Free transport for interpolated free group factors

Mike Hartglass Joint with Brent Nelson

November 11, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Voiculescu's construction:

- Voiculescu's construction:
 - ▶ Real Hilbert space, $\mathcal{H}_{\mathbb{R}}$, with complexification \mathcal{H}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Voiculescu's construction:
 - \blacktriangleright Real Hilbert space, $\mathcal{H}_{\mathbb{R}},$ with complexification $\mathcal H$
 - Form the full Fock Space $\mathcal{F}(\mathcal{H}) = \mathbb{C}\Omega \oplus \bigoplus \mathcal{H}^{\otimes^n}$

 $n \ge 1$

- Voiculescu's construction:
 - \blacktriangleright Real Hilbert space, $\mathcal{H}_{\mathbb{R}},$ with complexification $\mathcal H$
 - ▶ Form the full Fock Space $\mathcal{F}(\mathcal{H}) = \mathbb{C}\Omega \oplus \bigoplus \mathcal{H}^{\otimes^n}$
 - For $\xi \in \mathcal{H}_{\mathbb{R}}$, have the creation operator $\ell(\bar{\xi})$:

$$\ell(\xi)(\Omega) = \xi$$
 and $\ell(\xi)(\xi_{i_1} \otimes \cdots \otimes \xi_{i_n}) = \xi \otimes \xi_{i_1} \otimes \cdots \otimes \xi_{i_n}$

 $n \ge 1$

- Voiculescu's construction:
 - Real Hilbert space, $\mathcal{H}_{\mathbb{R}}$, with complexification \mathcal{H}
 - ▶ Form the full Fock Space $\mathcal{F}(\mathcal{H}) = \mathbb{C}\Omega \oplus \bigoplus \mathcal{H}^{\otimes^n}$
 - For $\xi \in \mathcal{H}_{\mathbb{R}}$, have the creation operator $\ell(\bar{\xi})$:

 $\ell(\xi)(\Omega) = \xi \text{ and } \ell(\xi)(\xi_{i_1} \otimes \cdots \otimes \xi_{i_n}) = \xi \otimes \xi_{i_1} \otimes \cdots \otimes \xi_{i_n}$

 $n \ge 1$

• Pick ξ_1, ξ_2, \ldots and o.n.b of $\mathcal{H}_{\mathbb{R}}$.

- Voiculescu's construction:
 - \blacktriangleright Real Hilbert space, $\mathcal{H}_{\mathbb{R}},$ with complexification $\mathcal H$
 - Form the full Fock Space $\mathcal{F}(\mathcal{H}) = \mathbb{C}\Omega \oplus \bigoplus_{n \geq 1} \mathcal{H}^{\otimes^n}$
 - For $\xi \in \mathcal{H}_{\mathbb{R}}$, have the creation operator $\ell(\overline{\xi})$:

$$\ell(\xi)(\Omega) = \xi$$
 and $\ell(\xi)(\xi_{i_1} \otimes \cdots \otimes \xi_{i_n}) = \xi \otimes \xi_{i_1} \otimes \cdots \otimes \xi_{i_n}$

 Pick ξ₁, ξ₂,... and o.n.b of H_ℝ. Set X_i = ℓ(ξ_i) + ℓ(ξ_i)*. (Semicircular element)

- Voiculescu's construction:
 - \blacktriangleright Real Hilbert space, $\mathcal{H}_{\mathbb{R}},$ with complexification $\mathcal H$
 - Form the full Fock Space $\mathcal{F}(\mathcal{H}) = \mathbb{C}\Omega \oplus \bigoplus_{n \geq 1} \mathcal{H}^{\otimes^n}$
 - For $\xi \in \mathcal{H}_{\mathbb{R}}$, have the creation operator $\ell(\overline{\xi})$:

$$\ell(\xi)(\Omega) = \xi$$
 and $\ell(\xi)(\xi_{i_1} \otimes \cdots \otimes \xi_{i_n}) = \xi \otimes \xi_{i_1} \otimes \cdots \otimes \xi_{i_n}$

- Pick ξ₁, ξ₂,... and o.n.b of H_ℝ. Set X_i = ℓ(ξ_i) + ℓ(ξ_i)*. (Semicircular element)
- $W^*(X_1, X_2, \cdots) \cong L(\mathbb{F}_n), n = \dim(\mathcal{H}).$

- Voiculescu's construction:
 - \blacktriangleright Real Hilbert space, $\mathcal{H}_{\mathbb{R}},$ with complexification $\mathcal H$
 - ▶ Form the full Fock Space $\mathcal{F}(\mathcal{H}) = \mathbb{C}\Omega \oplus \bigoplus \mathcal{H}^{\otimes^n}$
 - For $\xi \in \mathcal{H}_{\mathbb{R}}$, have the creation operator $\ell(\overline{\xi})$:

$$\ell(\xi)(\Omega) = \xi$$
 and $\ell(\xi)(\xi_{i_1} \otimes \cdots \otimes \xi_{i_n}) = \xi \otimes \xi_{i_1} \otimes \cdots \otimes \xi_{i_n}$

 $n \ge 1$

- ▶ Pick \$\xi_1, \$\xi_2, ...\$ and o.n.b of \$\mathcal{H}_\mathbb{R}\$. Set \$X_i = \ell(\$\xi_i\$) + \ell(\$\xi_i\$)*\$. (Semicircular element)
- $W^*(X_1, X_2, \cdots) \cong L(\mathbb{F}_n), n = \dim(\mathcal{H}).$
- Trace vector: $tr(x) = \langle \Omega | x \Omega \rangle$, $x \in W^*(X_1, X_2, \cdots)$.

- Voiculescu's construction:
 - Real Hilbert space, $\mathcal{H}_{\mathbb{R}}$, with complexification \mathcal{H}
 - ▶ Form the full Fock Space $\mathcal{F}(\mathcal{H}) = \mathbb{C}\Omega \oplus \bigoplus \mathcal{H}^{\otimes^n}$
 - For $\xi \in \mathcal{H}_{\mathbb{R}}$, have the creation operator $\ell(\xi)$:

$$\ell(\xi)(\Omega) = \xi$$
 and $\ell(\xi)(\xi_{i_1} \otimes \cdots \otimes \xi_{i_n}) = \xi \otimes \xi_{i_1} \otimes \cdots \otimes \xi_{i_n}$

 $n \ge 1$

- Pick ξ₁, ξ₂,... and o.n.b of H_ℝ. Set X_i = ℓ(ξ_i) + ℓ(ξ_i)*. (Semicircular element)
- $W^*(X_1, X_2, \cdots) \cong L(\mathbb{F}_n), n = \dim(\mathcal{H}).$
- Trace vector: $\operatorname{tr}(x) = \langle \Omega | x \Omega \rangle$, $x \in W^*(X_1, X_2, \cdots)$.
- Key property:

$$\operatorname{tr}(X_{i_1}X_{i_2}\cdots X_{i_n}) = \sum_{i_k=i_1} \operatorname{tr}(X_{i_2}\cdots X_{i_{k-1}}) \operatorname{tr}(X_{i_{k+1}}\cdots X_{i_n})$$

▶ Factors $L(\mathbb{F}_t)$ $t \in (1, \infty]$ discovered independently by Dykema and Rădulescu.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

► Factors L(𝔽_t) t ∈ (1,∞] discovered independently by Dykema and Rădulescu.

- Properties
 - 1. Agree with the usual free group factors when $t \in \{2,3,\dots\} \cup \{\infty\}$

Factors L(𝔽_t) t ∈ (1,∞] discovered independently by Dykema and Rădulescu.

