- $\ell^{\infty}(V)$: functions on $V . p_{v}$ indicator function at $v \in V$.

Weighted graphs, free graph algebra

- ($\Gamma, V, E, \mu)$ a connected, finite, weighted graph. Require $\sum_{v \in V} \mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions $\epsilon, \epsilon^{o p}$
- $\ell^{\infty}(V)$: functions on $V . p_{v}$ indicator function at $v \in V$.
- Fock space representation of operators $\left(p_{v}\right)_{v \in V}$ and $\left(x_{\epsilon}\right)_{\epsilon \in \vec{E}}$

Weighted graphs, free graph algebra

- ($\Gamma, V, E, \mu)$ a connected, finite, weighted graph. Require $\sum_{v \in V} \mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions $\epsilon, \epsilon^{o p}$
- $\ell^{\infty}(V)$: functions on $V . p_{v}$ indicator function at $v \in V$.
- Fock space representation of operators $\left(p_{v}\right)_{v \in V}$ and $\left(x_{\epsilon}\right)_{\epsilon \in \vec{E}}$ Relations:

$$
\text { 1. } 1=\sum_{v \in V} p_{v}
$$

Weighted graphs, free graph algebra

- ($\Gamma, V, E, \mu)$ a connected, finite, weighted graph. Require $\sum_{v \in V} \mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions $\epsilon, \epsilon^{o p}$
- $\ell^{\infty}(V)$: functions on $V . p_{v}$ indicator function at $v \in V$.
- Fock space representation of operators $\left(p_{v}\right)_{v \in V}$ and $\left(x_{\epsilon}\right)_{\epsilon \in \vec{E}}$ Relations:

1. $1=\sum_{v \in V} p_{v}$
2. $x_{\epsilon}=p_{s(\epsilon)} x_{\epsilon} p_{t(\epsilon)}$

Weighted graphs, free graph algebra

- ($\Gamma, V, E, \mu)$ a connected, finite, weighted graph. Require $\sum_{v \in V} \mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions $\epsilon, \epsilon^{o p}$
- $\ell^{\infty}(V)$: functions on $V . p_{v}$ indicator function at $v \in V$.
- Fock space representation of operators $\left(p_{v}\right)_{v \in V}$ and $\left(x_{\epsilon}\right)_{\epsilon \in \vec{E}}$ Relations:

1. $1=\sum_{v \in V} p_{v}$
2. $x_{\epsilon}=p_{s(\epsilon)} x_{\epsilon} p_{t(\epsilon)}$
3. $x_{\epsilon^{o p}}=x_{\epsilon}^{*}$

Weighted graphs, free graph algebra

- ($\Gamma, V, E, \mu)$ a connected, finite, weighted graph. Require $\sum_{v \in V} \mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions $\epsilon, \epsilon^{o p}$
- $\ell^{\infty}(V)$: functions on $V . p_{v}$ indicator function at $v \in V$.
- Fock space representation of operators $\left(p_{v}\right)_{v \in V}$ and $\left(x_{\epsilon}\right)_{\epsilon \in \vec{E}}$ Relations:

1. $1=\sum_{v \in V} p_{v}$
2. $x_{\epsilon}=p_{s(\epsilon)} x_{\epsilon} p_{t(\epsilon)}$
3. $x_{\epsilon^{o p}}=x_{\epsilon}^{*}$
4. $x_{\epsilon_{1}} \cdots x_{\epsilon_{n}}=0$ unless $\epsilon_{1} \cdots \epsilon_{n}$ is a path.

Weighted graphs, free graph algebra

- ($\Gamma, V, E, \mu)$ a connected, finite, weighted graph. Require $\sum_{v \in V} \mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions $\epsilon, \epsilon^{o p}$
- $\ell^{\infty}(V)$: functions on $V . p_{v}$ indicator function at $v \in V$.
- Fock space representation of operators $\left(p_{v}\right)_{v \in V}$ and $\left(x_{\epsilon}\right)_{\epsilon \in \vec{E}}$ Relations:

1. $1=\sum_{v \in V} p_{v}$
2. $x_{\epsilon}=p_{s(\epsilon)} x_{\epsilon} p_{t(\epsilon)}$
3. $x_{\epsilon^{o p}}=x_{\epsilon}^{*}$
4. $x_{\epsilon_{1}} \cdots x_{\epsilon_{n}}=0$ unless $\epsilon_{1} \cdots \epsilon_{n}$ is a path.
5. $\operatorname{tr}\left(x_{\epsilon_{1}} \cdots x_{\epsilon_{n}}\right)=$
$\frac{1}{\sqrt{\mu\left(s\left(\epsilon_{1}\right)\right) \mu\left(t\left(\epsilon_{1}\right)\right)}} \sum_{\epsilon_{j}=\epsilon_{1}^{o p}} \operatorname{tr}\left(x_{\epsilon_{2}} \cdots x_{\epsilon_{j-1}}\right) \operatorname{tr}\left(x_{\epsilon_{j+1}} \cdots x_{\epsilon_{n}}\right)$

Weighted graphs, free graph algebra

- ($\Gamma, V, E, \mu)$ a connected, finite, weighted graph. Require $\sum_{v \in V} \mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions $\epsilon, \epsilon^{o p}$
- $\ell^{\infty}(V)$: functions on $V . p_{v}$ indicator function at $v \in V$.
- Fock space representation of operators $\left(p_{v}\right)_{v \in V}$ and $\left(x_{\epsilon}\right)_{\epsilon \in \vec{E}}$ Relations:

1. $1=\sum_{v \in V} p_{v}$
2. $x_{\epsilon}=p_{s(\epsilon)} x_{\epsilon} p_{t(\epsilon)}$
3. $x_{\epsilon^{o p}}=x_{\epsilon}^{*}$
4. $x_{\epsilon_{1}} \cdots x_{\epsilon_{n}}=0$ unless $\epsilon_{1} \cdots \epsilon_{n}$ is a path.
5. $\operatorname{tr}\left(x_{\epsilon_{1}} \cdots x_{\epsilon_{n}}\right)=$

$$
\frac{1}{\sqrt{\mu\left(s\left(\epsilon_{1}\right)\right) \mu\left(t\left(\epsilon_{1}\right)\right)}} \sum_{\epsilon_{j}=\epsilon_{1}^{o p}} \operatorname{tr}\left(x_{\epsilon_{2}} \cdots x_{\epsilon_{j-1}}\right) \operatorname{tr}\left(x_{\epsilon_{j+1}} \cdots x_{\epsilon_{n}}\right)
$$

