Markovianity and the Thompson Group ${\cal F}$

Arundhathi Krishnan

University of Waterloo

ECOAS 2022

Joint work with C. Köstler, arXiv 2204.0359

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ののの

This talk is on the following connection:

Representations of the Thompson group

$$F = \langle g_0, g_1, \dots \mid g_k g_l = g_{l+1} g_k, 0 \le k < l < \infty \rangle_{\text{group}}$$

Bilateral noncommutative stationary Markov processes

The Thompson group F was introduced by Richard Thompson in 1965 as a certain subgroup of piece-wise linear homeomorphisms on the interval [0,1].

The generators of F satisfy the relations

 $g_k g_l = g_{l+1} g_k, 0 \le k < l < \infty.$

For instance,

 $g_1g_4 = g_5g_1$.

We are interested in certain probabilistic aspects of F; in particular its surprising connection to Markovianity.

A D > A 回 > A E > A E > A E < O A O</p>

Our setting of a noncommutative probability space (NCPS) will consist of a pair (\mathcal{M}, ψ) , where \mathcal{M} is a von Neumann algebra and ψ is a faithful normal state on \mathcal{M} .

Classical Probability Space: Let (Ω, Σ, μ) be a standard probability space. Then $\mathcal{L} \coloneqq L^{\infty}(\Omega, \Sigma, \mu)$ is a commutative von Neumann algebra, and

$$\operatorname{tr}_{\mu}(f) \coloneqq \int_{\Omega} f \, du$$

defines a faithful normal tracial state on \mathcal{L} . The pair (\mathcal{L}, tr_{μ}) is a noncommutative probability space. Our setting of a noncommutative probability space (NCPS) will consist of a pair (\mathcal{M}, ψ) , where \mathcal{M} is a von Neumann algebra and ψ is a faithful normal state on \mathcal{M} .

Classical Probability Space: Let (Ω, Σ, μ) be a standard probability space. Then $\mathcal{L} \coloneqq L^{\infty}(\Omega, \Sigma, \mu)$ is a commutative von Neumann algebra, and

$$\operatorname{tr}_{\mu}(f) \coloneqq \int_{\Omega} f \, du$$

defines a faithful normal tracial state on \mathcal{L} . The pair (\mathcal{L}, tr_{μ}) is a noncommutative probability space.

A D > A 回 > A E > A E > A E < O A O</p>

An **automorphism** α of a noncommutative probability space (\mathcal{M}, ψ) is a *-automorphism on \mathcal{M} satisfying the stationarity property

 $\psi \circ \alpha = \psi$

The group of automorphisms of (\mathcal{M}, ψ) will be denoted by $Aut(\mathcal{M}, \psi)$.

A bilateral noncommutative stationary process $(\mathcal{M}, \psi, \alpha, \mathcal{A}_0)$ consists of a noncommutative probability space (\mathcal{M}, ψ) , a ψ -conditioned subalgebra $\mathcal{A}_0 \subset \mathcal{M}$, and an automorphism $\alpha \in \operatorname{Aut}(\mathcal{M}, \psi)$.

The term ψ -conditioned refers to the fact that the unique normal conditional expectation E_0 from \mathcal{M} onto \mathcal{A}_0 exists with $\psi \circ E_0 = \psi$. Stationary Sequence: A stationary process generates a sequence of injective *-homomorphisms $\iota_n : \mathcal{A}_0 \to \mathcal{M}$ given by

$$\iota_n \coloneqq \alpha^n \iota_0, \quad n \in \mathbb{N}_0$$

where ι_0 is the canonical inclusion of \mathcal{A}_0 into \mathcal{M} .

A bilateral noncommutative stationary process $(\mathcal{M}, \psi, \alpha, \mathcal{A}_0)$ consists of a noncommutative probability space (\mathcal{M}, ψ) , a ψ -conditioned subalgebra $\mathcal{A}_0 \subset \mathcal{M}$, and an automorphism $\alpha \in \operatorname{Aut}(\mathcal{M}, \psi)$.