- Properties
 - 1. Agree with the usual free group factors when $t \in \{2, 3, \dots\} \cup \{\infty\}$

2.
$$L(\mathbb{F}_s) * L(\mathbb{F}_t) = L(\mathbb{F}_{s+t})$$

 Factors L(𝔽_t) t ∈ (1,∞] discovered independently by Dykema and Rădulescu.

- Properties
 - Agree with the usual free group factors when t ∈ {2,3,...} ∪ {∞}
 L(𝔽_s) * L(𝔽_t) = L(𝔽_{s+t})
 - 3. $pL(\mathbb{F}_t)p = L(\mathbb{F}(1 + \frac{t-1}{\operatorname{tr}(p)^2}))$ for $p \in \mathcal{P}(L(\mathbb{F}_t))$

Răduescu's and Dykema's constructions:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ Rădulescu (1990s) Ingredients:

Răduescu's and Dykema's constructions:

- Rădulescu (1990s) Ingredients:
 - Free semicircular family $(X_s)_{s \in S}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Răduescu's and Dykema's constructions:

- Rădulescu (1990s) Ingredients:
 - Free semicircular family $(X_s)_{s \in S}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• $\sigma_0, \sigma_1 \in S$

- Răduescu's and Dykema's constructions:
 - Rădulescu (1990s) Ingredients:
 - Free semicircular family $(X_s)_{s \in S}$.
 - $\sigma_0, \sigma_1 \in S$
 - ▶ Projections $e_s, f_s \in (X_{\sigma_1})''$ mutually orthogonal or equal.

- Răduescu's and Dykema's constructions:
 - Rădulescu (1990s) Ingredients:
 - Free semicircular family $(X_s)_{s \in S}$.
 - $\sigma_0, \sigma_1 \in S$
 - ▶ Projections $e_s, f_s \in (X_{\sigma_1})''$ mutually orthogonal or equal.
 - ▶ $vN(X_{\sigma_0}, (e_s X_{s'} f_s)_{s' \in S \setminus \{\sigma_0, \sigma_1\}})$ depends only on

$$t = 1 + \sum_{s} k_s \operatorname{tr}(e_s) \operatorname{tr}(f_s)$$

with
$$k_s = 1$$
 if $e_s = f_s$ and $k_2 = 2$ if $e_s \perp f_s$.

- Răduescu's and Dykema's constructions:
 - Rădulescu (1990s) Ingredients:
 - Free semicircular family $(X_s)_{s \in S}$.
 - $\sigma_0, \sigma_1 \in S$
 - ▶ Projections $e_s, f_s \in (X_{\sigma_1})''$ mutually orthogonal or equal.
 - ▶ $vN(X_{\sigma_0}, (e_s X_{s'} f_s)_{s' \in S \setminus \{\sigma_0, \sigma_1\}})$ depends only on

$$t = 1 + \sum_{s} k_s \operatorname{tr}(e_s) \operatorname{tr}(f_s)$$

with $k_s = 1$ if $e_s = f_s$ and $k_2 = 2$ if $e_s \perp f_s$. This is $L(\mathbb{F}_t)$.

- Răduescu's and Dykema's constructions:
 - Rădulescu (1990s) Ingredients:
 - Free semicircular family $(X_s)_{s \in S}$.
 - $\sigma_0, \sigma_1 \in S$
 - Projections $e_s, f_s \in (X_{\sigma_1})''$ mutually orthogonal or equal.
 - ▶ $vN(X_{\sigma_0}, (e_s X_{s'} f_s)_{s' \in S \setminus \{\sigma_0, \sigma_1\}})$ depends only on

$$t = 1 + \sum_{s} k_s \operatorname{tr}(e_s) \operatorname{tr}(f_s)$$

with $k_s = 1$ if $e_s = f_s$ and $k_2 = 2$ if $e_s \perp f_s$. This is $L(\mathbb{F}_t)$.

Dykema (1990s) Ingredients:

- Răduescu's and Dykema's constructions:
 - Rădulescu (1990s) Ingredients:
 - Free semicircular family $(X_s)_{s \in S}$.
 - $\sigma_0, \sigma_1 \in S$
 - Projections $e_s, f_s \in (X_{\sigma_1})''$ mutually orthogonal or equal.
 - ► $vN(X_{\sigma_0}, (e_s X_{s'} f_s)_{s' \in S \setminus \{\sigma_0, \sigma_1\}})$ depends only on

$$t = 1 + \sum_{s} k_s \operatorname{tr}(e_s) \operatorname{tr}(f_s)$$

with $k_s = 1$ if $e_s = f_s$ and $k_2 = 2$ if $e_s \perp f_s$. This is $L(\mathbb{F}_t)$.

- Dykema (1990s) Ingredients:
 - ▶ The hyperfinite II₁ factor *R*

- Răduescu's and Dykema's constructions:
 - Rădulescu (1990s) Ingredients:
 - Free semicircular family $(X_s)_{s \in S}$.
 - $\sigma_0, \sigma_1 \in S$
 - Projections $e_s, f_s \in (X_{\sigma_1})''$ mutually orthogonal or equal.
 - ▶ $vN(X_{\sigma_0}, (e_s X_{s'} f_s)_{s' \in S \setminus \{\sigma_0, \sigma_1\}})$ depends only on

$$t = 1 + \sum_{s} k_s \operatorname{tr}(e_s) \operatorname{tr}(f_s)$$

with $k_s = 1$ if $e_s = f_s$ and $k_2 = 2$ if $e_s \perp f_s$. This is $L(\mathbb{F}_t)$.

- Dykema (1990s) Ingredients:
 - ▶ The hyperfinite II₁ factor *R*
 - Projections $\{p_s\}_{s\in S}$ in R

- Răduescu's and Dykema's constructions:
 - Rădulescu (1990s) Ingredients:
 - Free semicircular family $(X_s)_{s \in S}$.
 - $\sigma_0, \sigma_1 \in S$
 - Projections $e_s, f_s \in (X_{\sigma_1})''$ mutually orthogonal or equal.
 - ► $vN(X_{\sigma_0}, (e_s X_{s'} f_s)_{s' \in S \setminus \{\sigma_0, \sigma_1\}})$ depends only on

$$t = 1 + \sum_{s} k_s \operatorname{tr}(e_s) \operatorname{tr}(f_s)$$

with $k_s = 1$ if $e_s = f_s$ and $k_2 = 2$ if $e_s \perp f_s$. This is $L(\mathbb{F}_t)$.

- Dykema (1990s) Ingredients:
 - ▶ The hyperfinite II₁ factor *R*
 - Projections $\{p_s\}_{s\in S}$ in R
 - A free semicircular family $\{X_s\}_{s \in S}$ free from R.

- Răduescu's and Dykema's constructions:
 - Rădulescu (1990s) Ingredients:
 - Free semicircular family $(X_s)_{s \in S}$.
 - $\sigma_0, \sigma_1 \in S$
 - Projections $e_s, f_s \in (X_{\sigma_1})''$ mutually orthogonal or equal.
 - ▶ $vN(X_{\sigma_0}, (e_s X_{s'} f_s)_{s' \in S \setminus \{\sigma_0, \sigma_1\}})$ depends only on

$$t = 1 + \sum_{s} k_s \operatorname{tr}(e_s) \operatorname{tr}(f_s)$$

with $k_s = 1$ if $e_s = f_s$ and $k_2 = 2$ if $e_s \perp f_s$. This is $L(\mathbb{F}_t)$.

- Dykema (1990s) Ingredients:
 - ▶ The hyperfinite II₁ factor *R*
 - Projections $\{p_s\}_{s\in S}$ in R
 - A free semicircular family $\{X_s\}_{s \in S}$ free from R.
 - $vN(R, p_sX_sp_s)$ depends only on $\sum_{s\in S} tr(p_s)^2$.