6. If $|V|=1$, this gives Voiculescu's free semicircular system.

von Neumann algebras

- Set $\mathcal{S}(\Gamma, \mu)=\mathrm{C}^{*}\left(\left(p_{v}\right)_{v \in V},\left(x_{\epsilon}\right)_{\epsilon \in \vec{E}}\right)$

von Neumann algebras

- Set $\mathcal{S}(\Gamma, \mu)=\mathrm{C}^{*}\left(\left(p_{v}\right)_{v \in V},\left(x_{\epsilon}\right)_{\epsilon \in \vec{E}}\right)$
- Set $\mathcal{M}(\Gamma, \mu)=(\mathcal{S}(\Gamma, \mu), \operatorname{tr})^{\prime \prime}$

von Neumann algebras

- Set $\mathcal{S}(\Gamma, \mu)=\mathrm{C}^{*}\left(\left(p_{v}\right)_{v \in V},\left(x_{\epsilon}\right)_{\epsilon \in \vec{E}}\right)$
- Set $\mathcal{M}(\Gamma, \mu)=(\mathcal{S}(\Gamma, \mu), \operatorname{tr})^{\prime \prime}$
- Theorem (H. '13): Let $V_{>}$be the set of vertices, β satisfying $\mu(\beta)>\sum_{\alpha \sim \beta} n_{\alpha, \beta} \mu(\alpha)$. We have

$$
\mathcal{M}(\Gamma, \mu) \cong L\left(\mathbb{F}_{t}\right) \oplus \bigoplus_{\gamma \in V_{>}} \stackrel{r_{\gamma}}{\mathbb{C}}
$$

where $r_{\gamma} \leq p_{\gamma}$ and $\tau\left(r_{\gamma}\right)=\mu(\gamma)-\sum_{\alpha \sim \gamma} n_{\alpha, \beta} \mu(\alpha)$. If $\mathcal{M}(\Gamma, \mu)$ is a factor, then

$$
t=1-\sum_{v \in V} \mu(v)^{2}+\sum_{v \in V} \mu(v) \sum_{w \sim v} n_{v, w} \mu(w)
$$

Examples

Γ	$\mathcal{M}(\Gamma, \mu)$
	$L\left(\mathbb{F}_{n}\right)$
	$\begin{gathered} L\left(\mathbb{F}_{t}\right) \\ t=(n-4) a^{2}+4 a \end{gathered}$
$\int_{a \in\left[\frac{1}{3}, \frac{2}{3}\right]}^{1-a}$	$\begin{gathered} L\left(\mathbb{F}_{t}\right) \\ t=6\left(a-a^{2}\right) \end{gathered}$

C*-algebras

- Theorem (H '16) Let $V=$ be the set of vertices β satisfying $\mu(\beta)=\sum_{\alpha \sim \beta} n_{\alpha, \beta} \mu(\alpha)$, and let $V_{\geq}=V_{>} \cup V_{=}$. Let I be the norm-closed ideal generated by generated by $\left(x_{e}\right)_{e \in E}$. Then:
- I is minimal, simple, has unique trace, and has stable rank 1.
- I is unital if and only if $V_{=}$is empty. If $V_{=}$is empty, then

$$
\mathcal{S}(\Gamma, \mu)=I \oplus \bigoplus_{\gamma \in V_{>}} \stackrel{C}{\gamma}^{\mathbb{C}}
$$

with $r_{\gamma} \leq p_{\gamma}$ and $\tau\left(r_{\gamma}\right)=\mu(\gamma)-\sum_{\alpha \sim \gamma} n_{\alpha, \beta} \mu(\alpha)$. If $V_{=}$is not empty, then

$$
\mathcal{S}(\Gamma, \mu)=\mathcal{I} \oplus \bigoplus_{\gamma \in V_{>}} \stackrel{r_{\gamma}}{\mathbb{C}}
$$

where \mathcal{I} is unital, and the strong operator closures of I and \mathcal{I} coincide in $L^{2}(\mathcal{S}(\Gamma, \mu), \tau)$, and $\mathcal{I} / I \cong \bigoplus_{\beta \in V} \mathbb{C}$.

- $K_{0}(I) \cong \mathbb{Z}\left\{\left[p_{\beta}\right] \mid \beta \in V \backslash V_{\geq}\right\}$and $K_{1}(I)=\{0\}$ where the first group is the free abelian group on the classes of projections $\left[p_{\beta}\right]$. Furthermore, $K_{0}(I)^{+}=\left\{x \in K_{0}(I) \mid \operatorname{tr}(x)>0\right\} \cup\{0\}$.

Free difference quotient

- Let A be the $*$-algebra generated by $\ell^{\infty}(V)$ and $\left(x_{e}\right)_{e \in E}$.

Free difference quotient

- Let A be the $*$-algebra generated by $\ell^{\infty}(V)$ and $\left(x_{e}\right)_{e \in E}$.
- Free difference quotient: for $\epsilon \in \vec{E}$, define $\partial_{\epsilon}: A \rightarrow A \otimes A^{o p}$ by:

$$
\partial_{\epsilon}\left(x_{\epsilon^{\prime}}\right)=\delta_{e, e^{\prime}} p_{s(\epsilon)} \otimes p_{t(\epsilon)} \quad \partial_{\epsilon}\left(p_{v}\right)=0
$$

and extend via derivation.

