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Free group factors

I Voiculescu’s construction:

I Real Hilbert space, HR, with complexification H
I Form the full Fock Space F(H) = CΩ⊕

⊕
n≥1

H⊗
n

I For ξ ∈ HR, have the creation operator `(ξ):

`(ξ)(Ω) = ξ and `(ξ)(ξi1 ⊗ · · · ⊗ ξin) = ξ ⊗ ξi1 ⊗ · · · ⊗ ξin

I Pick ξ1, ξ2, . . . and o.n.b of HR. Set Xi = `(ξi) + `(ξi)
∗.

(Semicircular element)
I W ∗(X1, X2, · · · ) ∼= L(Fn), n = dim(H).
I Trace vector: tr(x) = 〈Ω|xΩ〉, x ∈W ∗(X1, X2, · · · ).
I Key property:

tr(Xi1Xi2 · · ·Xin) =
∑
ik=i1

tr(Xi2 · · ·Xik−1
) tr(Xik+1

· · ·Xin)
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Interpolated free group factors

I Factors L(Ft) t ∈ (1,∞] discovered independently by Dykema
and Rǎdulescu.

I Properties

1. Agree with the usual free group factors when
t ∈ {2, 3, . . . } ∪ {∞}

2. L(Fs) ∗ L(Ft) = L(Fs+t)
3. pL(Ft)p = L(F(1 + t−1

tr(p)2 )) for p ∈ P(L(Ft))
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Constructions

I Rǎduescu’s and Dykema’s constructions:
I Rǎdulescu (1990s) Ingredients:

I Free semicircular family (Xs)s∈S .
I σ0, σ1 ∈ S
I Projections es, fs ∈ (Xσ1)

′′ mutually orthogonal or equal.
I vN(Xσ0 , (esXs′fs)s′∈S\{σ0,σ1}) depends only on

t = 1 +
∑
s

ks tr(es) tr(fs)

with ks = 1 if es = fs and k2 = 2 if es ⊥ fs. This is L(Ft).
I Dykema (1990s) Ingredients:

I The hyperfinite II1 factor R
I Projections {ps}s∈S in R
I A free semicircular family {Xs}s∈S free from R.
I vN(R, psXsps) depends only on

∑
s∈S tr(ps)

2. Get L(Ft)
with t = 1 +

∑
s∈S tr(ps)

2
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Weighted graphs, free graph algebra

I (Γ, V, E, µ) a connected, finite, weighted graph.

Require∑
v∈V µ(v) = 1

I Directed version (~Γ, V, ~E, µ)

I Undirected edges e. Directed versions ε, εop

I `∞(V ): functions on V . pv indicator function at v ∈ V .
I Fock space representation of operators (pv)v∈V and (xε)ε∈ ~E

Relations:

1. 1 =
∑
v∈V pv

2. xε = ps(ε)xεpt(ε)
3. xεop = x∗ε
4. xε1 · · ·xεn = 0 unless ε1 · · · εn is a path.
5. tr(xε1 · · ·xεn) =

1√
µ(s(ε1))µ(t(ε1))

∑
εj=ε

op
1

tr(xε2 · · ·xεj−1) tr(xεj+1 · · ·xεn)

6. If |V | = 1, this gives Voiculescu’s free semicircular system.
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von Neumann algebras

I Set S(Γ, µ) =C∗((pv)v∈V , (xε)ε∈ ~E)

I Set M(Γ, µ) = (S(Γ, µ), tr)′′

I Theorem (H. ’13): Let V> be the set of vertices, β satisfying
µ(β) >

∑
α∼β nα,βµ(α). We have

M(Γ, µ) ∼= L(Ft)⊕
⊕
γ∈V>

rγ
C

where rγ ≤ pγ and τ(rγ) = µ(γ)−
∑

α∼γ nα,βµ(α). If
M(Γ, µ) is a factor, then

t = 1−
∑
v∈V

µ(v)2 +
∑
v∈V

µ(v)
∑
w∼v

nv,wµ(w)
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Examples

Γ M(Γ, µ)