- Răduescu's and Dykema's constructions:
 - Rădulescu (1990s) Ingredients:
 - Free semicircular family $(X_s)_{s \in S}$.
 - $\sigma_0, \sigma_1 \in S$
 - ▶ Projections $e_s, f_s \in (X_{\sigma_1})''$ mutually orthogonal or equal.
 - ▶ $vN(X_{\sigma_0}, (e_s X_{s'} f_s)_{s' \in S \setminus \{\sigma_0, \sigma_1\}})$ depends only on

$$t = 1 + \sum_{s} k_s \operatorname{tr}(e_s) \operatorname{tr}(f_s)$$

with $k_s = 1$ if $e_s = f_s$ and $k_2 = 2$ if $e_s \perp f_s$. This is $L(\mathbb{F}_t)$.

- Dykema (1990s) Ingredients:
 - ▶ The hyperfinite II₁ factor *R*
 - Projections $\{p_s\}_{s\in S}$ in R
 - A free semicircular family $\{X_s\}_{s\in S}$ free from R.
 - ▶ vN($R, p_s X_s p_s$) depends only on $\sum_{s \in S} \operatorname{tr}(p_s)^2$. Get $L(\mathbb{F}_t)$ with $t = 1 + \sum_{s \in S} \operatorname{tr}(p_s)^2$

• (Γ, V, E, μ) a connected, finite, weighted graph.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 \blacktriangleright (Γ,V,E,μ) a connected, finite, weighted graph. Require $\sum_{v\in V}\mu(v)=1$

 \blacktriangleright (Γ,V,E,μ) a connected, finite, weighted graph. Require $\sum_{v\in V}\mu(v)=1$

• Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$

 \blacktriangleright (Γ,V,E,μ) a connected, finite, weighted graph. Require $\sum_{v\in V}\mu(v)=1$

- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- ▶ Undirected edges *e*.

 \blacktriangleright (Γ,V,E,μ) a connected, finite, weighted graph. Require $\sum_{v\in V}\mu(v)=1$

- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions ϵ, ϵ^{op}

 \blacktriangleright (Γ,V,E,μ) a connected, finite, weighted graph. Require $\sum_{v\in V}\mu(v)=1$

- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions ϵ, ϵ^{op}
- $\ell^{\infty}(V)$: functions on V.

- $\blacktriangleright~(\Gamma,V,E,\mu)$ a connected, finite, weighted graph. Require $\sum_{v\in V}\mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions ϵ, ϵ^{op}
- $\ell^{\infty}(V)$: functions on V. p_v indicator function at $v \in V$.

- $\blacktriangleright~(\Gamma,V,E,\mu)$ a connected, finite, weighted graph. Require $\sum_{v\in V}\mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions ϵ, ϵ^{op}
- $\ell^{\infty}(V)$: functions on V. p_v indicator function at $v \in V$.
- ▶ Fock space representation of operators $(p_v)_{v \in V}$ and $(x_{\epsilon})_{\epsilon \in \vec{E}}$

- $\blacktriangleright~(\Gamma,V,E,\mu)$ a connected, finite, weighted graph. Require $\sum_{v\in V}\mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions ϵ, ϵ^{op}
- ▶ $\ell^{\infty}(V)$: functions on V. p_v indicator function at $v \in V$.
- ▶ Fock space representation of operators $(p_v)_{v \in V}$ and $(x_{\epsilon})_{\epsilon \in \vec{E}}$ Relations:

1.
$$1 = \sum_{v \in V} p_v$$

- $\blacktriangleright~(\Gamma,V,E,\mu)$ a connected, finite, weighted graph. Require $\sum_{v\in V}\mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions ϵ, ϵ^{op}
- ▶ $\ell^{\infty}(V)$: functions on V. p_v indicator function at $v \in V$.
- ▶ Fock space representation of operators $(p_v)_{v \in V}$ and $(x_{\epsilon})_{\epsilon \in \vec{E}}$ Relations:

1.
$$1 = \sum_{v \in V} p_v$$

2.
$$x_{\epsilon} = p_{s(\epsilon)} x_{\epsilon} p_{t(\epsilon)}$$

- $\blacktriangleright~(\Gamma,V,E,\mu)$ a connected, finite, weighted graph. Require $\sum_{v\in V}\mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions ϵ, ϵ^{op}
- ▶ $\ell^{\infty}(V)$: functions on V. p_v indicator function at $v \in V$.
- ▶ Fock space representation of operators $(p_v)_{v \in V}$ and $(x_{\epsilon})_{\epsilon \in \vec{E}}$ Relations:

1.
$$1 = \sum_{v \in V} p_v$$

2.
$$x_{\epsilon} = p_{s(\epsilon)} x_{\epsilon} p_{t(\epsilon)}$$

3.
$$x_{\epsilon^{op}} = x_{\epsilon}^*$$

- (Γ, V, E, μ) a connected, finite, weighted graph. Require $\sum_{v \in V} \mu(v) = 1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions ϵ, ϵ^{op}
- ▶ $\ell^{\infty}(V)$: functions on V. p_v indicator function at $v \in V$.
- ▶ Fock space representation of operators $(p_v)_{v \in V}$ and $(x_{\epsilon})_{\epsilon \in \vec{E}}$ Relations:

1.
$$1 = \sum_{v \in V} p_v$$

2.
$$x_{\epsilon} = p_{s(\epsilon)} x_{\epsilon} p_{t(\epsilon)}$$

3.
$$x_{\epsilon^{op}} = x_{\epsilon}^*$$

4.
$$x_{\epsilon_1} \cdots x_{\epsilon_n} = 0 \text{ unless } \epsilon_1 \cdots \epsilon_n \text{ is a path.}$$

- (Γ, V, E, μ) a connected, finite, weighted graph. Require $\sum_{v \in V} \mu(v) = 1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions ϵ, ϵ^{op}
- ▶ $\ell^{\infty}(V)$: functions on V. p_v indicator function at $v \in V$.
- ► Fock space representation of operators (p_v)_{v∈V} and (x_ϵ)_{ϵ∈Ē} Relations:

1.
$$1 = \sum_{v \in V} p_v$$

2.
$$x_{\epsilon} = p_{s(\epsilon)} x_{\epsilon} p_{t(\epsilon)}$$

3.
$$x_{\epsilon^{op}} = x_{\epsilon}^*$$

4.
$$x_{\epsilon_1} \cdots x_{\epsilon_n} = 0 \text{ unless } \epsilon_1 \cdots \epsilon_n \text{ is a path.}$$

5.
$$\operatorname{tr}(x_{\epsilon_1} \cdots x_{\epsilon_n}) = \frac{1}{\sqrt{\mu(s(\epsilon_1))\mu(t(\epsilon_1))}} \sum_{\epsilon_j = \epsilon_1^{op}} \operatorname{tr}(x_{\epsilon_2} \cdots x_{\epsilon_{j-1}}) \operatorname{tr}(x_{\epsilon_{j+1}} \cdots x_{\epsilon_n})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- \blacktriangleright (Γ,V,E,μ) a connected, finite, weighted graph. Require $\sum_{v\in V}\mu(v)=1$
- Directed version $(\vec{\Gamma}, V, \vec{E}, \mu)$
- Undirected edges e. Directed versions ϵ, ϵ^{op}
- ▶ $\ell^{\infty}(V)$: functions on V. p_v indicator function at $v \in V$.
- ► Fock space representation of operators (p_v)_{v∈V} and (x_ϵ)_{ϵ∈Ē} Relations:

1.
$$1 = \sum_{v \in V} p_v$$

2.
$$x_{\epsilon} = p_{s(\epsilon)} x_{\epsilon} p_{t(\epsilon)}$$

3.
$$x_{\epsilon^{op}} = x_{\epsilon}^*$$

4.
$$x_{\epsilon_1} \cdots x_{\epsilon_n} = 0 \text{ unless } \epsilon_1 \cdots \epsilon_n \text{ is a path.}$$