Free difference quotient

- Let A be the $*$-algebra generated by $\ell^{\infty}(V)$ and $\left(x_{e}\right)_{e \in E}$.
- Free difference quotient: for $\epsilon \in \vec{E}$, define $\partial_{\epsilon}: A \rightarrow A \otimes A^{o p}$ by:

$$
\partial_{\epsilon}\left(x_{\epsilon^{\prime}}\right)=\delta_{e, e^{\prime}} p_{s(\epsilon)} \otimes p_{t(\epsilon)} \quad \partial_{\epsilon}\left(p_{v}\right)=0
$$

and extend via derivation.

- Set $\mu(\epsilon)=\sqrt{\mu(s(\epsilon)) \mu(t(\epsilon))}$

Free difference quotient

- Let A be the $*$-algebra generated by $\ell^{\infty}(V)$ and $\left(x_{e}\right)_{e \in E}$.
- Free difference quotient: for $\epsilon \in \vec{E}$, define $\partial_{\epsilon}: A \rightarrow A \otimes A^{o p}$ by:

$$
\partial_{\epsilon}\left(x_{\epsilon^{\prime}}\right)=\delta_{e, e^{\prime}} p_{s(\epsilon)} \otimes p_{t(\epsilon)} \quad \partial_{\epsilon}\left(p_{v}\right)=0
$$

and extend via derivation.

- Set $\mu(\epsilon)=\sqrt{\mu(s(\epsilon)) \mu(t(\epsilon))}$
- Observation: $\mu(\epsilon) \operatorname{tr}\left(x_{\epsilon^{o p}} Q\right)=(\operatorname{tr} \otimes \operatorname{tr})\left(\partial_{\epsilon}(Q)\right)$ for $P \in A$.

Free difference quotient

- Let A be the $*$-algebra generated by $\ell^{\infty}(V)$ and $\left(x_{e}\right)_{e \in E}$.
- Free difference quotient: for $\epsilon \in \vec{E}$, define $\partial_{\epsilon}: A \rightarrow A \otimes A^{o p}$ by:

$$
\partial_{\epsilon}\left(x_{\epsilon^{\prime}}\right)=\delta_{e, e^{\prime}} p_{s(\epsilon)} \otimes p_{t(\epsilon)} \quad \partial_{\epsilon}\left(p_{v}\right)=0
$$

and extend via derivation.

- Set $\mu(\epsilon)=\sqrt{\mu(s(\epsilon)) \mu(t(\epsilon))}$
- Observation: $\mu(\epsilon) \operatorname{tr}\left(x_{\epsilon^{\circ p}} Q\right)=(\operatorname{tr} \otimes \operatorname{tr})\left(\partial_{\epsilon}(Q)\right)$ for $P \in A$.
- i.e. $\partial_{\epsilon}^{*}\left(p_{s(\epsilon)} \otimes p_{t(\epsilon)}\right)=\mu(\epsilon) x_{\epsilon}$

Vector fields and Jacobians

- Set $A^{\vec{E}}=$

Vector fields and Jacobians

- Set $A^{\vec{E}}=\left\{f: \vec{E} \rightarrow A \mid p_{s(\epsilon)} f(\epsilon) p_{t(\epsilon)}=f(\epsilon)\right\}$

Vector fields and Jacobians

- Set $A^{\vec{E}}=\left\{f: \vec{E} \rightarrow A \mid p_{s(\epsilon)} f(\epsilon) p_{t(\epsilon)}=f(\epsilon)\right\}$
- Inner product $\langle f \mid h\rangle=\sum_{\epsilon} \operatorname{tr}\left(f_{\epsilon}^{*} h_{\epsilon}\right)$

Vector fields and Jacobians

- Set $A^{\vec{E}}=\left\{f: \vec{E} \rightarrow A \mid p_{s(\epsilon)} f(\epsilon) p_{t(\epsilon)}=f(\epsilon)\right\}$
- Inner product $\langle f \mid h\rangle=\sum_{\epsilon} \operatorname{tr}\left(f_{\epsilon}^{*} h_{\epsilon}\right)$
- Given $f \in A^{\vec{E}}$, define $\mathscr{J} f \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $(\mathscr{J} f)_{\epsilon \phi}=\partial_{\phi} f_{\epsilon}$

Vector fields and Jacobians

- Set $A^{\vec{E}}=\left\{f: \vec{E} \rightarrow A \mid p_{s(\epsilon)} f(\epsilon) p_{t(\epsilon)}=f(\epsilon)\right\}$
- Inner product $\langle f \mid h\rangle=\sum_{\epsilon} \operatorname{tr}\left(f_{\epsilon}^{*} h_{\epsilon}\right)$
- Given $f \in A^{\vec{E}}$, define $\mathscr{J} f \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $(\mathscr{J} f)_{\epsilon \phi}=\partial_{\phi} f_{\epsilon}$
- Define $P \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $P_{\epsilon, \phi}=\delta_{\epsilon, \phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$.

Vector fields and Jacobians

- Set $A^{\vec{E}}=\left\{f: \vec{E} \rightarrow A \mid p_{s(\epsilon)} f(\epsilon) p_{t(\epsilon)}=f(\epsilon)\right\}$
- Inner product $\langle f \mid h\rangle=\sum_{\epsilon} \operatorname{tr}\left(f_{\epsilon}^{*} h_{\epsilon}\right)$
- Given $f \in A^{\vec{E}}$, define $\mathscr{J} f \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $(\mathscr{J} f)_{\epsilon \phi}=\partial_{\phi} f_{\epsilon}$
- Define $P \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $P_{\epsilon, \phi}=\delta_{\epsilon, \phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$. Observe $\mathscr{J} x=P$

Vector fields and Jacobians

- Set $A^{\vec{E}}=\left\{f: \vec{E} \rightarrow A \mid p_{s(\epsilon)} f(\epsilon) p_{t(\epsilon)}=f(\epsilon)\right\}$
- Inner product $\langle f \mid h\rangle=\sum_{\epsilon} \operatorname{tr}\left(f_{\epsilon}^{*} h_{\epsilon}\right)$
- Given $f \in A^{\vec{E}}$, define $\mathscr{J} f \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $(\mathscr{J} f)_{\epsilon \phi}=\partial_{\phi} f_{\epsilon}$
- Define $P \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $P_{\epsilon, \phi}=\delta_{\epsilon, \phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$. Observe $\mathscr{J} x=P$
- Set $\mathbb{M}(A)=P M_{\vec{E}}\left(A \otimes A^{o p}\right) P$.