1n L(Fn)

a
1-an

a ∈ [ 1
2
, 1)

L(Ft)

t = (n− 4)a2 + 4a

a 1-a

a ∈ [ 1
3
, 2
3
]

L(Ft)

t = 6(a− a2)



C*-algebras
I Theorem (H ’16) Let V= be the set of vertices β satisfying
µ(β) =

∑
α∼β nα,βµ(α), and let V≥ = V> ∪ V=. Let I be the

norm-closed ideal generated by generated by (xe)e∈E . Then:
I I is minimal, simple, has unique trace, and has stable rank 1.
I I is unital if and only if V= is empty. If V= is empty, then

S(Γ, µ) = I ⊕
⊕
γ∈V>

rγ

C

with rγ ≤ pγ and τ(rγ) = µ(γ)−
∑
α∼γ nα,βµ(α). If V= is

not empty, then

S(Γ, µ) = I ⊕
⊕
γ∈V>

rγ

C

where I is unital, and the strong operator closures of I and I
coincide in L2(S(Γ, µ), τ), and I/I ∼=

⊕
β∈V=

C.
I K0(I) ∼= Z {[pβ ]|β ∈ V \ V≥} and K1(I) = {0} where the

first group is the free abelian group on the classes of
projections [pβ ]. Furthermore,
K0(I)+ = {x ∈ K0(I)|tr(x) > 0} ∪ {0}.



Free difference quotient

I Let A be the ∗-algebra generated by `∞(V ) and (xe)e∈E .

I Free difference quotient: for ε ∈ ~E, define
∂ε : A→ A⊗Aop by:

∂ε(xε′) = δe,e′ps(ε) ⊗ pt(ε) ∂ε(pv) = 0

and extend via derivation.

I Set µ(ε) =
√
µ(s(ε))µ(t(ε))

I Observation: µ(ε) tr(xεopQ) = (tr⊗ tr)(∂ε(Q)) for P ∈ A.

I i.e. ∂∗ε (ps(ε) ⊗ pt(ε)) = µ(ε)xε
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Vector fields and Jacobians

I Set A
~E =

{f : ~E → A | ps(ε)f(ε)pt(ε) = f(ε)}
I Inner product 〈f |h〉 =

∑
ε tr(f∗ε hε)

I Given f ∈ A ~E , define J f ∈M ~E(A⊗Aop) by
(J f)εφ = ∂φfε

I Define P ∈M ~E(A⊗Aop) by Pε,φ = δε,φps(ε) ⊗ pt(ε). Observe
J x = P

I Set M(A) = PM ~E(A⊗Aop)P . Note that J f ∈M(A) for

f ∈ A ~E .

I For a⊗ b ∈ A⊗Aop, and c ∈ A, define (a⊗ b)#c = acb.

Extend to an action of M(A) acting on A
~E in obvious way.

This is well defined!

I The Schwinger-Dyson equation is now J ∗(P ) = M#x with
Mε,φ = δε,φµ(ε)ps(ε) ⊗ pt(ε)
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Cyclic gradients and Schwinger-Dyson

I Cyclic partial derivatives Dε:

Dε = m ◦ σ ◦ ∂εop
I Dε(P ) =

∑
P=QxεopR

RQ

I Cyclic gradient: D : A→ A
~E given by (Dg)ε = Dε(g) Note

that this is well defined!

I Note: The Schwinger-Dyson equation is now

J ∗(P ) = D(Vµ) with Vµ =
1

2

∑
ε

µ(ε)x∗εxε

I AR: Completion of A with respect to the norm:∥∥∥∥∥∑
v∈V

avpv +
∑
ε1···εn

aε1,...,εnxε1 · · ·xεn

∥∥∥∥∥
R

= (sup
v∈V
|av|) +

∑
ε1...εn

|aε1...εn |Rn



Cyclic gradients and Schwinger-Dyson

I Cyclic partial derivatives Dε: Dε = m ◦ σ ◦ ∂εop

I Dε(P ) =
∑

P=QxεopR
RQ

I Cyclic gradient: D : A→ A
~E given by (Dg)ε = Dε(g) Note

that this is well defined!