5.
$$\operatorname{tr}(x_{\epsilon_1} \cdots x_{\epsilon_n}) = \frac{1}{\sqrt{\mu(s(\epsilon_1))\mu(t(\epsilon_1))}} \sum_{\epsilon_j = \epsilon_1^{op}} \operatorname{tr}(x_{\epsilon_2} \cdots x_{\epsilon_{j-1}}) \operatorname{tr}(x_{\epsilon_{j+1}} \cdots x_{\epsilon_n})$$

6. If |V| = 1, this gives Voiculescu's free semicircular system.

von Neumann algebras

• Set
$$\mathcal{S}(\Gamma, \mu) = \mathsf{C}^*((p_v)_{v \in V}, (x_{\epsilon})_{\epsilon \in \vec{E}})$$

von Neumann algebras

• Set
$$\mathcal{S}(\Gamma, \mu) = \mathsf{C}^*((p_v)_{v \in V}, (x_{\epsilon})_{\epsilon \in \vec{E}})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ Set $\mathcal{M}(\Gamma, \mu) = (\mathcal{S}(\Gamma, \mu), \operatorname{tr})''$

von Neumann algebras

• Set
$$\mathcal{S}(\Gamma, \mu) = \mathsf{C}^*((p_v)_{v \in V}, (x_{\epsilon})_{\epsilon \in \vec{E}})$$

- Set $\mathcal{M}(\Gamma, \mu) = (\mathcal{S}(\Gamma, \mu), \operatorname{tr})''$
- ▶ Theorem (H. '13): Let $V_>$ be the set of vertices, β satisfying $\mu(\beta) > \sum_{\alpha \sim \beta} n_{\alpha,\beta}\mu(\alpha)$. We have

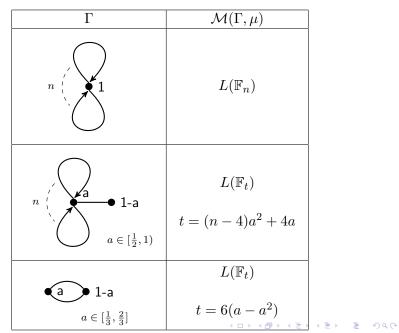
$$\mathcal{M}(\Gamma,\mu) \cong L(\mathbb{F}_t) \oplus \bigoplus_{\gamma \in V_>} \overset{r_{\gamma}}{\mathbb{C}}$$

where $r_{\gamma} \leq p_{\gamma}$ and $\tau(r_{\gamma}) = \mu(\gamma) - \sum_{\alpha \sim \gamma} n_{\alpha,\beta}\mu(\alpha)$. If $\mathcal{M}(\Gamma,\mu)$ is a factor, then

$$t = 1 - \sum_{v \in V} \mu(v)^2 + \sum_{v \in V} \mu(v) \sum_{w \sim v} n_{v,w} \mu(w)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples



C*-algebras

- Theorem (H '16) Let V₌ be the set of vertices β satisfying µ(β) = ∑_{α∼β} n_{α,β}µ(α), and let V_≥ = V_> ∪ V₌. Let I be the norm-closed ideal generated by generated by (x_e)_{e∈E}. Then:
 - ▶ *I* is minimal, simple, has unique trace, and has stable rank 1.
 - I is unital if and only if $V_{=}$ is empty. If $V_{=}$ is empty, then

$$\mathcal{S}(\Gamma,\mu) = I \oplus \bigoplus_{\gamma \in V_{>}} \overset{r_{\gamma}}{\mathbb{C}}$$

with $r_\gamma \leq p_\gamma$ and $\tau(r_\gamma)=\mu(\gamma)-\sum_{\alpha\sim\gamma}n_{\alpha,\beta}\mu(\alpha).$ If $V_=$ is not empty, then

$$\mathcal{S}(\Gamma,\mu) = \mathcal{I} \oplus \bigoplus_{\gamma \in V_{>}} \overset{r_{\gamma}}{\mathbb{C}}$$

where \mathcal{I} is unital, and the strong operator closures of I and \mathcal{I} coincide in $L^2(\mathcal{S}(\Gamma,\mu),\tau)$, and $\mathcal{I}/I \cong \bigoplus_{\beta \in V_{\equiv}} \mathbb{C}$. • $K_0(I) \cong \mathbb{Z}\left\{[p_\beta] | \beta \in V \setminus V_{\geq}\right\}$ and $K_1(I) = \{0\}$ where the first group is the free abelian group on the classes of projections $[n_{\perp}]$. Furthermore

$$F_{0}(I)^{+} = \{x \in K_{0}(I) | \operatorname{tr}(x) > 0\} \cup \{0\}.$$

• Let A be the *-algebra generated by $\ell^{\infty}(V)$ and $(x_e)_{e \in E}$.

(ロ)、(型)、(E)、(E)、 E) の(の)

- Let A be the *-algebra generated by $\ell^{\infty}(V)$ and $(x_e)_{e \in E}$.
- ▶ Free difference quotient: for $\epsilon \in \vec{E}$, define $\partial_{\epsilon} : A \to A \otimes A^{op}$ by:

$$\partial_{\epsilon}(x_{\epsilon'}) = \delta_{e,e'} p_{s(\epsilon)} \otimes p_{t(\epsilon)} \qquad \partial_{\epsilon}(p_v) = 0$$

- Let A be the *-algebra generated by $\ell^{\infty}(V)$ and $(x_e)_{e \in E}$.
- ▶ Free difference quotient: for $\epsilon \in \vec{E}$, define $\partial_{\epsilon} : A \to A \otimes A^{op}$ by:

$$\partial_{\epsilon}(x_{\epsilon'}) = \delta_{e,e'} p_{s(\epsilon)} \otimes p_{t(\epsilon)} \qquad \partial_{\epsilon}(p_v) = 0$$

• Set
$$\mu(\epsilon) = \sqrt{\mu(s(\epsilon))\mu(t(\epsilon))}$$

- Let A be the *-algebra generated by $\ell^{\infty}(V)$ and $(x_e)_{e \in E}$.
- ▶ Free difference quotient: for $\epsilon \in \vec{E}$, define $\partial_{\epsilon} : A \to A \otimes A^{op}$ by:

$$\partial_{\epsilon}(x_{\epsilon'}) = \delta_{e,e'} p_{s(\epsilon)} \otimes p_{t(\epsilon)} \qquad \partial_{\epsilon}(p_v) = 0$$

- Set $\mu(\epsilon) = \sqrt{\mu(s(\epsilon))\mu(t(\epsilon))}$
- Observation: $\mu(\epsilon) \operatorname{tr}(x_{\epsilon^{op}}Q) = (\operatorname{tr} \otimes \operatorname{tr})(\partial_{\epsilon}(Q))$ for $P \in A$.

- Let A be the *-algebra generated by $\ell^{\infty}(V)$ and $(x_e)_{e \in E}$.
- ▶ Free difference quotient: for $\epsilon \in \vec{E}$, define $\partial_{\epsilon} : A \to A \otimes A^{op}$ by:

$$\partial_{\epsilon}(x_{\epsilon'}) = \delta_{e,e'} p_{s(\epsilon)} \otimes p_{t(\epsilon)} \qquad \partial_{\epsilon}(p_v) = 0$$

- Set $\mu(\epsilon) = \sqrt{\mu(s(\epsilon))\mu(t(\epsilon))}$
- Observation: $\mu(\epsilon) \operatorname{tr}(x_{\epsilon^{op}}Q) = (\operatorname{tr} \otimes \operatorname{tr})(\partial_{\epsilon}(Q))$ for $P \in A$.

