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Introduction and Preliminaries

This talk is on the following connection:

Representations of the Thompson group

F=(90,91,--- | 9k91 = 91419k, 0 < k < 1 < 00 )group

[ Bilateral noncommutative stationary Markov processes
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Introduction and Preliminaries

The Thompson group F' was introduced by Richard Thompson in 1965 as a
certain subgroup of piece-wise linear homeomorphisms on the interval
[0,1].

The generators of F' satisfy the relations

9k91 = 91419k, 0 < k < 1 < o0.

For instance,
9194 = g591-

We are interested in certain probabilistic aspects of F'; in particular its
surprising connection to Markovianity.
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Introduction and Preliminaries

Our setting of a noncommutative probability space (NCPS) will
consist of a pair (M,), where M is a von Neumann algebra and v is a
faithful normal state on M.
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Introduction and Preliminaries

Our setting of a noncommutative probability space (NCPS) will
consist of a pair (M,), where M is a von Neumann algebra and v is a
faithful normal state on M.

Classical Probability Space: Let (2,3, ) be a standard probability
space. Then £ := L*(Q, X, 1) is a commutative von Neumann algebra, and

tr,(f) = ./;zfdu

defines a faithful normal tracial state on L.
The pair (£,tr,) is a noncommutative probability space.
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Introduction and Preliminaries

Definition
An automorphism « of a noncommutative probability space (M, 1)) is a
*-automorphism on M satisfying the stationarity property

poa=1y
The group of automorphisms of (M, ) will be denoted by Aut(M, ).
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Noncommutative Markov processes

Definition

A bilateral noncommutative stationary process (M, ), a, Ag) consists of
a noncommutative probability space (M, 1)), a 1)-conditioned subalgebra
Ap © M, and an automorphism « € Aut(M, ).

The term 1)-conditioned refers to the fact that the unique normal
conditional expectation Ey from M onto Ajg exists with 1) o Ey = ).
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Noncommutative Markov processes

Definition
A bilateral noncommutative stationary process (M, ), a, Ag) consists of

a noncommutative probability space (M, ), a 1-conditioned subalgebra
Ay c M, and an automorphism « € Aut(M, ).

The term 1)-conditioned refers to the fact that the unique normal
conditional expectation Ey from M onto Ajg exists with 1) o Ey = ).
Stationary Sequence: A stationary process generates a sequence of
injective *-homomorphisms ¢, : 49 > M given by

tn = a1y, mneNg

where (g is the canonical inclusion of Ag into M.
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Noncommutative Markov processes

Definition
The bilateral noncommutative stationary process (M,w,a,Ao) is called a
(bilateral noncommutative) stationary Markov process if for

Ao = V @ (Ag),
’iENO

*A[O,oo) = \/ ai(AO)a
1€Np
A[o,01 := Ao,

and E; denoting the conditional expectation onto A;, we have

E(—0,01 © Ef0,00) = E0,0]-
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Noncommutative Markov processes

Definition
The bilateral stationary process (M,”L/J,Oz,Ao) is called a (bilateral
noncommutative) stationary Markov process if for

Al-oo0) = V @ (Ag),
1€Np

A0y =V o' (Ao),
i€Np
A[o,o] = Ay,

and E; denoting the conditional expectation onto A;, we have

Erwol © Eoe) = Epoo
past future present
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Noncommutative Markov processes

Definition

Let (M, 4, a, Ap) be a stationary Markov process and ¢y be the inclusion
map of Ag into M. Let T":= tjarg. Then T is called the transition
operator associated to the Markov process.

Proposition (Kiimmerer 85, 86)
T satisfies the following properties.
O 5a"y=T" forall neNy.

D Leti, :=a"y, k1 <ky<--<k,eNganday,...,a, € Ag, n€N. Then

1/1 (Lkl (al)"'bkn (an)) — w (alTszkl (GQTkssz(ag.“Tknfkn—l (an))))

v

Here (M, 1, v, 19) is called a Markov dilation of T' and {¢y, }nen, is called a
stationary Markov sequence.
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We will now prove the following connection:

Representations of the Thompson group

F=(90,91,--- | 9k91 = 91419k, 0 < k < 1 < 00 )group

[ Bilateral noncommutative stationary Markov processes
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Markov processes from representations of F

Suppose a noncommutative probability space (M, ) is equipped with a
representation p: F' > Aut(M, ).

Let ap == p(g0),01 := p(g1),- -, an = p(gn), ... € Aut(M, 1)), with fixed
point algebras

MO ={zx e M| ay(x) =z} (n e Np).

The intersections of fixed point algebras

Mn = m Mak

k>n+1
give the tower of von Neumann subalgebras

Mp(F)CM(]CMlCMQC...CMOQ:: \/ M, c M.

’nENo
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Theorem (Kostler & K. arXiv:2204.03595)

Suppose p: F - Aut(M, 1)) is a representation with «,, == p(gy,), for
m € Ny. Let Mg =1 M. Then (./\/l7 Y, ao,./\/lo) is a bilateral

stationary Markov process.

In fact, we get a family of stationary noncommutative Markov processes
from a representation of F.