The term ψ -conditioned refers to the fact that the unique normal conditional expectation E_0 from \mathcal{M} onto \mathcal{A}_0 exists with $\psi \circ E_0 = \psi$. **Stationary Sequence:** A stationary process generates a sequence of injective *-homomorphisms $\iota_n : \mathcal{A}_0 \to \mathcal{M}$ given by

$$\iota_n \coloneqq \alpha^n \iota_0, \quad n \in \mathbb{N}_0$$

where ι_0 is the canonical inclusion of \mathcal{A}_0 into \mathcal{M} .

The bilateral noncommutative stationary process $(\mathcal{M}, \psi, \alpha, \mathcal{A}_0)$ is called a (bilateral noncommutative) stationary Markov process if for

$$\mathcal{A}_{(-\infty,0]} \coloneqq \bigvee_{i \in \mathbb{N}_0} \alpha^{-i}(\mathcal{A}_0),$$
$$\mathcal{A}_{[0,\infty)} \coloneqq \bigvee_{i \in \mathbb{N}_0} \alpha^i(\mathcal{A}_0),$$
$$\mathcal{A}_{[0,0]} \coloneqq \mathcal{A}_0,$$

and E_I denoting the conditional expectation onto \mathcal{A}_I , we have

$$E_{(-\infty,0]} \circ E_{[0,\infty)} = E_{[0,0]}.$$

The bilateral stationary process $(\mathcal{M}, \psi, \alpha, \mathcal{A}_0)$ is called a (bilateral noncommutative) stationary Markov process if for

$$\mathcal{A}_{(-\infty,0]} \coloneqq \bigvee_{i \in \mathbb{N}_0} \alpha^{-i}(\mathcal{A}_0),$$
$$\mathcal{A}_{[0,\infty)} \coloneqq \bigvee_{i \in \mathbb{N}_0} \alpha^i(\mathcal{A}_0),$$
$$\mathcal{A}_{[0,0]} \coloneqq \mathcal{A}_0,$$

and E_I denoting the conditional expectation onto \mathcal{A}_I , we have

$$\begin{array}{rcl} E_{(-\infty,0]} & \circ & E_{[0,\infty)} & = & E_{[0,0]} \\ \text{past} & \text{future} & \text{present} \end{array}$$

Let $(\mathcal{M}, \psi, \alpha, \mathcal{A}_0)$ be a stationary Markov process and ι_0 be the inclusion map of \mathcal{A}_0 into \mathcal{M} . Let $T \coloneqq \iota_0^* \alpha \iota_0$. Then T is called the transition operator associated to the Markov process.

Proposition (Kümmerer 85, 86) T satisfies the following properties. $\iota_0^* \alpha^n \iota_0 = T^n$ for all $n \in \mathbb{N}_0$. 2 Let $\iota_n \coloneqq \alpha^n \iota_0$, $k_1 < k_2 < \cdots < k_n \in \mathbb{N}_0$ and $a_1, \ldots, a_n \in \mathcal{A}_0$, $n \in \mathbb{N}$. Then $\psi(\iota_{k_1}(a_1)\cdots\iota_{k_n}(a_n)) = \psi(a_1T^{k_2-k_1}(a_2T^{k_3-k_2}(a_3\cdots T^{k_n-k_{n-1}}(a_n)\cdots)))$.

Here $(\mathcal{M}, \psi, \alpha, \iota_0)$ is called a *Markov dilation* of T and $\{\iota_n\}_{n \in \mathbb{N}_0}$ is called a *stationary Markov sequence*.

We will now prove the following connection:

Representations of the Thompson group

$$F = \langle g_0, g_1, \dots \mid g_k g_l = g_{l+1} g_k, 0 \le k < l < \infty \rangle_{\text{group}}$$

Bilateral noncommutative stationary Markov processes

Markov processes from representations of F

Suppose a noncommutative probability space (\mathcal{M}, ψ) is equipped with a representation $\rho: F \to \operatorname{Aut}(\mathcal{M}, \psi)$.