• i.e.
$$\partial_{\epsilon}^*(p_{s(\epsilon)} \otimes p_{t(\epsilon)}) = \mu(\epsilon)x_{\epsilon}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• Set
$$A^{\vec{E}} =$$

• Set
$$A^{\vec{E}} = \{f : \vec{E} \to A \mid p_{s(\epsilon)}f(\epsilon)p_{t(\epsilon)} = f(\epsilon)\}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

▶ Set
$$A^{\vec{E}} = \{f : \vec{E} \to A \mid p_{s(\epsilon)}f(\epsilon)p_{t(\epsilon)} = f(\epsilon)\}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• Inner product $\langle f | h \rangle = \sum_{\epsilon} \operatorname{tr}(f_{\epsilon}^* h_{\epsilon})$

• Set
$$A^{\vec{E}} = \{f : \vec{E} \to A \mid p_{s(\epsilon)}f(\epsilon)p_{t(\epsilon)} = f(\epsilon)\}$$

• Inner product $\langle f|h\rangle = \sum_{\epsilon} \operatorname{tr}(f_{\epsilon}^* h_{\epsilon})$

► Given
$$f \in A^{\vec{E}}$$
, define $\mathscr{J}f \in M_{\vec{E}}(A \otimes A^{op})$ by $(\mathscr{J}f)_{\epsilon\phi} = \partial_{\phi}f_{\epsilon}$

(ロ)、(型)、(E)、(E)、 E) の(の)

• Set
$$A^{\vec{E}} = \{f : \vec{E} \to A \mid p_{s(\epsilon)}f(\epsilon)p_{t(\epsilon)} = f(\epsilon)\}$$

• Inner product $\langle f | h \rangle = \sum_{\epsilon} \operatorname{tr}(f_{\epsilon}^* h_{\epsilon})$

► Given
$$f \in A^{\vec{E}}$$
, define $\mathscr{J} f \in M_{\vec{E}}(A \otimes A^{op})$ by $(\mathscr{J} f)_{\epsilon\phi} = \partial_{\phi} f_{\epsilon}$

► Define $P \in M_{\vec{E}}(A \otimes A^{op})$ by $P_{\epsilon,\phi} = \delta_{\epsilon,\phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$.

・ロト・日本・モート モー うへぐ

• Set
$$A^{\vec{E}} = \{f : \vec{E} \to A \mid p_{s(\epsilon)}f(\epsilon)p_{t(\epsilon)} = f(\epsilon)\}$$

- Inner product $\langle f | h \rangle = \sum_{\epsilon} \operatorname{tr}(f_{\epsilon}^* h_{\epsilon})$
- ► Given $f \in A^{\vec{E}}$, define $\mathscr{J} f \in M_{\vec{E}}(A \otimes A^{op})$ by $(\mathscr{J} f)_{\epsilon\phi} = \partial_{\phi} f_{\epsilon}$
- ▶ Define $P \in M_{\vec{E}}(A \otimes A^{op})$ by $P_{\epsilon,\phi} = \delta_{\epsilon,\phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$. Observe $\mathscr{J} x = P$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Set
$$A^{\vec{E}} = \{f : \vec{E} \to A \mid p_{s(\epsilon)}f(\epsilon)p_{t(\epsilon)} = f(\epsilon)\}$$

• Inner product $\langle f | h \rangle = \sum_{\epsilon} \operatorname{tr}(f_{\epsilon}^* h_{\epsilon})$

► Given
$$f \in A^{\vec{E}}$$
, define $\mathscr{J}f \in M_{\vec{E}}(A \otimes A^{op})$ by $(\mathscr{J}f)_{\epsilon\phi} = \partial_{\phi}f_{\epsilon}$

▶ Define $P \in M_{\vec{E}}(A \otimes A^{op})$ by $P_{\epsilon,\phi} = \delta_{\epsilon,\phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$. Observe $\mathscr{J} x = P$

・ロト・日本・モート モー うへぐ

• Set
$$\mathbb{M}(A) = PM_{\vec{E}}(A \otimes A^{op})P$$
.

▶ Set
$$A^{\vec{E}} = \{f : \vec{E} \to A \,|\, p_{s(\epsilon)}f(\epsilon)p_{t(\epsilon)} = f(\epsilon)\}$$

- Inner product $\langle f | h \rangle = \sum_{\epsilon} \operatorname{tr}(f_{\epsilon}^* h_{\epsilon})$
- ► Given $f \in A^{\vec{E}}$, define $\mathscr{J}f \in M_{\vec{E}}(A \otimes A^{op})$ by $(\mathscr{J}f)_{\epsilon\phi} = \partial_{\phi}f_{\epsilon}$
- ▶ Define $P \in M_{\vec{E}}(A \otimes A^{op})$ by $P_{\epsilon,\phi} = \delta_{\epsilon,\phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$. Observe $\mathscr{J} x = P$
- Set $\mathbb{M}(A) = PM_{\vec{E}}(A \otimes A^{op})P$. Note that $\mathscr{J}f \in \mathbb{M}(A)$ for $f \in A^{\vec{E}}$.

• Set
$$A^{\vec{E}} = \{f : \vec{E} \to A \mid p_{s(\epsilon)}f(\epsilon)p_{t(\epsilon)} = f(\epsilon)\}$$

- Inner product $\langle f | h \rangle = \sum_{\epsilon} \operatorname{tr}(f_{\epsilon}^* h_{\epsilon})$
- ► Given $f \in A^{\vec{E}}$, define $\mathscr{J}f \in M_{\vec{E}}(A \otimes A^{op})$ by $(\mathscr{J}f)_{\epsilon\phi} = \partial_{\phi}f_{\epsilon}$
- ▶ Define $P \in M_{\vec{E}}(A \otimes A^{op})$ by $P_{\epsilon,\phi} = \delta_{\epsilon,\phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$. Observe $\mathscr{J} x = P$
- Set $\mathbb{M}(A) = PM_{\vec{E}}(A \otimes A^{op})P$. Note that $\mathscr{J}f \in \mathbb{M}(A)$ for $f \in A^{\vec{E}}$.

For $a \otimes b \in A \otimes A^{op}$, and $c \in A$, define $(a \otimes b) # c = acb$.

• Set
$$A^{\vec{E}} = \{f : \vec{E} \to A \mid p_{s(\epsilon)}f(\epsilon)p_{t(\epsilon)} = f(\epsilon)\}$$

- Inner product $\langle f | h \rangle = \sum_{\epsilon} \operatorname{tr}(f_{\epsilon}^* h_{\epsilon})$
- ► Given $f \in A^{\vec{E}}$, define $\mathscr{J}f \in M_{\vec{E}}(A \otimes A^{op})$ by $(\mathscr{J}f)_{\epsilon\phi} = \partial_{\phi}f_{\epsilon}$
- ▶ Define $P \in M_{\vec{E}}(A \otimes A^{op})$ by $P_{\epsilon,\phi} = \delta_{\epsilon,\phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$. Observe $\mathscr{J} x = P$
- Set $\mathbb{M}(A) = PM_{\vec{E}}(A \otimes A^{op})P$. Note that $\mathscr{J}f \in \mathbb{M}(A)$ for $f \in A^{\vec{E}}$.
- For a ⊗ b ∈ A ⊗ A^{op}, and c ∈ A, define (a ⊗ b)#c = acb.
 Extend to an action of M(A) acting on A^E in obvious way.