Theorem

Suppose p: F - Aut(M, 1)) is a representation with a,, = p(gm,), for

m € Ng. Let My, := Ngsne1 M. Then the quadruple (M,w, am,/\/ln) is
a bilateral stationary Markov process for any 0 < m < n < co.
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An lllustrative Example

An Example of a Representation of F

Let's now see an example of a representation p of F' in the group of
automorphisms of a noncommutative probability space, Aut(M, ).
Let two NCPSs (A, ¢) and (C, x) be given.

We build from them the larger NCPS (M, ) given by

My)=(4e @ Cjere @ xij)

(4,5)€NG (4,3)€NG

with C;; = C and x;; = x for all (i,5) € N2.
j J 0
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An lllustrative Example

First let us visualize the von Neumann algebra M via the set {m} U N2
represented as follows:

. . . .
. . . .
. . . .
. . . .
L] L] L] L)
L] L] L] °

1t . . . .

n . . . .
ER
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An lllustrative Example

Consider the ‘shifts’ 5y and B3; represented visually on the set {m} UNZ as
follows:

——e——re - °

*—H>0—@ .- °

*—H>0—e - °

Bo = K\\\;$.$..” and 3y = °
[ *—>e—e - .

° — Se— e --- .

T \.*).4). 14 .

| ] o——>o—r0——re - [ ] °

ER ER
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An lllustrative Example

The shifts 8y and 31 extend to automorphisms of

(M.9) = (AeC™ poy ™).

We will define p(go) := 5o and p(g1) := B1. Recall that the generators of F'
satisfy

k91 = Gi+19k, Kk <l.

In particular,

gn =00 " 190", n> L

So we define 3, := Bgilﬁlﬂa("_l) for n > 1.
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An lllustrative Example

Here is 33 visualized, for example:

R\

. . . (] o—Se—e -

. . . o—Se— e -

B ~ . . . o— Se— Ve -
3

e .. \HH....

° o ° [ ] c%o—)o

—
~
L]
L]
L]
.

o*}o*}o
| ] ° ° ° *—H0—H>0—@ -

J
=

Fact: The family of automorphisms {3,,} then satisfy all the relations of
the Thompson group, so that p(g,) := B, defines a representation p of F'
in Aut(M, ).
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An lllustrative Example

A variation: “Coupling to a Shift”

We next obtain another representation of F' by “perturbing” the shifts j3,,.

Given an automorphism v € Aut(A®C,p ® x), let 79 € Aut(M, ) denote
its natural extension such that

70((1@( ® xi7j)):’y(a®a:00)®( ® x@j).
(i,4)eN3 (4,7)eN3~{(0,0)}

Let ap :=790 5o, and oy, := B,  (n>1). The perturbation of 5y to give
Qg as ag = Yo © Bp is known in the literature as a “coupling to a shift”
(Kiimmerer 1985).
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An lllustrative Example

[ We have aq := g o fy, and ay, := B,

The perturbed shift g on the set {m} UNZ is represented visually as

-

o—H>0—>e -

follows:

1>

@Q

Y0 Bo

lm.

o—He—>e -
Se—5@ -

*e——o—re -

[}
K \‘-*N*h

o—o—re -
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An lllustrative Example

Then a;, € Aut(M, 1) for all n € Ny and it is easy to check that
Qo) = Q10

for all 0 < k < < oo, which are precisely the relations of F'.
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An lllustrative Example

Then a;, € Aut(M, 1) for all n € Ny and it is easy to check that
Qo) = Q10

for all 0 < k < < oo, which are precisely the relations of F'.
Hence defining p(gy,) := au, gives a representation p: F — Aut(M, ).
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An lllustrative Example

Then a;, € Aut(M, 1) for all n € Ny and it is easy to check that
Qo) = Q10

for all 0 < k < < oo, which are precisely the relations of F'.
Hence defining p(gy,) := au, gives a representation p: F — Aut(M, ).
Applying Theorem 1 to the representation j gives the following:

(M, 1, a9, M1) is a bilateral stationary noncommutative Markov
process.
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Representations of F' from Markov processes

We will now show a partial converse to Theorem 1 connected to the
“illustrative example”. To be able to use the tensor product construction
done there, for a given transition operator R on a NCPS (A, ) associated
to a bilateral stationary noncommutative Markov process, we would first
like to find a NCPS (C,x) and v € Aut(A®C,» ® x) such that

R = 15710.

Here to(a) :=a ® l¢.
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A result of Kiimmerer (1986) gives that if A is commutative with separable
predual, then for C = £:= L*=([0,1],A) and x = tr) := f[O,l] -d), there
exists 7 € Aut(A® L, p ® try) such that with ¢g(a) =a® 1.,

R = 15710

We will extend v € Aut(A®C,p ® x) to an automorphism
70 € Aut(M, 1)) as shown below (and seen before):
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Theorem (Kostler and K. 2022)
Let (A, ) be a probability space where A is commutative with separable
predual, and let R be a transition operator on A associated to a Markov
process. Then there exists a probability space (M,1)), representations
p,p: F — Aut(M, ), and an embedding v : (A, p) — (M, 1)) such that
0 1(A) = Mrloo),
@ R"=1"p(gy) for all n e Ny.
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Theorem (Kostler and K. 2022)
Let (A, ) be a probability space where A is commutative with separable

predual, and let R be a transition operator on A associated to a Markov
process. Then there exists a probability space (M,1)), representations
p,p: F - Aut(M, ), and an embedding 1 : (A, ) —» (M, 1)) such that
0 1(A) = Mrloo),
@ R"=1"p(gy) for all n e Ny.