Let $\alpha_0 \coloneqq \rho(g_0), \alpha_1 \coloneqq \rho(g_1), \ldots, \alpha_n \coloneqq \rho(g_n), \ldots \in Aut(\mathcal{M}, \psi)$, with fixed point algebras

$$\mathcal{M}^{\alpha_n} \coloneqq \{ x \in \mathcal{M} \mid \alpha_n(x) = x \} \qquad (n \in \mathbb{N}_0).$$

The intersections of fixed point algebras

$$\mathcal{M}_n \coloneqq \bigcap_{k \ge n+1} \mathcal{M}^{\alpha_k}$$

give the tower of von Neumann subalgebras

$$\mathcal{M}^{\rho(F)} \subset \mathcal{M}_0 \subset \mathcal{M}_1 \subset \mathcal{M}_2 \subset \ldots \subset \mathcal{M}_{\infty} \coloneqq \bigvee_{\substack{n \in \mathbb{N}_0 \\ < \square > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <$$

Theorem (Köstler & K. arXiv:2204.03595)

Suppose $\rho: F \to \operatorname{Aut}(\mathcal{M}, \psi)$ is a representation with $\alpha_m \coloneqq \rho(g_m)$, for $m \in \mathbb{N}_0$. Let $\mathcal{M}_0 \coloneqq \bigcap_{k \ge 1} \mathcal{M}^{\alpha_k}$. Then $(\mathcal{M}, \psi, \alpha_0, \mathcal{M}_0)$ is a bilateral stationary Markov process.

In fact, we get a family of stationary noncommutative Markov processes from a representation of F.

Theorem

Suppose $\rho: F \to \operatorname{Aut}(\mathcal{M}, \psi)$ is a representation with $\alpha_m = \rho(g_m)$, for $m \in \mathbb{N}_0$. Let $\mathcal{M}_n := \bigcap_{k \ge n+1} \mathcal{M}^{\alpha_k}$. Then the quadruple $(\mathcal{M}, \psi, \alpha_m, \mathcal{M}_n)$ is a bilateral stationary Markov process for any $0 \le m \le n < \infty$.

An Example of a Representation of ${\cal F}$

Let's now see an example of a representation ρ of F in the group of automorphisms of a noncommutative probability space, $\operatorname{Aut}(\mathcal{M}, \psi)$. Let two NCPSs (\mathcal{A}, φ) and (\mathcal{C}, χ) be given.

We build from them the larger NCPS (\mathcal{M}, ψ) given by

$$(\mathcal{M},\psi) \coloneqq \left(\mathcal{A} \otimes \bigotimes_{(i,j) \in \mathbb{N}_0^2} \mathcal{C}_{ij}, \varphi \otimes \bigotimes_{(i,j) \in \mathbb{N}_0^2} \chi_{ij}\right),$$

with $C_{ij} = C$ and $\chi_{ij} = \chi$ for all $(i, j) \in \mathbb{N}_0^2$.

First let us visualize the von Neumann algebra \mathcal{M} via the set $\{\blacksquare\} \cup \mathbb{N}_0^2$ represented as follows:

Consider the 'shifts' β_0 and β_1 represented visually on the set $\{\blacksquare\} \cup \mathbb{N}_0^2$ as follows:

The shifts β_0 and β_1 extend to automorphisms of $(\mathcal{M}, \psi) \coloneqq (\mathcal{A} \otimes \mathcal{C}^{\otimes_{\mathbb{N}_0^2}}, \varphi \otimes \chi^{\otimes_{\mathbb{N}_0^2}}).$ We will define $\rho(g_0) \coloneqq \beta_0$ and $\rho(g_1) \coloneqq \beta_1$. Recall that the generators of Fsatisfy

$$g_k g_l = g_{l+1} g_k, \quad k < l.$$

In particular,

$$g_n = g_0^{n-1} g_1 g_0^{-(n-1)}, \quad n > 1.$$

So we define $\beta_n \coloneqq \beta_0^{n-1} \beta_1 \beta_0^{-(n-1)}$ for n > 1.

Here is β_3 visualized, for example:

Fact: The family of automorphisms $\{\beta_n\}$ then satisfy *all* the relations of the Thompson group, so that $\rho(g_n) \coloneqq \beta_n$ defines a representation ρ of F in $\operatorname{Aut}(\mathcal{M}, \psi)$.

j

A variation: "Coupling to a Shift"

We next obtain another representation of F by "perturbing" the shifts β_n . Given an automorphism $\gamma \in \operatorname{Aut}(\mathcal{A} \otimes \mathcal{C}, \varphi \otimes \chi)$, let $\gamma_0 \in \operatorname{Aut}(\mathcal{M}, \psi)$ denote its natural extension such that

$$\gamma_0\left(a\otimes\left(\bigotimes_{(i,j)\in\mathbb{N}_0^2}x_{i,j}\right)\right)=\gamma(a\otimes x_{00})\otimes\left(\bigotimes_{(i,j)\in\mathbb{N}_0^2\smallsetminus\{(0,0)\}}x_{i,j}\right).$$

Let $\alpha_0 \coloneqq \gamma_0 \circ \beta_0$, and $\alpha_n \coloneqq \beta_n$ $(n \ge 1)$. The perturbation of β_0 to give α_0 as $\alpha_0 = \gamma_0 \circ \beta_0$ is known in the literature as a "coupling to a shift" (Kümmerer 1985).