Vector fields and Jacobians

- Set $A^{\vec{E}}=\left\{f: \vec{E} \rightarrow A \mid p_{s(\epsilon)} f(\epsilon) p_{t(\epsilon)}=f(\epsilon)\right\}$
- Inner product $\langle f \mid h\rangle=\sum_{\epsilon} \operatorname{tr}\left(f_{\epsilon}^{*} h_{\epsilon}\right)$
- Given $f \in A^{\vec{E}}$, define $\mathscr{J} f \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $(\mathscr{J} f)_{\epsilon \phi}=\partial_{\phi} f_{\epsilon}$
- Define $P \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $P_{\epsilon, \phi}=\delta_{\epsilon, \phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$. Observe $\mathscr{J} x=P$
- Set $\mathbb{M}(A)=P M_{\vec{E}}\left(A \otimes A^{o p}\right) P$. Note that $\mathscr{J} f \in \mathbb{M}(A)$ for $f \in A^{\vec{E}}$.

Vector fields and Jacobians

- Set $A^{\vec{E}}=\left\{f: \vec{E} \rightarrow A \mid p_{s(\epsilon)} f(\epsilon) p_{t(\epsilon)}=f(\epsilon)\right\}$
- Inner product $\langle f \mid h\rangle=\sum_{\epsilon} \operatorname{tr}\left(f_{\epsilon}^{*} h_{\epsilon}\right)$
- Given $f \in A^{\vec{E}}$, define $\mathscr{J} f \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $(\mathscr{J} f)_{\epsilon \phi}=\partial_{\phi} f_{\epsilon}$
- Define $P \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $P_{\epsilon, \phi}=\delta_{\epsilon, \phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$. Observe $\mathscr{J} x=P$
- Set $\mathbb{M}(A)=P M_{\vec{E}}\left(A \otimes A^{o p}\right) P$. Note that $\mathscr{J} f \in \mathbb{M}(A)$ for $f \in A^{\vec{E}}$.
- For $a \otimes b \in A \otimes A^{o p}$, and $c \in A$, define $(a \otimes b) \# c=a c b$.

Vector fields and Jacobians

- Set $A^{\vec{E}}=\left\{f: \vec{E} \rightarrow A \mid p_{s(\epsilon)} f(\epsilon) p_{t(\epsilon)}=f(\epsilon)\right\}$
- Inner product $\langle f \mid h\rangle=\sum_{\epsilon} \operatorname{tr}\left(f_{\epsilon}^{*} h_{\epsilon}\right)$
- Given $f \in A^{\vec{E}}$, define $\mathscr{J} f \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $(\mathscr{J} f)_{\epsilon \phi}=\partial_{\phi} f_{\epsilon}$
- Define $P \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $P_{\epsilon, \phi}=\delta_{\epsilon, \phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$. Observe $\mathscr{J} x=P$
- Set $\mathbb{M}(A)=P M_{\vec{E}}\left(A \otimes A^{o p}\right) P$. Note that $\mathscr{J} f \in \mathbb{M}(A)$ for $f \in A^{\vec{E}}$.
- For $a \otimes b \in A \otimes A^{o p}$, and $c \in A$, define $(a \otimes b) \# c=a c b$. Extend to an action of $\mathbb{M}(A)$ acting on $A^{\vec{E}}$ in obvious way.

Vector fields and Jacobians

- Set $A^{\vec{E}}=\left\{f: \vec{E} \rightarrow A \mid p_{s(\epsilon)} f(\epsilon) p_{t(\epsilon)}=f(\epsilon)\right\}$
- Inner product $\langle f \mid h\rangle=\sum_{\epsilon} \operatorname{tr}\left(f_{\epsilon}^{*} h_{\epsilon}\right)$
- Given $f \in A^{\vec{E}}$, define $\mathscr{J} f \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $(\mathscr{J} f)_{\epsilon \phi}=\partial_{\phi} f_{\epsilon}$
- Define $P \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $P_{\epsilon, \phi}=\delta_{\epsilon, \phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$. Observe $\mathscr{J} x=P$
- Set $\mathbb{M}(A)=P M_{\vec{E}}\left(A \otimes A^{o p}\right) P$. Note that $\mathscr{J} f \in \mathbb{M}(A)$ for $f \in A^{\vec{E}}$.
- For $a \otimes b \in A \otimes A^{o p}$, and $c \in A$, define $(a \otimes b) \# c=a c b$. Extend to an action of $\mathbb{M}(A)$ acting on $A^{\vec{E}}$ in obvious way. This is well defined!

Vector fields and Jacobians

- Set $A^{\vec{E}}=\left\{f: \vec{E} \rightarrow A \mid p_{s(\epsilon)} f(\epsilon) p_{t(\epsilon)}=f(\epsilon)\right\}$
- Inner product $\langle f \mid h\rangle=\sum_{\epsilon} \operatorname{tr}\left(f_{\epsilon}^{*} h_{\epsilon}\right)$
- Given $f \in A^{\vec{E}}$, define $\mathscr{J} f \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $(\mathscr{J} f)_{\epsilon \phi}=\partial_{\phi} f_{\epsilon}$
- Define $P \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $P_{\epsilon, \phi}=\delta_{\epsilon, \phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$. Observe $\mathscr{J} x=P$
- Set $\mathbb{M}(A)=P M_{\vec{E}}\left(A \otimes A^{o p}\right) P$. Note that $\mathscr{J} f \in \mathbb{M}(A)$ for $f \in A^{\vec{E}}$.
- For $a \otimes b \in A \otimes A^{o p}$, and $c \in A$, define $(a \otimes b) \# c=a c b$. Extend to an action of $\mathbb{M}(A)$ acting on $A^{\vec{E}}$ in obvious way. This is well defined!
- The Schwinger-Dyson equation is now $\mathscr{J}^{*}(P)=M \# x$