I Note: The Schwinger-Dyson equation is now

J ∗(P ) = D(Vµ) with Vµ =
1

2

∑
ε

µ(ε)x∗εxε

I AR: Completion of A with respect to the norm:∥∥∥∥∥∑
v∈V

avpv +
∑
ε1···εn

aε1,...,εnxε1 · · ·xεn

∥∥∥∥∥
R

= (sup
v∈V
|av|) +

∑
ε1...εn

|aε1...εn |Rn



Cyclic gradients and Schwinger-Dyson

I Cyclic partial derivatives Dε: Dε = m ◦ σ ◦ ∂εop
I Dε(P ) =

∑
P=QxεopR

RQ

I Cyclic gradient: D : A→ A
~E given by (Dg)ε = Dε(g) Note

that this is well defined!

I Note: The Schwinger-Dyson equation is now

J ∗(P ) = D(Vµ) with Vµ =
1

2

∑
ε

µ(ε)x∗εxε

I AR: Completion of A with respect to the norm:∥∥∥∥∥∑
v∈V

avpv +
∑
ε1···εn

aε1,...,εnxε1 · · ·xεn

∥∥∥∥∥
R

= (sup
v∈V
|av|) +

∑
ε1...εn

|aε1...εn |Rn



Cyclic gradients and Schwinger-Dyson

I Cyclic partial derivatives Dε: Dε = m ◦ σ ◦ ∂εop
I Dε(P ) =

∑
P=QxεopR

RQ

I Cyclic gradient: D : A→ A
~E given by (Dg)ε = Dε(g)

Note
that this is well defined!

I Note: The Schwinger-Dyson equation is now

J ∗(P ) = D(Vµ) with Vµ =
1

2

∑
ε

µ(ε)x∗εxε

I AR: Completion of A with respect to the norm:∥∥∥∥∥∑
v∈V

avpv +
∑
ε1···εn

aε1,...,εnxε1 · · ·xεn

∥∥∥∥∥
R

= (sup
v∈V
|av|) +

∑
ε1...εn

|aε1...εn |Rn



Cyclic gradients and Schwinger-Dyson

I Cyclic partial derivatives Dε: Dε = m ◦ σ ◦ ∂εop
I Dε(P ) =

∑
P=QxεopR

RQ

I Cyclic gradient: D : A→ A
~E given by (Dg)ε = Dε(g) Note

that this is well defined!

I Note: The Schwinger-Dyson equation is now

J ∗(P ) = D(Vµ) with Vµ =
1

2

∑
ε

µ(ε)x∗εxε

I AR: Completion of A with respect to the norm:∥∥∥∥∥∑
v∈V

avpv +
∑
ε1···εn

aε1,...,εnxε1 · · ·xεn

∥∥∥∥∥
R

= (sup
v∈V
|av|) +

∑
ε1...εn

|aε1...εn |Rn



Cyclic gradients and Schwinger-Dyson

I Cyclic partial derivatives Dε: Dε = m ◦ σ ◦ ∂εop
I Dε(P ) =

∑
P=QxεopR

RQ

I Cyclic gradient: D : A→ A
~E given by (Dg)ε = Dε(g) Note

that this is well defined!

I Note: The Schwinger-Dyson equation is now

J ∗(P ) = D(Vµ) with Vµ =
1

2

∑
ε

µ(ε)x∗εxε

I AR: Completion of A with respect to the norm:∥∥∥∥∥∑
v∈V

avpv +
∑
ε1···εn

aε1,...,εnxε1 · · ·xεn

∥∥∥∥∥
R

= (sup
v∈V
|av|) +

∑
ε1...εn

|aε1...εn |Rn



Cyclic gradients and Schwinger-Dyson

I Cyclic partial derivatives Dε: Dε = m ◦ σ ◦ ∂εop
I Dε(P ) =

∑
P=QxεopR

RQ

I Cyclic gradient: D : A→ A
~E given by (Dg)ε = Dε(g) Note

that this is well defined!