We have
$$\alpha_0 \coloneqq \gamma_0 \circ \beta_0$$
, and $\alpha_n \coloneqq \beta_n \quad (n \ge 1)$.

The perturbed shift α_0 on the set $\{\blacksquare\} \cup \mathbb{N}_0^2$ is represented visually as follows:

 \xrightarrow{j}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then $\alpha_n \in Aut(\mathcal{M}, \psi)$ for all $n \in \mathbb{N}_0$ and it is easy to check that

 $\alpha_k \alpha_l = \alpha_{l+1} \alpha_k$

for all $0 \le k < l < \infty$, which are precisely the relations of F.

Hence defining $\tilde{\rho}(g_n) \coloneqq \alpha_n$ gives a representation $\tilde{\rho} \colon F \to \operatorname{Aut}(\mathcal{M}, \psi)$. Applying Theorem 1 to the representation $\tilde{\rho}$ gives the following:

 $(\mathcal{M},\psi,\alpha_0,\mathcal{M}^{\alpha_1})$ is a bilateral stationary noncommutative Markov process.

Then $\alpha_n \in Aut(\mathcal{M}, \psi)$ for all $n \in \mathbb{N}_0$ and it is easy to check that

 $\alpha_k \alpha_l = \alpha_{l+1} \alpha_k$

for all $0 \le k < l < \infty$, which are precisely the relations of F. Hence defining $\tilde{\rho}(g_n) \coloneqq \alpha_n$ gives a representation $\tilde{\rho} \colon F \to \operatorname{Aut}(\mathcal{M}, \psi)$. Applying Theorem 1 to the representation $\tilde{\rho}$ gives the following:

 $(\mathcal{M}, \psi, \alpha_0, \mathcal{M}^{\alpha_1})$ is a bilateral stationary noncommutative Markov process.

Then $\alpha_n \in Aut(\mathcal{M}, \psi)$ for all $n \in \mathbb{N}_0$ and it is easy to check that

 $\alpha_k \alpha_l = \alpha_{l+1} \alpha_k$

for all $0 \le k < l < \infty$, which are precisely the relations of F. Hence defining $\tilde{\rho}(g_n) \coloneqq \alpha_n$ gives a representation $\tilde{\rho} \colon F \to \operatorname{Aut}(\mathcal{M}, \psi)$. Applying Theorem 1 to the representation $\tilde{\rho}$ gives the following:

 $(\mathcal{M},\psi,\alpha_0,\mathcal{M}^{\alpha_1})$ is a bilateral stationary noncommutative Markov process.

Representations of F from Markov processes

We will now show a partial converse to Theorem 1 connected to the "illustrative example". To be able to use the tensor product construction done there, for a given transition operator R on a NCPS (\mathcal{A}, φ) associated to a bilateral stationary noncommutative Markov process, we would first like to find a NCPS (\mathcal{C}, χ) and $\gamma \in \operatorname{Aut}(\mathcal{A} \otimes \mathcal{C}, \varphi \otimes \chi)$ such that

$$R = \iota_0^* \gamma \iota_0.$$

Here $\iota_0(a) \coloneqq a \otimes \mathbb{1}_{\mathcal{C}}$.