Vector fields and Jacobians

- Set $A^{\vec{E}}=\left\{f: \vec{E} \rightarrow A \mid p_{s(\epsilon)} f(\epsilon) p_{t(\epsilon)}=f(\epsilon)\right\}$
- Inner product $\langle f \mid h\rangle=\sum_{\epsilon} \operatorname{tr}\left(f_{\epsilon}^{*} h_{\epsilon}\right)$
- Given $f \in A^{\vec{E}}$, define $\mathscr{J} f \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $(\mathscr{J} f)_{\epsilon \phi}=\partial_{\phi} f_{\epsilon}$
- Define $P \in M_{\vec{E}}\left(A \otimes A^{o p}\right)$ by $P_{\epsilon, \phi}=\delta_{\epsilon, \phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$. Observe $\mathscr{J} x=P$
- Set $\mathbb{M}(A)=P M_{\vec{E}}\left(A \otimes A^{o p}\right) P$. Note that $\mathscr{J} f \in \mathbb{M}(A)$ for $f \in A^{\vec{E}}$.
- For $a \otimes b \in A \otimes A^{o p}$, and $c \in A$, define $(a \otimes b) \# c=a c b$. Extend to an action of $\mathbb{M}(A)$ acting on $A^{\vec{E}}$ in obvious way. This is well defined!
- The Schwinger-Dyson equation is now $\mathscr{J}^{*}(P)=M \# x$ with $M_{\epsilon, \phi}=\delta_{\epsilon, \phi} \mu(\epsilon) p_{s(\epsilon)} \otimes p_{t(\epsilon)}$

Cyclic gradients and Schwinger-Dyson

- Cyclic partial derivatives \mathscr{D}_{ϵ} :

Cyclic gradients and Schwinger-Dyson

- Cyclic partial derivatives $\mathscr{D}_{\epsilon}: \mathscr{D}_{\epsilon}=m \circ \sigma \circ \partial_{\epsilon}{ }^{\circ p}$

Cyclic gradients and Schwinger-Dyson

- Cyclic partial derivatives $\mathscr{D}_{\epsilon}: \mathscr{D}_{\epsilon}=m \circ \sigma \circ \partial_{\epsilon}{ }^{o p}$
- $\mathscr{D}_{\epsilon}(P)=\sum_{P=Q x_{\epsilon}{ }^{\circ} R} R Q$

Cyclic gradients and Schwinger-Dyson

- Cyclic partial derivatives $\mathscr{D}_{\epsilon}: \mathscr{D}_{\epsilon}=m \circ \sigma \circ \partial_{\epsilon}{ }^{\circ p}$
- $\mathscr{D}_{\epsilon}(P)=\sum_{P=Q x_{\epsilon}{ }^{\circ} R} R Q$
- Cyclic gradient: $\mathscr{D}: A \rightarrow A^{\vec{E}}$ given by $(\mathscr{D} g)_{\epsilon}=\mathscr{D}_{\epsilon}(g)$

Cyclic gradients and Schwinger-Dyson

- Cyclic partial derivatives $\mathscr{D}_{\epsilon}: \mathscr{D}_{\epsilon}=m \circ \sigma \circ \partial_{\epsilon}{ }^{o p}$
- $\mathscr{D}_{\epsilon}(P)=\sum_{P=Q x_{\epsilon}{ }^{\circ} R} R Q$
- Cyclic gradient: $\mathscr{D}: A \rightarrow A^{\vec{E}}$ given by $(\mathscr{D} g)_{\epsilon}=\mathscr{D}_{\epsilon}(g)$ Note that this is well defined!

Cyclic gradients and Schwinger-Dyson

- Cyclic partial derivatives $\mathscr{D}_{\epsilon}: \mathscr{D}_{\epsilon}=m \circ \sigma \circ \partial_{\epsilon}{ }^{o p}$
- $\mathscr{D}_{\epsilon}(P)=\sum_{P=Q x_{\epsilon}{ }^{\circ} R} R Q$
- Cyclic gradient: $\mathscr{D}: A \rightarrow A^{\vec{E}}$ given by $(\mathscr{D} g)_{\epsilon}=\mathscr{D}_{\epsilon}(g)$ Note that this is well defined!
- Note: The Schwinger-Dyson equation is now

$$
\mathscr{J}^{*}(P)=\mathscr{D}\left(V_{\mu}\right) \text { with } V_{\mu}=\frac{1}{2} \sum_{\epsilon} \mu(\epsilon) x_{\epsilon}^{*} x_{\epsilon}
$$

Cyclic gradients and Schwinger-Dyson

- Cyclic partial derivatives $\mathscr{D}_{\epsilon}: \mathscr{D}_{\epsilon}=m \circ \sigma \circ \partial_{\epsilon}{ }^{o p}$
- $\mathscr{D}_{\epsilon}(P)=\sum_{P=Q x_{\epsilon} o p R} R Q$
- Cyclic gradient: $\mathscr{D}: A \rightarrow A^{\vec{E}}$ given by $(\mathscr{D} g)_{\epsilon}=\mathscr{D}_{\epsilon}(g)$ Note that this is well defined!
- Note: The Schwinger-Dyson equation is now

$$
\mathscr{J}^{*}(P)=\mathscr{D}\left(V_{\mu}\right) \text { with } V_{\mu}=\frac{1}{2} \sum_{\epsilon} \mu(\epsilon) x_{\epsilon}^{*} x_{\epsilon}
$$

- A^{R} : Completion of A with respect to the norm:

Cyclic gradients and Schwinger-Dyson

- Cyclic partial derivatives $\mathscr{D}_{\epsilon}: \mathscr{D}_{\epsilon}=m \circ \sigma \circ \partial_{\epsilon}{ }^{\circ p}$
- $\mathscr{D}_{\epsilon}(P)=\sum_{P=Q x_{\epsilon} o p R} R Q$
- Cyclic gradient: $\mathscr{D}: A \rightarrow A^{\vec{E}}$ given by $(\mathscr{D} g)_{\epsilon}=\mathscr{D}_{\epsilon}(g)$ Note that this is well defined!
- Note: The Schwinger-Dyson equation is now

$$
\mathscr{J}^{*}(P)=\mathscr{D}\left(V_{\mu}\right) \text { with } V_{\mu}=\frac{1}{2} \sum_{\epsilon} \mu(\epsilon) x_{\epsilon}^{*} x_{\epsilon}
$$