• Set
$$A^{\vec{E}} = \{f : \vec{E} \to A \mid p_{s(\epsilon)}f(\epsilon)p_{t(\epsilon)} = f(\epsilon)\}$$

- Inner product $\langle f | h \rangle = \sum_{\epsilon} \operatorname{tr}(f_{\epsilon}^* h_{\epsilon})$
- ► Given $f \in A^{\vec{E}}$, define $\mathscr{J}f \in M_{\vec{E}}(A \otimes A^{op})$ by $(\mathscr{J}f)_{\epsilon\phi} = \partial_{\phi}f_{\epsilon}$
- ▶ Define $P \in M_{\vec{E}}(A \otimes A^{op})$ by $P_{\epsilon,\phi} = \delta_{\epsilon,\phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$. Observe $\mathscr{J} x = P$
- Set $\mathbb{M}(A) = PM_{\vec{E}}(A \otimes A^{op})P$. Note that $\mathscr{J}f \in \mathbb{M}(A)$ for $f \in A^{\vec{E}}$.
- ▶ For $a \otimes b \in A \otimes A^{op}$, and $c \in A$, define $(a \otimes b) # c = acb$. Extend to an action of $\mathbb{M}(A)$ acting on $A^{\vec{E}}$ in obvious way. This is well defined!

► Set
$$A^{\vec{E}} = \{f : \vec{E} \to A \,|\, p_{s(\epsilon)}f(\epsilon)p_{t(\epsilon)} = f(\epsilon)\}$$

- Inner product $\langle f | h \rangle = \sum_{\epsilon} \operatorname{tr}(f_{\epsilon}^* h_{\epsilon})$
- ► Given $f \in A^{\vec{E}}$, define $\mathscr{J}f \in M_{\vec{E}}(A \otimes A^{op})$ by $(\mathscr{J}f)_{\epsilon\phi} = \partial_{\phi}f_{\epsilon}$
- ▶ Define $P \in M_{\vec{E}}(A \otimes A^{op})$ by $P_{\epsilon,\phi} = \delta_{\epsilon,\phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$. Observe $\mathscr{J} x = P$
- Set $\mathbb{M}(A) = PM_{\vec{E}}(A \otimes A^{op})P$. Note that $\mathscr{J}f \in \mathbb{M}(A)$ for $f \in A^{\vec{E}}$.
- ▶ For $a \otimes b \in A \otimes A^{op}$, and $c \in A$, define $(a \otimes b) # c = acb$. Extend to an action of $\mathbb{M}(A)$ acting on $A^{\vec{E}}$ in obvious way. This is well defined!
- ▶ The Schwinger-Dyson equation is now $\mathscr{J}^*(P) = M \# x$

• Set
$$A^{\vec{E}} = \{f : \vec{E} \to A \,|\, p_{s(\epsilon)}f(\epsilon)p_{t(\epsilon)} = f(\epsilon)\}$$

- Inner product $\langle f | h \rangle = \sum_{\epsilon} \operatorname{tr}(f_{\epsilon}^* h_{\epsilon})$
- ► Given $f \in A^{\vec{E}}$, define $\mathscr{J}f \in M_{\vec{E}}(A \otimes A^{op})$ by $(\mathscr{J}f)_{\epsilon\phi} = \partial_{\phi}f_{\epsilon}$
- ▶ Define $P \in M_{\vec{E}}(A \otimes A^{op})$ by $P_{\epsilon,\phi} = \delta_{\epsilon,\phi} p_{s(\epsilon)} \otimes p_{t(\epsilon)}$. Observe $\mathscr{J} x = P$
- Set $\mathbb{M}(A) = PM_{\vec{E}}(A \otimes A^{op})P$. Note that $\mathscr{J}f \in \mathbb{M}(A)$ for $f \in A^{\vec{E}}$.
- ▶ For $a \otimes b \in A \otimes A^{op}$, and $c \in A$, define $(a \otimes b) # c = acb$. Extend to an action of $\mathbb{M}(A)$ acting on $A^{\vec{E}}$ in obvious way. This is well defined!
- The Schwinger-Dyson equation is now $\mathscr{J}^*(P) = M \# x$ with $M_{\epsilon,\phi} = \delta_{\epsilon,\phi} \mu(\epsilon) p_{s(\epsilon)} \otimes p_{t(\epsilon)}$

• Cyclic partial derivatives \mathscr{D}_{ϵ} :

• Cyclic partial derivatives \mathscr{D}_{ϵ} : $\mathscr{D}_{\epsilon} = m \circ \sigma \circ \partial_{\epsilon^{op}}$

• Cyclic partial derivatives \mathscr{D}_{ϵ} : $\mathscr{D}_{\epsilon} = m \circ \sigma \circ \partial_{\epsilon^{op}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$\mathscr{D}_{\epsilon}(P) = \sum_{P=Qx_{\epsilon^{op}R}} RQ$$

• Cyclic partial derivatives \mathscr{D}_{ϵ} : $\mathscr{D}_{\epsilon} = m \circ \sigma \circ \partial_{\epsilon^{op}}$

•
$$\mathscr{D}_{\epsilon}(P) = \sum_{P=Qx_{\epsilon}^{op}R} RQ$$

• Cyclic gradient: $\mathscr{D}: A \to A^{\vec{E}}$ given by $(\mathscr{D}g)_{\epsilon} = \mathscr{D}_{\epsilon}(g)$

• Cyclic partial derivatives \mathscr{D}_{ϵ} : $\mathscr{D}_{\epsilon} = m \circ \sigma \circ \partial_{\epsilon^{op}}$

•
$$\mathscr{D}_{\epsilon}(P) = \sum_{P = Qx_{\epsilon}^{op}R} RQ$$

• Cyclic gradient: $\mathscr{D}: A \to A^{\vec{E}}$ given by $(\mathscr{D}g)_{\epsilon} = \mathscr{D}_{\epsilon}(g)$ Note that this is well defined!

• Cyclic partial derivatives \mathscr{D}_{ϵ} : $\mathscr{D}_{\epsilon} = m \circ \sigma \circ \partial_{\epsilon^{op}}$

•
$$\mathscr{D}_{\epsilon}(P) = \sum_{P = Qx_{\epsilon}^{op}R} RQ$$

• Cyclic gradient: $\mathscr{D}: A \to A^{\vec{E}}$ given by $(\mathscr{D}g)_{\epsilon} = \mathscr{D}_{\epsilon}(g)$ Note that this is well defined!

(日) (同) (三) (三) (三) (○) (○)

▶ Note: The Schwinger-Dyson equation is now $\mathscr{J}^*(P) = \mathscr{D}(V_\mu)$ with $V_\mu = \frac{1}{2} \sum_{\epsilon} \mu(\epsilon) x_{\epsilon}^* x_{\epsilon}$

• Cyclic partial derivatives \mathscr{D}_{ϵ} : $\mathscr{D}_{\epsilon} = m \circ \sigma \circ \partial_{\epsilon^{op}}$

•
$$\mathscr{D}_{\epsilon}(P) = \sum_{P=Qx_{\epsilon}^{op}R} RQ$$

• Cyclic gradient: $\mathscr{D}: A \to A^{\vec{E}}$ given by $(\mathscr{D}g)_{\epsilon} = \mathscr{D}_{\epsilon}(g)$ Note that this is well defined!

