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Introduction and Preliminaries

This talk is on the following connection:

Representations of the Thompson group

F = ⟨g0, g1, . . . ∣ gkgl = gl+1gk,0 ≤ k < l < ∞⟩group

Õ
×
×
×
×
Ö

Bilateral noncommutative stationary Markov processes
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Introduction and Preliminaries

The Thompson group F was introduced by Richard Thompson in 1965 as a
certain subgroup of piece-wise linear homeomorphisms on the interval
[0,1].
The generators of F satisfy the relations

gkgl = gl+1gk,0 ≤ k < l < ∞.

For instance,
g1g4 = g5g1.

We are interested in certain probabilistic aspects of F ; in particular its
surprising connection to Markovianity.
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Introduction and Preliminaries

Our setting of a noncommutative probability space (NCPS) will
consist of a pair (M, ψ), whereM is a von Neumann algebra and ψ is a
faithful normal state onM.

Classical Probability Space: Let (Ω,Σ, µ) be a standard probability
space. Then L ∶= L∞(Ω,Σ, µ) is a commutative von Neumann algebra, and

trµ(f) ∶= ∫
Ω
f du

defines a faithful normal tracial state on L.
The pair (L, trµ) is a noncommutative probability space.
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Introduction and Preliminaries

Definition
An automorphism α of a noncommutative probability space (M, ψ) is a
∗-automorphism onM satisfying the stationarity property

ψ ○ α = ψ

The group of automorphisms of (M, ψ) will be denoted by Aut(M, ψ).
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Noncommutative Markov processes

Definition
A bilateral noncommutative stationary process (M, ψ,α,A0) consists of
a noncommutative probability space (M, ψ), a ψ-conditioned subalgebra
A0 ⊂M, and an automorphism α ∈ Aut(M, ψ).

The term ψ-conditioned refers to the fact that the unique normal
conditional expectation E0 fromM onto A0 exists with ψ ○E0 = ψ.
Stationary Sequence: A stationary process generates a sequence of
injective ∗-homomorphisms ιn ∶ A0 →M given by

ιn ∶= α
nι0, n ∈ N0

where ι0 is the canonical inclusion of A0 intoM.
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Noncommutative Markov processes

Definition

The bilateral noncommutative stationary process (M, ψ,α,A0) is called a
(bilateral noncommutative) stationary Markov process if for

A(−∞,0] ∶= ⋁
i∈N0

α−i(A0),

A[0,∞) ∶= ⋁
i∈N0

αi(A0),

A[0,0] ∶= A0,

and EI denoting the conditional expectation onto AI , we have

E(−∞,0] ○E[0,∞) = E[0,0].
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Noncommutative Markov processes
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Noncommutative Markov processes

Definition
Let (M, ψ,α,A0) be a stationary Markov process and ι0 be the inclusion
map of A0 intoM. Let T ∶= ι∗0αι0. Then T is called the transition
operator associated to the Markov process.

Proposition (Kümmerer 85, 86)

T satisfies the following properties.

1 ι∗0α
nι0 = T

n for all n ∈ N0.

2 Let ιn ∶= αnι0, k1 < k2 < ⋯ < kn ∈ N0 and a1, . . . , an ∈ A0, n ∈ N. Then

ψ (ιk1(a1)⋯ιkn(an)) = ψ (a1T
k2−k1(a2T

k3−k2(a3⋯T
kn−kn−1(an)⋯))) .

Here (M, ψ,α, ι0) is called a Markov dilation of T and {ιn}n∈N0 is called a
stationary Markov sequence.
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Theorem 1

We will now prove the following connection:

Representations of the Thompson group

F = ⟨g0, g1, . . . ∣ gkgl = gl+1gk,0 ≤ k < l < ∞⟩group

×
×
×
×
×
Ö

Bilateral noncommutative stationary Markov processes
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Theorem 1

Markov processes from representations of F

Suppose a noncommutative probability space (M, ψ) is equipped with a
representation ρ ∶ F → Aut(M, ψ).
Let α0 ∶= ρ(g0), α1 ∶= ρ(g1), . . . , αn ∶= ρ(gn), . . . ∈ Aut(M, ψ), with fixed
point algebras

M
αn ∶= {x ∈ M ∣ αn(x) = x} (n ∈ N0).

The intersections of fixed point algebras

Mn ∶= ⋂
k≥n+1

M
αk

give the tower of von Neumann subalgebras

M
ρ(F )

⊂M0 ⊂M1 ⊂M2 ⊂ . . . ⊂M∞ ∶= ⋁
n∈N0

Mn ⊂M.
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Theorem 1

Theorem (Köstler & K. arXiv:2204.03595)

Suppose ρ ∶ F → Aut(M, ψ) is a representation with αm ∶= ρ(gm), for
m ∈ N0. LetM0 ∶= ⋂k≥1M

αk . Then (M, ψ,α0,M0) is a bilateral
stationary Markov process.

In fact, we get a family of stationary noncommutative Markov processes
from a representation of F .