Theorem 2

A result of Kümmerer (1986) gives that if \mathcal{A} is commutative with separable predual, then for $\mathcal{C} = \mathcal{L} \coloneqq L^{\infty}([0,1],\lambda)$ and $\chi = \operatorname{tr}_{\lambda} \coloneqq \int_{[0,1]} \cdot d\lambda$, there exists $\gamma \in \operatorname{Aut}(\mathcal{A} \otimes \mathcal{L}, \varphi \otimes \operatorname{tr}_{\lambda})$ such that with $\iota_0(a) \coloneqq a \otimes \mathbb{1}_{\mathcal{L}}$,

$$R = \iota_0^* \gamma \iota_0$$

We will extend $\gamma \in Aut(\mathcal{A} \otimes \mathcal{C}, \varphi \otimes \chi)$ to an automorphism $\gamma_0 \in Aut(\mathcal{M}, \psi)$ as shown below (and seen before):

Theorem (Köstler and K. 2022)

Let (A, φ) be a probability space where A is commutative with separable predual, and let R be a transition operator on A associated to a Markov process. Then there exists a probability space (M, ψ), representations ρ, ρ̃: F → Aut(M, ψ), and an embedding ι: (A, φ) → (M, ψ) such that
1 ι(A) = M^{ρ(g_0)},
2 Rⁿ = ι*ρ̃(g_0ⁿ)ι for all n ∈ N₀.

Upshot: This result allows us to express a (classical) transition operator R as a compression of a represented generator of the Thompson group F.

Theorem (Köstler and K. 2022)

Let (\mathcal{A}, φ) be a probability space where \mathcal{A} is commutative with separable predual, and let R be a transition operator on \mathcal{A} associated to a Markov process. Then there exists a probability space (\mathcal{M}, ψ) , representations $\rho, \tilde{\rho} : F \to \operatorname{Aut}(\mathcal{M}, \psi)$, and an embedding $\iota : (\mathcal{A}, \varphi) \to (\mathcal{M}, \psi)$ such that $\mathbf{1} \ \iota(\mathcal{A}) = \mathcal{M}^{\rho(g_0)}$,

2
$$R^n = \iota^* \tilde{\rho}(g_0^n) \iota$$
 for all $n \in \mathbb{N}_0$.

Upshot: This result allows us to express a (classical) transition operator R as a compression of a represented generator of the Thompson group F.

We obtained the following:

Representations of the Thompson group F

Theorem 1

Bilateral noncommutative stationary Markov processes

Bilateral (classical) stationary Markov processes

Theorem 2

Representations of the Thompson group ${\cal F}$

Unilateral Markov processes and representations of ${\cal F}^{\scriptscriptstyle +}$

Our approach is motivated by analogous results for F^+ :

Representations of the monoid

$$F^+ = \langle g_0, g_1, \dots \mid g_k g_l = g_{l+1} g_k, 0 \le k < l < \infty \rangle_{\text{monoid}}$$

partial spreadability

Unilateral noncommutative stationary Markov processes

C. Köstler, A. Krishnan, S. Wills (2020). Markovianity and the Thompson Monoid F^+ . Preprint, arXiv:2009.14811. This approach in turn was motivated by the action of the partial shifts monoid:

D. G. Evans, R. Gohm, C. Köstler (2017). Semi-cosimplicial objects and spreadability. Rocky Mountain Journal of Mathematics, 47(6), 1839-1873.

イロット 小田 アイヨア トロー シック

- Commutative case: How do these results relate to work of P. Diaconis and D. Freedman on a de Finetti theorem for Markov chains? ¹
- Noncommutative case: Does Markovianity relate to results of A. Brothier and V. F. R. Jones on unitary "Pythagorean" representations of the Thompson group F?²

¹P. Diaconis, D. Freedman (1980). De Finetti's theorem for Markov chains. The Annals of Probability, 115–130.

²A. Brothier, V .F. R. Jones (2019). Pythagorean representations of Thompson's groups. Journal of Functional Analysis, 277(7), 2442–2469. $\rightarrow \langle \mathbb{P} \rangle \langle \mathbb$

Thank You!

<ロト <回ト < 国ト < 国ト < 国ト 三日 のへの 28/28

A distributional invariance principle

Definition (Köstler, K., Wills 2020)

A sequence of random variables $\iota = (\iota_n)_{n \ge 0} : (\mathcal{A}, \varphi) \to (\mathcal{M}, \psi)$ is partially spreadable if there exists a representation $\rho : F^+ \to \operatorname{End}(\mathcal{M}, \psi)$ such that

$$\begin{split} \rho(g_0^n)\iota_0 &= \iota_n, \quad n \in \mathbb{N} \quad (\text{stationarity}), \\ \iota_0(\mathcal{A}) &\subseteq \cap_{k \ge 1} \mathcal{M}^{\rho(g_k)} \quad (\text{localisation}). \end{split}$$

Motivation: Replacing F^+ by $S = F^+/\sim$ in the above definition gives an equivalent definition of **spreadability**.