- A^{R} : Completion of A with respect to the norm:

$$
\begin{gathered}
\left\|\sum_{v \in V} a_{v} p_{v}+\sum_{\epsilon_{1} \cdots \epsilon_{n}} a_{\epsilon_{1}, \ldots, \epsilon_{n}} x_{\epsilon_{1}} \cdots x_{\epsilon_{n}}\right\|_{R} \\
=\left(\sup _{v \in V}\left|a_{v}\right|\right)+\sum_{\epsilon_{1} \ldots \epsilon_{n}}\left|a_{\epsilon_{1} \ldots \epsilon_{n}}\right| R^{n}
\end{gathered}
$$

Perturbations

- We are interested in perturbations:

Perturbations

- We are interested in perturbations: A family $\left(y_{\epsilon}\right)_{\epsilon \in \vec{E}}$, and ϕ a trace on A^{R} satisfying:

Perturbations

- We are interested in perturbations: A family $\left(y_{\epsilon}\right)_{\epsilon \in \vec{E}}$, and ϕ a trace on A^{R} satisfying:

1. $\phi\left(p_{v}\right)=\mu(v)$

Perturbations

- We are interested in perturbations: A family $\left(y_{\epsilon}\right)_{\epsilon \in \vec{E}}$, and ϕ a trace on A^{R} satisfying:

1. $\phi\left(p_{v}\right)=\mu(v)$
2. There is a $C>0$ where $\phi\left(y_{\epsilon_{1}} \cdots y_{\epsilon_{n}}\right) \leq C^{n}$

Perturbations

- We are interested in perturbations: A family $\left(y_{\epsilon}\right)_{\epsilon \in \vec{E}}$, and ϕ a trace on A^{R} satisfying:

1. $\phi\left(p_{v}\right)=\mu(v)$
2. There is a $C>0$ where $\phi\left(y_{\epsilon_{1}} \cdots y_{\epsilon_{n}}\right) \leq C^{n}$
3. $\mathscr{J}_{y}^{*}(P)=\mathscr{D}_{y}\left(V_{\mu}(y)+W(y)\right)$ for $\|W\|_{R}$ small.

Perturbations

- We are interested in perturbations: A family $\left(y_{\epsilon}\right)_{\epsilon \in \vec{E}}$, and ϕ a trace on A^{R} satisfying:

1. $\phi\left(p_{v}\right)=\mu(v)$
2. There is a $C>0$ where $\phi\left(y_{\epsilon_{1}} \cdots y_{\epsilon_{n}}\right) \leq C^{n}$
3. $\mathscr{J}_{y}^{*}(P)=\mathscr{D}_{y}\left(V_{\mu}(y)+W(y)\right)$ for $\|W\|_{R}$ small.

- Such solutions ϕ are seen to be unique. The harder question is existence!

Perturbations

- We are interested in perturbations: A family $\left(y_{\epsilon}\right)_{\epsilon \in \vec{E}}$, and ϕ a trace on A^{R} satisfying:

1. $\phi\left(p_{v}\right)=\mu(v)$
2. There is a $C>0$ where $\phi\left(y_{\epsilon_{1}} \cdots y_{\epsilon_{n}}\right) \leq C^{n}$
3. $\mathscr{J}_{y}^{*}(P)=\mathscr{D}_{y}\left(V_{\mu}(y)+W(y)\right)$ for $\|W\|_{R}$ small.

- Such solutions ϕ are seen to be unique. The harder question is existence!
- We examine the existence of $\left(y_{\epsilon}\right)_{\epsilon \in \vec{E}}$ in $\mathcal{S}(\Gamma, \mu)$

Perturbations

- We are interested in perturbations: A family $\left(y_{\epsilon}\right)_{\epsilon \in \vec{E}}$, and ϕ a trace on A^{R} satisfying:

1. $\phi\left(p_{v}\right)=\mu(v)$
2. There is a $C>0$ where $\phi\left(y_{\epsilon_{1}} \cdots y_{\epsilon_{n}}\right) \leq C^{n}$
3. $\mathscr{J}_{y}^{*}(P)=\mathscr{D}_{y}\left(V_{\mu}(y)+W(y)\right)$ for $\|W\|_{R}$ small.

- Such solutions ϕ are seen to be unique. The harder question is existence!
- We examine the existence of $\left(y_{\epsilon}\right)_{\epsilon \in \vec{E}}$ in $\mathcal{S}(\Gamma, \mu)$
- We write $y=x+f$.

Perturbations

- We are interested in perturbations: A family $\left(y_{\epsilon}\right)_{\epsilon \in \vec{E}}$, and ϕ a trace on A^{R} satisfying:

1. $\phi\left(p_{v}\right)=\mu(v)$
2. There is a $C>0$ where $\phi\left(y_{\epsilon_{1}} \cdots y_{\epsilon_{n}}\right) \leq C^{n}$
3. $\mathscr{J}_{y}^{*}(P)=\mathscr{D}_{y}\left(V_{\mu}(y)+W(y)\right)$ for $\|W\|_{R}$ small.

- Such solutions ϕ are seen to be unique. The harder question is existence!
- We examine the existence of $\left(y_{\epsilon}\right)_{\epsilon \in \vec{E}}$ in $\mathcal{S}(\Gamma, \mu)$
- We write $y=x+f$. Assume $\|f\|_{R}$ is small enough for $P+\mathscr{J} f$ to be invertible in $\mathbb{M}\left(A^{R}\right)$.

Perturbations

- We are interested in perturbations: A family $\left(y_{\epsilon}\right)_{\epsilon \in \vec{E}}$, and ϕ a trace on A^{R} satisfying:

1. $\phi\left(p_{v}\right)=\mu(v)$
2. There is a $C>0$ where $\phi\left(y_{\epsilon_{1}} \cdots y_{\epsilon_{n}}\right) \leq C^{n}$
3. $\mathscr{J}_{y}^{*}(P)=\mathscr{D}_{y}\left(V_{\mu}(y)+W(y)\right)$ for $\|W\|_{R}$ small.