4

Upshot: This result allows us to express a (classical) transition operator R
as a compression of a represented generator of the Thompson group F.
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Summary and Related Results

We obtained the following:

s )

Representations of the Thompson group F'

H Theorem 1

Bilateral noncommutative stationary Markov processes

Bilateral (classical) stationary Markov processes

U Theorem 2

[ Representations of the Thompson group F'
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Summary and Related Results

Unilateral Markov processes and representations of F'*

Our approach is motivated by analogous results for F'*:

Representations of the monoid

F* = <907gly cee |gkgl = 91+19%,0 < k<l< °°>monoid

partial spreadability

Unilateral noncommutative stationary Markov processes ]

C. Kostler, A. Krishnan, S. Wills (2020). Markovianity and the Thompson
Monoid F*. Preprint, arXiv:2009.14811:
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Summary and Related Results

This approach in turn was motivated by the action of the partial shifts
monoid:

Representations of the partial shifts monoid

S:<90,91,...|9k91291+19k,03k3l<00>+

spreadability

Unilateral noncommutative Bernoulli shifts

D. G. Evans, R. Gohm, C. Kgstler (2017). Semi-cosimplicial objects and
spreadability. Rocky Mountain Journal of Mathematics, 47(6), 1839-1873.
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Ongoing Research / Some Questions

e Commutative case: How do these results relate to work of P. Diaconis
and D. Freedman on a de Finetti theorem for Markov chains? 1

* Noncommutative case: Does Markovianity relate to results of
A. Brothier and V. F. R. Jones on unitary “Pythagorean”
representations of the Thompson group F? 2

'P. Diaconis, D. Freedman (1980). De Finetti's theorem for Markov chains. The
Annals of Probability, 115-130.
2A. Brothier, V .F. R. Jones (2019). Pythagorean representations of Thompson's

groups. Journal of Functional Analysis, 277(7), 2442-2469.
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Thank You!
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A distributional invariance principle

Definition (Kastler, K., Wills 2020)

A sequence of random variables ¢ = (¢y,)n>0 : (A, 9) = (M, ) is partially
spreadable if there exists a representation p: F'* — End(M, ) such that

ln, neN (stationarity),

a1 MPLIE) (localisation).

p(90)to
to(A)

N
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A distributional invariance principle

Definition (Kastler, K., Wills 2020)

A sequence of random variables ¢ = (¢, )ns0 : (A, p) > (M, ) is partially
spreadable if there exists a representation p: F'* — End(M, ) such that

p(gi)to = tn, meN  (stationarity),

w(A) € Mg MPER) (localisation).

Motivation: Replacing F'* by & = F'*/~ in the above definition gives an
equivalent definition of spreadability.

D. G. Evans, R. Gohm, C. Késtler (2017). Semi-cosimplicial objects and
spreadability. Rocky Mountain Journal of Mathematics, 47(6), 1839-1873.
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Definition

A sequence of random variables ¢ = (¢,)ns0 : (A, 9) = (M, 1)) is said to be
maximal partially spreadable if there exists a representation

p: F* - End(M,1) such that

neN (stationarity),

bns

mklep(gk) (maximal localisation).

(90 )to
to(A)
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We can now state the following de Finetti type result in the case of a
classical probability space:
Theorem (Késtler, K., Wills, 2020)

Let (A, ) and (M, 1)) be probability spaces such that A and M are
commutative with separable predual. Let ¢ = (tp)nen, : (A, ) > (M, 1)
be a sequence of random variables. Then the following are equivalent:

(a) ¢ is a maximal partially spreadable sequence;

(b) ¢ is a stationary Markov sequence.
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Let ¢ = (tn)ns0 : (A, ) > (M, 1)) be a sequence of random variables,
where (A, ¢) and (M, 1)) are noncommutative probability spaces.

Theorem (Késtler, K., Wills 2020) J

A maximal partially spreadable sequence 1 is a stationary Markov sequence.
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Let ¢ = (tn)ns0 : (A, ) > (M, 1)) be a sequence of random variables,
where (A, ¢) and (M, 1)) are noncommutative probability spaces.

Theorem (Késtler, K., Wills 2020) J

A maximal partially spreadable sequence 1 is a stationary Markov sequence.

The converse result is more delicate ...

Theorem (Kostler, K., Wills 2020) J

A “nice” stationary Markov sequence v is partially spreadable.

Here “nice” means that the stationary Markov sequence can be produced
as a so-called coupling to a spreadable noncommutative Bernoulli
shift. Roughly speaking, the results as available in the context of tensor
products of von Neumann algebras stay true “in spirit”.
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