D. G. Evans, R. Gohm, C. Köstler (2017). Semi-cosimplicial objects and spreadability. Rocky Mountain Journal of Mathematics, 47(6), 1839-1873.

A distributional invariance principle

Definition (Köstler, K., Wills 2020)

A sequence of random variables $\iota = (\iota_n)_{n \ge 0} : (\mathcal{A}, \varphi) \to (\mathcal{M}, \psi)$ is partially spreadable if there exists a representation $\rho : F^+ \to \operatorname{End}(\mathcal{M}, \psi)$ such that

$$\begin{split} \rho(g_0^n)\iota_0 &= \iota_n, \quad n \in \mathbb{N} \quad (\text{stationarity}), \\ \iota_0(\mathcal{A}) &\subseteq \cap_{k \ge 1} \mathcal{M}^{\rho(g_k)} \quad (\text{localisation}). \end{split}$$

Motivation: Replacing F^+ by $S = F^+/\sim$ in the above definition gives an equivalent definition of **spreadability**.

D. G. Evans, R. Gohm, C. Köstler (2017). Semi-cosimplicial objects and spreadability. Rocky Mountain Journal of Mathematics, 47(6), 1839-1873.

A sequence of random variables $\iota \equiv (\iota_n)_{n\geq 0} : (\mathcal{A}, \varphi) \to (\mathcal{M}, \psi)$ is said to be maximal partially spreadable if there exists a representation $\rho: F^+ \to \operatorname{End}(\mathcal{M}, \psi)$ such that

$$\begin{split} \rho(g_0^n)\iota_0 &= \iota_n, \quad n \in \mathbb{N} \quad (\text{stationarity}), \\ \iota_0(\mathcal{A}) &= \bigcap_{k \ge 1} \mathcal{M}^{\rho(g_k)} \quad (\text{maximal localisation}). \end{split}$$

We can now state the following de Finetti type result in the case of a classical probability space:

Theorem (Köstler, K., Wills, 2020)

Let (\mathcal{A}, φ) and (\mathcal{M}, ψ) be probability spaces such that \mathcal{A} and \mathcal{M} are commutative with separable predual. Let $\iota \equiv (\iota_n)_{n \in \mathbb{N}_0} : (\mathcal{A}, \varphi) \to (\mathcal{M}, \psi)$ be a sequence of random variables. Then the following are equivalent:

(a) ι is a maximal partially spreadable sequence;

(b) ι is a stationary Markov sequence.

Let $\iota \equiv (\iota_n)_{n \geq 0} : (\mathcal{A}, \varphi) \to (\mathcal{M}, \psi)$ be a sequence of random variables, where (\mathcal{A}, φ) and (\mathcal{M}, ψ) are noncommutative probability spaces.

Theorem (Köstler, K., Wills 2020)

A maximal partially spreadable sequence ι is a stationary Markov sequence.

The converse result is more delicate ...

Theorem (Köstler, K., Wills 2020)

A "nice" stationary Markov sequence ι is partially spreadable.

Here "nice" means that the stationary Markov sequence can be produced as a so-called coupling to a spreadable noncommutative Bernoulli shift. Roughly speaking, the results as available in the context of tensor products of von Neumann algebras stay true "in spirit". Let $\iota \equiv (\iota_n)_{n \geq 0} : (\mathcal{A}, \varphi) \to (\mathcal{M}, \psi)$ be a sequence of random variables, where (\mathcal{A}, φ) and (\mathcal{M}, ψ) are noncommutative probability spaces.

Theorem (Köstler, K., Wills 2020)

A maximal partially spreadable sequence ι is a stationary Markov sequence.

The converse result is more delicate ...

Theorem (Köstler, K., Wills 2020)

A "nice" stationary Markov sequence ι is partially spreadable.

Here "nice" means that the stationary Markov sequence can be produced as a so-called **coupling to a spreadable noncommutative Bernoulli shift**. Roughly speaking, the results as available in the context of tensor products of von Neumann algebras stay true "in spirit".