- Such solutions ϕ are seen to be unique. The harder question is existence!
- We examine the existence of $\left(y_{\epsilon}\right)_{\epsilon \in \vec{E}}$ in $\mathcal{S}(\Gamma, \mu)$
- We write $y=x+f$. Assume $\|f\|_{R}$ is small enough for $P+\mathscr{J} f$ to be invertible in $\mathbb{M}\left(A^{R}\right)$.
- Using a change of variables, we try to solve the following for f :

Perturbations

- We are interested in perturbations: A family $\left(y_{\epsilon}\right)_{\epsilon \in \vec{E}}$, and ϕ a trace on A^{R} satisfying:

1. $\phi\left(p_{v}\right)=\mu(v)$
2. There is a $C>0$ where $\phi\left(y_{\epsilon_{1}} \cdots y_{\epsilon_{n}}\right) \leq C^{n}$
3. $\mathscr{J}_{y}^{*}(P)=\mathscr{D}_{y}\left(V_{\mu}(y)+W(y)\right)$ for $\|W\|_{R}$ small.

- Such solutions ϕ are seen to be unique. The harder question is existence!
- We examine the existence of $\left(y_{\epsilon}\right)_{\epsilon \in \vec{E}}$ in $\mathcal{S}(\Gamma, \mu)$
- We write $y=x+f$. Assume $\|f\|_{R}$ is small enough for $P+\mathscr{J} f$ to be invertible in $\mathbb{M}\left(A^{R}\right)$.
- Using a change of variables, we try to solve the following for f :

$$
\mathscr{J}^{*}\left(\frac{P}{1+\mathscr{J} f}\right)=M \# x+(\mathscr{D} W)(x+f)
$$

We further assume $f=\mathscr{D} g$

Solving the equation

- Solving $\mathscr{J}^{*}\left(\frac{P}{1+\mathscr{J} f}\right)=M \# x+(\mathscr{D} W)(x+f)$

Solving the equation

- Solving $\mathscr{J}^{*}\left(\frac{P}{1+\mathscr{J} f}\right)=M \# x+(\mathscr{D} W)(x+f)$
- Via some (a lot) of work, this can be transformed to

Solving the equation

- Solving $\mathscr{J}^{*}\left(\frac{P}{1+\mathscr{J} f}\right)=M \# x+(\mathscr{D} W)(x+f)$
- Via some (a lot) of work, this can be transformed to

$$
\begin{aligned}
\mathscr{D} \mathcal{N}_{\mu} g & =\mathscr{D}\left[-W(x+\mathscr{D} g)-\frac{1}{2} \mathscr{D} g \# M \# \mathscr{D} g\right. \\
& \left.-\sum_{m=1}^{\infty} \frac{(-1)^{m}}{m}(1 \otimes \operatorname{tr}+\operatorname{tr} \otimes 1) \circ \operatorname{Tr}\left(\mathscr{J} \mathscr{D} g^{m}\right)\right]
\end{aligned}
$$

Solving the equation

- Solving $\mathscr{J}^{*}\left(\frac{P}{1+\mathscr{J} f}\right)=M \# x+(\mathscr{D} W)(x+f)$
- Via some (a lot) of work, this can be transformed to

$$
\begin{aligned}
\mathscr{D} \mathcal{N}_{\mu} g & =\mathscr{D}\left[-W(x+\mathscr{D} g)-\frac{1}{2} \mathscr{D} g \# M \# \mathscr{D} g\right. \\
& \left.-\sum_{m=1}^{\infty} \frac{(-1)^{m}}{m}(1 \otimes \operatorname{tr}+\operatorname{tr} \otimes 1) \circ \operatorname{Tr}\left(\mathscr{J} \mathscr{D} g^{m}\right)\right]
\end{aligned}
$$

- With sufficient "radius of convergence" and norm conditions on W, one can solve this by contraction mapping by removing the gradients.

Solving the equation

- Solving $\mathscr{J}^{*}\left(\frac{P}{1+\mathscr{J} f}\right)=M \# x+(\mathscr{D} W)(x+f)$
- Via some (a lot) of work, this can be transformed to

$$
\begin{aligned}
\mathscr{D} \mathcal{N}_{\mu} g & =\mathscr{D}\left[-W(x+\mathscr{D} g)-\frac{1}{2} \mathscr{D} g \# M \# \mathscr{D} g\right. \\
& \left.-\sum_{m=1}^{\infty} \frac{(-1)^{m}}{m}(1 \otimes \operatorname{tr}+\operatorname{tr} \otimes 1) \circ \operatorname{Tr}\left(\mathscr{J} \mathscr{D} g^{m}\right)\right]
\end{aligned}
$$

- With sufficient "radius of convergence" and norm conditions on W, one can solve this by contraction mapping by removing the gradients.

1. Choose R so that $R \min _{\epsilon \in \vec{E}} \mu(\epsilon)>4$
2. Choose $S>R+\frac{1}{R}$.
3. Assume $W \in A^{S}$ with

- $\|W\|_{S} \leq \frac{1}{2} \min _{\epsilon \in \bar{E}} \mu(\epsilon)$
- $\|W\|_{S} \leq 2 e\left(R+\frac{1}{R}\right) \log \left(\frac{S}{R+\frac{1}{R}}\right)$.

Punchline

- This produces $y=x+f$ with $\operatorname{tr}\left(y_{\epsilon_{1}} \cdots y_{\epsilon_{n}}\right)=\phi\left(y_{\epsilon_{1}} \cdots y_{\epsilon_{n}}\right)$

Punchline

- This produces $y=x+f$ with $\operatorname{tr}\left(y_{\epsilon_{1}} \cdots y_{\epsilon_{n}}\right)=\phi\left(y_{\epsilon_{1}} \cdots y_{\epsilon_{n}}\right)$
- With even smaller norm conditions on W, one can express each x_{ϵ} as a power series in the y_{ϕ} via an inverse function theorem.