Theorem
Suppose ρ ∶ F → Aut(M, ψ) is a representation with αm = ρ(gm), for
m ∈ N0. LetMn ∶= ⋂k≥n+1M

αk . Then the quadruple (M, ψ,αm,Mn) is
a bilateral stationary Markov process for any 0 ≤m ≤ n < ∞.
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An Illustrative Example

An Example of a Representation of F

Let’s now see an example of a representation ρ of F in the group of
automorphisms of a noncommutative probability space, Aut(M, ψ).
Let two NCPSs (A, ϕ) and (C, χ) be given.

We build from them the larger NCPS (M, ψ) given by

(M, ψ) ∶= (A⊗ ⊗
(i,j)∈N2

0

Cij , ϕ⊗ ⊗
(i,j)∈N2

0

χij),

with Cij = C and χij = χ for all (i, j) ∈ N2
0.
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An Illustrative Example

First let us visualize the von Neumann algebraM via the set {∎} ∪N2
0

represented as follows:
⋮ ⋮ ⋮ ⋮
● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

↑ i ● ● ● ● ⋯

∎ ● ● ● ● ⋯

j
Ð→
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An Illustrative Example

Consider the ‘shifts’ β0 and β1 represented visually on the set {∎} ∪N2
0 as

follows:

β0 =̂

⋮ ⋮ ⋮ ⋮

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

↑ i ● ● ● ● ⋯

∎ ● ● ● ● ⋯

j
Ð→

and β1 =̂

⋮ ⋮ ⋮ ⋮ ⋮

● ● ● ● ● ⋯

● ● ● ● ● ⋯

● ● ● ● ● ⋯

● ● ● ● ● ⋯

● ● ● ● ● ⋯

● ● ● ● ● ⋯

↑ i ● ● ● ● ● ⋯

∎ ● ● ● ● ● ⋯

j
Ð→

15 / 28



An Illustrative Example

The shifts β0 and β1 extend to automorphisms of
(M, ψ) ∶= (A⊗ C

⊗N2
0 , ϕ⊗ χ

⊗N2
0).

We will define ρ(g0) ∶= β0 and ρ(g1) ∶= β1. Recall that the generators of F
satisfy

gkgl = gl+1gk, k < l.

In particular,
gn = g

n−1
0 g1g

−(n−1)
0 , n > 1.

So we define βn ∶= βn−1
0 β1β

−(n−1)
0 for n > 1.
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An Illustrative Example

Here is β3 visualized, for example:

β3 =̂

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

● ● ● ● ● ● ● ⋯

● ● ● ● ● ● ● ⋯

● ● ● ● ● ● ● ⋯

● ● ● ● ● ● ● ⋯

● ● ● ● ● ● ● ⋯

● ● ● ● ● ● ● ⋯

↑ i ● ● ● ● ● ● ● ⋯

∎ ● ● ● ● ● ● ● ⋯

j
Ð→

Fact: The family of automorphisms {βn} then satisfy all the relations of
the Thompson group, so that ρ(gn) ∶= βn defines a representation ρ of F
in Aut(M, ψ).
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An Illustrative Example

A variation: “Coupling to a Shift”

We next obtain another representation of F by “perturbing” the shifts βn.
Given an automorphism γ ∈ Aut(A⊗ C, ϕ⊗ χ), let γ0 ∈ Aut(M, ψ) denote
its natural extension such that

γ0
⎛

⎝
a⊗ ( ⊗

(i,j)∈N2
0

xi,j)
⎞

⎠
= γ(a⊗ x00) ⊗ ( ⊗

(i,j)∈N2
0∖{(0,0)}

xi,j).

Let α0 ∶= γ0 ○ β0, and αn ∶= βn (n ≥ 1). The perturbation of β0 to give
α0 as α0 = γ0 ○ β0 is known in the literature as a “coupling to a shift”
(Kümmerer 1985).

18 / 28



An Illustrative Example

We have α0 ∶= γ0 ○ β0, and αn ∶= βn (n ≥ 1).

The perturbed shift α0 on the set {∎} ∪N2
0 is represented visually as

follows:

α0 =̂

⋮ ⋮ ⋮ ⋮

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

↑ i ● ● ● ● ⋯

∎↺● ● ● ● ⋯

γ0 β0

j
Ð→
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An Illustrative Example

Then αn ∈ Aut(M, ψ) for all n ∈ N0 and it is easy to check that

αkαl = αl+1αk

for all 0 ≤ k < l < ∞, which are precisely the relations of F .
Hence defining ρ̃(gn) ∶= αn gives a representation ρ̃ ∶ F → Aut(M, ψ).
Applying Theorem 1 to the representation ρ̃ gives the following:

(M, ψ,α0,M
α1) is a bilateral stationary noncommutative Markov

process.
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Theorem 2

Representations of F from Markov processes

We will now show a partial converse to Theorem 1 connected to the
“illustrative example”. To be able to use the tensor product construction
done there, for a given transition operator R on a NCPS (A, ϕ) associated
to a bilateral stationary noncommutative Markov process, we would first
like to find a NCPS (C, χ) and γ ∈ Aut(A⊗ C, ϕ⊗ χ) such that

R = ι∗0γι0.