I Note: The Schwinger-Dyson equation is now

J ∗(P ) = D(Vµ) with Vµ =
1

2

∑
ε

µ(ε)x∗εxε

I AR: Completion of A with respect to the norm:

∥∥∥∥∥∑
v∈V

avpv +
∑
ε1···εn

aε1,...,εnxε1 · · ·xεn

∥∥∥∥∥
R

= (sup
v∈V
|av|) +

∑
ε1...εn

|aε1...εn |Rn



Cyclic gradients and Schwinger-Dyson

I Cyclic partial derivatives Dε: Dε = m ◦ σ ◦ ∂εop
I Dε(P ) =

∑
P=QxεopR

RQ

I Cyclic gradient: D : A→ A
~E given by (Dg)ε = Dε(g) Note

that this is well defined!

I Note: The Schwinger-Dyson equation is now

J ∗(P ) = D(Vµ) with Vµ =
1

2

∑
ε

µ(ε)x∗εxε

I AR: Completion of A with respect to the norm:∥∥∥∥∥∑
v∈V

avpv +
∑
ε1···εn

aε1,...,εnxε1 · · ·xεn

∥∥∥∥∥
R

= (sup
v∈V
|av|) +

∑
ε1...εn

|aε1...εn |Rn



Perturbations

I We are interested in perturbations:

A family (yε)ε∈ ~E , and φ

a trace on AR satisfying:

1. φ(pv) = µ(v)
2. There is a C > 0 where φ(yε1 · · · yεn) ≤ Cn
3. J ∗

y (P ) = Dy(Vµ(y) +W (y)) for ‖W‖R small.

I Such solutions φ are seen to be unique. The harder question
is existence!

I We examine the existence of (yε)ε∈ ~E in S(Γ, µ)

I We write y = x+ f. Assume ‖f‖R is small enough for
P + J f to be invertible in M(AR).

I Using a change of variables, we try to solve the following for f :

J ∗
(

P

1 + J f

)
= M#x+ (DW )(x+ f)

We further assume f = Dg
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Solving the equation

I Solving J ∗
(

P

1 + J f

)
= M#x+ (DW )(x+ f)

I Via some (a lot) of work, this can be transformed to

DNµg = D [−W (x+ Dg)− 1

2
Dg#M#Dg

−
∞∑
m=1

(−1)m

m
(1⊗ tr + tr⊗1) ◦ Tr(J Dgm)]

I With sufficient “radius of convergence” and norm conditions
on W , one can solve this by contraction mapping by removing
the gradients.

1. Choose R so that Rmin
ε∈~E

µ(ε) > 4

2. Choose S > R+ 1
R .

3. Assume W ∈ AS with
I ‖W‖S ≤

1

2
min
ε∈~E

µ(ε)

I ‖W‖S ≤ 2e

(
R+

1

R

)
log

(
S

R+ 1
R

)
.
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Punchline

I This produces y = x+ f with tr(yε1 · · · yεn) = φ(yε1 · · · yεn)

I With even smaller norm conditions on W , one can express
each xε as a power series in the yφ via an inverse function
theorem.

I This establishes the following theorem: If W is of sufficiently
small analytic norm, then there exists a linear functional φ on
B = Alg((pv)v∈V , (yε)e∈ ~E) satisfying Schwinger-Dyson with
potential Vµ +W . Furthermore, C∗(B,φ) ∼= S(Γ, µ) and
W ∗(B,φ) ∼=M(Γ, µ)
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W ∗(B,φ) ∼=M(Γ, µ)
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A remark

I Remark: S(Γ, µ) can also be constructed by the following:

I Maps ηe,e′ : `∞(V )→ `∞(V ) given by:

ηe,e′(pv) =

{
δe,e′

√
µ(v)
µ(w)pw if v ∼e w

δe,e′pv if e is a loop

I Induces completely positive map
η : `∞(V )→ME×E(`∞(V )).

I (Shlyakhtenko 1999) Form S(Γ, µ) = Φ(`∞(V ), η)
=C*((pv)v∈V , (xe)e∈E). (xe)e∈E are `∞(V ) semicircular
elements.
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