(日) (同) (三) (三) (三) (○) (○)

- ▶ Note: The Schwinger-Dyson equation is now $\mathscr{J}^*(P) = \mathscr{D}(V_\mu)$ with $V_\mu = \frac{1}{2} \sum_{\epsilon} \mu(\epsilon) x_{\epsilon}^* x_{\epsilon}$
- A^R : Completion of A with respect to the norm:

• Cyclic partial derivatives \mathscr{D}_{ϵ} : $\mathscr{D}_{\epsilon} = m \circ \sigma \circ \partial_{\epsilon^{op}}$

•
$$\mathscr{D}_{\epsilon}(P) = \sum_{P=Qx_{\epsilon}^{op}R} RQ$$

- Cyclic gradient: $\mathscr{D}: A \to A^{\vec{E}}$ given by $(\mathscr{D}g)_{\epsilon} = \mathscr{D}_{\epsilon}(g)$ Note that this is well defined!
- ▶ Note: The Schwinger-Dyson equation is now $\mathscr{J}^*(P) = \mathscr{D}(V_\mu)$ with $V_\mu = \frac{1}{2} \sum_{\epsilon} \mu(\epsilon) x_{\epsilon}^* x_{\epsilon}$
- A^R : Completion of A with respect to the norm:

$$\left\|\sum_{v\in V} a_v p_v + \sum_{\epsilon_1\cdots\epsilon_n} a_{\epsilon_1,\dots,\epsilon_n} x_{\epsilon_1}\cdots x_{\epsilon_n}\right\|_R$$
$$= \left(\sup_{v\in V} |a_v|\right) + \sum_{\epsilon_1\dots\epsilon_n} |a_{\epsilon_1\dots\epsilon_n}| R^n$$

Perturbations

• We are interested in **perturbations**:

▶ We are interested in **perturbations**: A family $(y_{\epsilon})_{\epsilon \in \vec{E}}$, and ϕ a trace on A^R satisfying:

▶ We are interested in **perturbations**: A family $(y_{\epsilon})_{\epsilon \in \vec{E}}$, and ϕ a trace on A^R satisfying:

1.
$$\phi(p_v) = \mu(v)$$

▶ We are interested in **perturbations**: A family $(y_{\epsilon})_{\epsilon \in \vec{E}}$, and ϕ a trace on A^R satisfying:

1.
$$\phi(p_v) = \mu(v)$$

2. There is a C > 0 where $\phi(y_{\epsilon_1} \cdots y_{\epsilon_n}) \leq C^n$

► We are interested in **perturbations**: A family (y_e)_{e∈E}, and φ a trace on A^R satisfying:

1.
$$\phi(p_v) = \mu(v)$$

- 2. There is a C>0 where $\phi(y_{\epsilon_1}\cdots y_{\epsilon_n})\leq C^n$
- 3. $\mathscr{J}_y^*(P) = \mathscr{D}_y(V_\mu(y) + W(y))$ for $||W||_R$ small.

- ► We are interested in **perturbations**: A family (y_e)_{e∈E}, and φ a trace on A^R satisfying:
 - **1**. $\phi(p_v) = \mu(v)$
 - 2. There is a C > 0 where $\phi(y_{\epsilon_1} \cdots y_{\epsilon_n}) \leq C^n$
 - 3. $\mathscr{J}_y^*(P) = \mathscr{D}_y(V_\mu(y) + W(y))$ for $||W||_R$ small.
- Such solutions \u03c6 are seen to be unique. The harder question is existence!

- ► We are interested in **perturbations**: A family (y_e)_{e∈E}, and φ a trace on A^R satisfying:
 - 1. $\phi(p_v) = \mu(v)$
 - 2. There is a C > 0 where $\phi(y_{\epsilon_1} \cdots y_{\epsilon_n}) \leq C^n$
 - 3. $\mathscr{J}_y^*(P) = \mathscr{D}_y(V_\mu(y) + W(y))$ for $||W||_R$ small.
- Such solutions \u03c6 are seen to be unique. The harder question is existence!

 \blacktriangleright We examine the existence of $(y_{\epsilon})_{\epsilon\in \vec{E}}$ in $\mathcal{S}(\Gamma,\mu)$

- ► We are interested in **perturbations**: A family (y_e)_{e∈E}, and φ a trace on A^R satisfying:
 - 1. $\phi(p_v) = \mu(v)$
 - 2. There is a C > 0 where $\phi(y_{\epsilon_1} \cdots y_{\epsilon_n}) \leq C^n$
 - 3. $\mathscr{J}_y^*(P) = \mathscr{D}_y(V_\mu(y) + W(y))$ for $||W||_R$ small.
- Such solutions \u03c6 are seen to be unique. The harder question is existence!

- We examine the existence of $(y_{\epsilon})_{\epsilon \in \vec{E}}$ in $\mathcal{S}(\Gamma, \mu)$
- We write y = x + f.

- We are interested in **perturbations**: A family (y_ϵ)_{ϵ∈Ē}, and φ a trace on A^R satisfying:
 - 1. $\phi(p_v) = \mu(v)$
 - 2. There is a C > 0 where $\phi(y_{\epsilon_1} \cdots y_{\epsilon_n}) \leq C^n$
 - 3. $\mathscr{J}_y^*(P) = \mathscr{D}_y(V_\mu(y) + W(y))$ for $||W||_R$ small.
- Such solutions \u03c6 are seen to be unique. The harder question is existence!

- We examine the existence of $(y_{\epsilon})_{\epsilon \in \vec{E}}$ in $\mathcal{S}(\Gamma, \mu)$
- We write y = x + f. Assume ||f||_R is small enough for P + 𝒴f to be invertible in 𝕅(A^R).

- We are interested in **perturbations**: A family (y_ℓ)_{ℓ∈E}, and φ a trace on A^R satisfying:
 - 1. $\phi(p_v) = \mu(v)$
 - 2. There is a C > 0 where $\phi(y_{\epsilon_1} \cdots y_{\epsilon_n}) \leq C^n$
 - 3. $\mathscr{J}_y^*(P) = \mathscr{D}_y(V_\mu(y) + W(y))$ for $||W||_R$ small.
- Such solutions \u03c6 are seen to be unique. The harder question is existence!
- We examine the existence of $(y_{\epsilon})_{\epsilon \in \vec{E}}$ in $\mathcal{S}(\Gamma, \mu)$
- We write y = x + f. Assume ||f||_R is small enough for P + 𝓕f to be invertible in 𝕅(A^R).
- Using a change of variables, we try to solve the following for f:

- We are interested in **perturbations**: A family (y_ℓ)_{ℓ∈E}, and φ a trace on A^R satisfying:
 - 1. $\phi(p_v) = \mu(v)$
 - 2. There is a C > 0 where $\phi(y_{\epsilon_1} \cdots y_{\epsilon_n}) \leq C^n$
 - 3. $\mathscr{J}_y^*(P) = \mathscr{D}_y(V_\mu(y) + W(y))$ for $||W||_R$ small.
- Such solutions \u03c6 are seen to be unique. The harder question is existence!
- We examine the existence of $(y_{\epsilon})_{\epsilon \in \vec{E}}$ in $\mathcal{S}(\Gamma, \mu)$
- We write y = x + f. Assume ||f||_R is small enough for P + 𝓕 f to be invertible in 𝕅(A^R).
- Using a change of variables, we try to solve the following for f:

$$\mathscr{J}^*\left(\frac{P}{1+\mathscr{J}f}\right) = M \# x + (\mathscr{D}W)(x+f)$$

We further assume $f = \mathscr{D}g$

• Solving
$$\mathscr{J}^*\left(\frac{P}{1+\mathscr{J}f}\right) = M\#x + (\mathscr{D}W)(x+f)$$

► Solving
$$\mathscr{J}^*\left(\frac{P}{1+\mathscr{J}f}\right) = M\#x + (\mathscr{D}W)(x+f)$$

Via some (a lot) of work, this can be transformed to

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Solving
$$\mathscr{J}^*\left(\frac{P}{1+\mathscr{J}f}\right) = M\#x + (\mathscr{D}W)(x+f)$$

Via some (a lot) of work, this can be transformed to

$$\mathscr{D}\mathcal{N}_{\mu}g = \mathscr{D}[-W(x+\mathscr{D}g) - \frac{1}{2}\mathscr{D}g \# M \# \mathscr{D}g$$
$$-\sum_{m=1}^{\infty} \frac{(-1)^m}{m} (1 \otimes \operatorname{tr} + \operatorname{tr} \otimes 1) \circ \operatorname{Tr}(\mathscr{J}\mathscr{D}g^m)]$$

► Solving
$$\mathscr{J}^*\left(\frac{P}{1+\mathscr{J}f}\right) = M\#x + (\mathscr{D}W)(x+f)$$

Via some (a lot) of work, this can be transformed to

$$\mathscr{D}\mathcal{N}_{\mu}g = \mathscr{D}[-W(x+\mathscr{D}g) - \frac{1}{2}\mathscr{D}g \# M \# \mathscr{D}g \\ -\sum_{m=1}^{\infty} \frac{(-1)^m}{m} (1 \otimes \operatorname{tr} + \operatorname{tr} \otimes 1) \circ \operatorname{Tr}(\mathscr{J}\mathscr{D}g^m))$$

With sufficient "radius of convergence" and norm conditions on W, one can solve this by contraction mapping by removing the gradients.