Punchline

- This produces $y=x+f$ with $\operatorname{tr}\left(y_{\epsilon_{1}} \cdots y_{\epsilon_{n}}\right)=\phi\left(y_{\epsilon_{1}} \cdots y_{\epsilon_{n}}\right)$
- With even smaller norm conditions on W, one can express each x_{ϵ} as a power series in the y_{ϕ} via an inverse function theorem.
- This establishes the following theorem:

Punchline

- This produces $y=x+f$ with $\operatorname{tr}\left(y_{\epsilon_{1}} \cdots y_{\epsilon_{n}}\right)=\phi\left(y_{\epsilon_{1}} \cdots y_{\epsilon_{n}}\right)$
- With even smaller norm conditions on W, one can express each x_{ϵ} as a power series in the y_{ϕ} via an inverse function theorem.
- This establishes the following theorem: If W is of sufficiently small analytic norm, then there exists a linear functional ϕ on $B=\operatorname{Alg}\left(\left(p_{v}\right)_{v \in V},\left(y_{\epsilon}\right)_{e \in \vec{E}}\right)$ satisfying Schwinger-Dyson with potential $V_{\mu}+W$. Furthermore, $C^{*}(B, \phi) \cong \mathcal{S}(\Gamma, \mu)$ and $W^{*}(B, \phi) \cong \mathcal{M}(\Gamma, \mu)$

A remark

- Remark: $\mathcal{S}(\Gamma, \mu)$ can also be constructed by the following:

A remark

- Remark: $\mathcal{S}(\Gamma, \mu)$ can also be constructed by the following:
- Maps $\eta_{e, e^{\prime}}: \ell^{\infty}(V) \rightarrow \ell^{\infty}(V)$ given by:

$$
\eta_{e, e^{\prime}}\left(p_{v}\right)= \begin{cases}\delta_{e, e^{\prime}} \sqrt{\frac{\mu(v)}{\mu(w)}} p_{w} & \text { if } v \sim_{e} w \\ \delta_{e, e^{\prime}} p_{v} & \text { if } e \text { is a loop }\end{cases}
$$

A remark

- Remark: $\mathcal{S}(\Gamma, \mu)$ can also be constructed by the following:
- Maps $\eta_{e, e^{\prime}}: \ell^{\infty}(V) \rightarrow \ell^{\infty}(V)$ given by:

$$
\eta_{e, e^{\prime}}\left(p_{v}\right)= \begin{cases}\delta_{e, e^{\prime}} \sqrt{\frac{\mu(v)}{\mu(w)}} p_{w} & \text { if } v \sim_{e} w \\ \delta_{e, e^{\prime}} p_{v} & \text { if } e \text { is a loop }\end{cases}
$$

- Induces completely positive map
$\eta: \ell^{\infty}(V) \rightarrow M_{E \times E}\left(\ell^{\infty}(V)\right)$.

A remark

- Remark: $\mathcal{S}(\Gamma, \mu)$ can also be constructed by the following:
- Maps $\eta_{e, e^{\prime}}: \ell^{\infty}(V) \rightarrow \ell^{\infty}(V)$ given by:

$$
\eta_{e, e^{\prime}}\left(p_{v}\right)= \begin{cases}\delta_{e, e^{\prime}} \sqrt{\frac{\mu(v)}{\mu(w)}} p_{w} & \text { if } v \sim_{e} w \\ \delta_{e, e^{\prime}} p_{v} & \text { if } e \text { is a loop }\end{cases}
$$

- Induces completely positive map $\eta: \ell^{\infty}(V) \rightarrow M_{E \times E}\left(\ell^{\infty}(V)\right)$.
- (Shlyakhtenko 1999) Form $\mathcal{S}(\Gamma, \mu)=\Phi\left(\ell^{\infty}(V), \eta\right)$

A remark

- Remark: $\mathcal{S}(\Gamma, \mu)$ can also be constructed by the following:
- Maps $\eta_{e, e^{\prime}}: \ell^{\infty}(V) \rightarrow \ell^{\infty}(V)$ given by:

$$
\eta_{e, e^{\prime}}\left(p_{v}\right)= \begin{cases}\delta_{e, e^{\prime}} \sqrt{\frac{\mu(v)}{\mu(w)}} p_{w} & \text { if } v \sim_{e} w \\ \delta_{e, e^{\prime}} p_{v} & \text { if } e \text { is a loop }\end{cases}
$$

- Induces completely positive map

$$
\eta: \ell^{\infty}(V) \rightarrow M_{E \times E}\left(\ell^{\infty}(V)\right) .
$$

- (Shlyakhtenko 1999) Form $\mathcal{S}(\Gamma, \mu)=\Phi\left(\ell^{\infty}(V), \eta\right)$ $=\mathrm{C}^{*}\left(\left(p_{v}\right)_{v \in V},\left(x_{e}\right)_{e \in E}\right)$.

A remark

- Remark: $\mathcal{S}(\Gamma, \mu)$ can also be constructed by the following:
- Maps $\eta_{e, e^{\prime}}: \ell^{\infty}(V) \rightarrow \ell^{\infty}(V)$ given by:

$$
\eta_{e, e^{\prime}}\left(p_{v}\right)= \begin{cases}\delta_{e, e^{\prime}} \sqrt{\frac{\mu(v)}{\mu(w)}} p_{w} & \text { if } v \sim_{e} w \\ \delta_{e, e^{\prime}} p_{v} & \text { if } e \text { is a loop }\end{cases}
$$

- Induces completely positive map $\eta: \ell^{\infty}(V) \rightarrow M_{E \times E}\left(\ell^{\infty}(V)\right)$.
- (Shlyakhtenko 1999) Form $\mathcal{S}(\Gamma, \mu)=\Phi\left(\ell^{\infty}(V), \eta\right)$ $=\mathrm{C}^{*}\left(\left(p_{v}\right)_{v \in V},\left(x_{e}\right)_{e \in E}\right) .\left(x_{e}\right)_{e \in E}$ are $\ell^{\infty}(V)$ semicircular elements.