Solving
$$\mathscr{J}^*\left(\frac{P}{1+\mathscr{J}f}\right) = M\#x + (\mathscr{D}W)(x+f)$$

Via some (a lot) of work, this can be transformed to

$$\mathscr{D}\mathcal{N}_{\mu}g = \mathscr{D}[-W(x+\mathscr{D}g) - \frac{1}{2}\mathscr{D}g \# M \# \mathscr{D}g \\ -\sum_{m=1}^{\infty} \frac{(-1)^m}{m} (1 \otimes \operatorname{tr} + \operatorname{tr} \otimes 1) \circ \operatorname{Tr}(\mathscr{J}\mathscr{D}g^m))$$

- With sufficient "radius of convergence" and norm conditions on W, one can solve this by contraction mapping by removing the gradients.
 - 1. Choose R so that $R\min_{\epsilon\in\vec{E}}\mu(\epsilon)>4$
 - 2. Choose $S > R + \frac{1}{R}$.
 - 3. Assume $W \in A^S$ with

$$\|W\|_{S} \leq \frac{1}{2} \min_{\epsilon \in \vec{E}} \mu(\epsilon)$$

$$\|W\|_{S} \leq 2e \left(R + \frac{1}{R}\right) \log\left(\frac{S}{R + \frac{1}{R}}\right).$$

► This produces y = x + f with $tr(y_{\epsilon_1} \cdots y_{\epsilon_n}) = \phi(y_{\epsilon_1} \cdots y_{\epsilon_n})$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- This produces y = x + f with $tr(y_{\epsilon_1} \cdots y_{\epsilon_n}) = \phi(y_{\epsilon_1} \cdots y_{\epsilon_n})$
- With even smaller norm conditions on W, one can express each x_ε as a power series in the y_φ via an inverse function theorem.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- This produces y = x + f with $tr(y_{\epsilon_1} \cdots y_{\epsilon_n}) = \phi(y_{\epsilon_1} \cdots y_{\epsilon_n})$
- With even smaller norm conditions on W, one can express each x_ε as a power series in the y_φ via an inverse function theorem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This establishes the following theorem:

- ▶ This produces y = x + f with $tr(y_{\epsilon_1} \cdots y_{\epsilon_n}) = \phi(y_{\epsilon_1} \cdots y_{\epsilon_n})$
- With even smaller norm conditions on W, one can express each x_ε as a power series in the y_φ via an inverse function theorem.
- ► This establishes the following theorem: If W is of sufficiently small analytic norm, then there exists a linear functional ϕ on $B = \operatorname{Alg}((p_v)_{v \in V}, (y_{\epsilon})_{e \in \vec{E}})$ satisfying Schwinger-Dyson with potential $V_{\mu} + W$. Furthermore, $C^*(B, \phi) \cong S(\Gamma, \mu)$ and $W^*(B, \phi) \cong \mathcal{M}(\Gamma, \mu)$

▶ **Remark**: $S(\Gamma, \mu)$ can also be constructed by the following:

- **Remark**: $S(\Gamma, \mu)$ can also be constructed by the following:
- Maps $\eta_{e,e'}: \ell^{\infty}(V) \to \ell^{\infty}(V)$ given by:

$$\eta_{e,e'}(p_v) = \begin{cases} \delta_{e,e'} \sqrt{\frac{\mu(v)}{\mu(w)}} p_w & \text{ if } v \sim_e w \\ \delta_{e,e'} p_v & \text{ if } e \text{ is a loop} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- **Remark**: $S(\Gamma, \mu)$ can also be constructed by the following:
- Maps $\eta_{e,e'}: \ell^{\infty}(V) \to \ell^{\infty}(V)$ given by:

$$\eta_{e,e'}(p_v) = \begin{cases} \delta_{e,e'} \sqrt{\frac{\mu(v)}{\mu(w)}} p_w & \text{ if } v \sim_e w \\ \delta_{e,e'} p_v & \text{ if } e \text{ is a loop} \end{cases}$$

• Induces completely positive map $\eta: \ell^{\infty}(V) \to M_{E \times E}(\ell^{\infty}(V)).$

- **Remark**: $\mathcal{S}(\Gamma, \mu)$ can also be constructed by the following:
- Maps $\eta_{e,e'}: \ell^{\infty}(V) \to \ell^{\infty}(V)$ given by:

$$\eta_{e,e'}(p_v) = \begin{cases} \delta_{e,e'} \sqrt{\frac{\mu(v)}{\mu(w)}} p_w & \text{ if } v \sim_e w \\ \delta_{e,e'} p_v & \text{ if } e \text{ is a loop} \end{cases}$$

- Induces completely positive map $\eta: \ell^{\infty}(V) \to M_{E \times E}(\ell^{\infty}(V)).$
- (Shlyakhtenko 1999) Form $\mathcal{S}(\Gamma, \mu) = \Phi(\ell^{\infty}(V), \eta)$

- ▶ **Remark**: $S(\Gamma, \mu)$ can also be constructed by the following:
- Maps $\eta_{e,e'}: \ell^{\infty}(V) \to \ell^{\infty}(V)$ given by:

$$\eta_{e,e'}(p_v) = \begin{cases} \delta_{e,e'} \sqrt{\frac{\mu(v)}{\mu(w)}} p_w & \text{ if } v \sim_e w \\ \delta_{e,e'} p_v & \text{ if } e \text{ is a loop} \end{cases}$$

- Induces completely positive map $\eta: \ell^{\infty}(V) \to M_{E \times E}(\ell^{\infty}(V)).$
- ► (Shlyakhtenko 1999) Form $S(\Gamma, \mu) = \Phi(\ell^{\infty}(V), \eta)$ =C*($(p_v)_{v \in V}, (x_e)_{e \in E}$).

- **Remark**: $\mathcal{S}(\Gamma, \mu)$ can also be constructed by the following:
- Maps $\eta_{e,e'}: \ell^{\infty}(V) \to \ell^{\infty}(V)$ given by:

$$\eta_{e,e'}(p_v) = \begin{cases} \delta_{e,e'} \sqrt{\frac{\mu(v)}{\mu(w)}} p_w & \text{ if } v \sim_e w \\ \delta_{e,e'} p_v & \text{ if } e \text{ is a loop} \end{cases}$$

- Induces completely positive map $\eta: \ell^{\infty}(V) \to M_{E \times E}(\ell^{\infty}(V)).$
- ▶ (Shlyakhtenko 1999) Form $S(\Gamma, \mu) = \Phi(\ell^{\infty}(V), \eta)$ =C*($(p_v)_{v \in V}, (x_e)_{e \in E}$). $(x_e)_{e \in E}$ are $\ell^{\infty}(V)$ semicircular elements.