Here ι0(a) ∶= a⊗ 1C .
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Theorem 2

A result of Kümmerer (1986) gives that if A is commutative with separable
predual, then for C = L ∶= L∞([0,1], λ) and χ = trλ ∶= ∫[0,1] ⋅dλ, there
exists γ ∈ Aut(A⊗L, ϕ⊗ trλ) such that with ι0(a) ∶= a⊗ 1L,

R = ι∗0γι0.

We will extend γ ∈ Aut(A⊗ C, ϕ⊗ χ) to an automorphism
γ0 ∈ Aut(M, ψ) as shown below (and seen before):

α0 =̂

⋮ ⋮ ⋮ ⋮

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

● ● ● ● ⋯

↑ i ● ● ● ● ⋯

∎↺● ● ● ● ⋯

γ0 β0

j
Ð→ 22 / 28



Theorem 2

Theorem (Köstler and K. 2022)

Let (A, ϕ) be a probability space where A is commutative with separable
predual, and let R be a transition operator on A associated to a Markov
process. Then there exists a probability space (M, ψ), representations
ρ, ρ̃ ∶ F → Aut(M, ψ), and an embedding ι ∶ (A, ϕ) → (M, ψ) such that

1 ι(A) =Mρ(g0),

2 Rn = ι∗ρ̃(gn0 )ι for all n ∈ N0.

Upshot: This result allows us to express a (classical) transition operator R
as a compression of a represented generator of the Thompson group F .
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Summary and Related Results

We obtained the following:

Representations of the Thompson group F

Ú
Ú
Ù

Theorem 1

Bilateral noncommutative stationary Markov processes

Bilateral (classical) stationary Markov processes

Ú
Ú
Ù

Theorem 2

Representations of the Thompson group F
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Summary and Related Results

Unilateral Markov processes and representations of F +

Our approach is motivated by analogous results for F+:

Representations of the monoid

F +
= ⟨g0, g1, . . . ∣ gkgl = gl+1gk,0 ≤ k < l < ∞⟩monoid

Õ
×
×
×
×
Ö

partial spreadability

Unilateral noncommutative stationary Markov processes

C. Köstler, A. Krishnan, S. Wills (2020). Markovianity and the Thompson
Monoid F +. Preprint, arXiv:2009.14811.
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Summary and Related Results

This approach in turn was motivated by the action of the partial shifts
monoid:

Representations of the partial shifts monoid

S = ⟨θ0, θ1, . . . ∣ θkθl = θl+1θk,0 ≤ k ≤ l < ∞⟩
+

Õ
×
×
×
×
Ö

spreadability

Unilateral noncommutative Bernoulli shifts

D. G. Evans, R. Gohm, C. Köstler (2017). Semi-cosimplicial objects and
spreadability. Rocky Mountain Journal of Mathematics, 47(6), 1839-1873.
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Ongoing Research / Some Questions

● Commutative case: How do these results relate to work of P. Diaconis
and D. Freedman on a de Finetti theorem for Markov chains? 1

● Noncommutative case: Does Markovianity relate to results of
A. Brothier and V. F. R. Jones on unitary “Pythagorean”
representations of the Thompson group F? 2

1P. Diaconis, D. Freedman (1980). De Finetti’s theorem for Markov chains. The
Annals of Probability, 115–130.

2A. Brothier, V .F. R. Jones (2019). Pythagorean representations of Thompson’s
groups. Journal of Functional Analysis, 277(7), 2442–2469.
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Thank You!
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A distributional invariance principle

Definition (Köstler, K., Wills 2020)

A sequence of random variables ι = (ιn)n≥0 ∶ (A, ϕ) → (M, ψ) is partially
spreadable if there exists a representation ρ ∶ F + → End(M, ψ) such that

ρ(gn0 )ι0 = ιn, n ∈ N (stationarity),

ι0(A) ⊆ ∩k≥1M
ρ(gk) (localisation).

Motivation: Replacing F+ by S = F+/∼ in the above definition gives an
equivalent definition of spreadability.

D. G. Evans, R. Gohm, C. Köstler (2017). Semi-cosimplicial objects and
spreadability. Rocky Mountain Journal of Mathematics, 47(6), 1839-1873.
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Definition
A sequence of random variables ι ≡ (ιn)n≥0 ∶ (A, ϕ) → (M, ψ) is said to be
maximal partially spreadable if there exists a representation
ρ ∶ F+ → End(M, ψ) such that

ρ(gn0 )ι0 = ιn, n ∈ N (stationarity),

ι0(A) = ∩k≥1M
ρ(gk) (maximal localisation).
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We can now state the following de Finetti type result in the case of a
classical probability space:

Theorem (Köstler, K., Wills, 2020)

Let (A, ϕ) and (M, ψ) be probability spaces such that A andM are
commutative with separable predual. Let ι ≡ (ιn)n∈N0 ∶ (A, ϕ) → (M, ψ)

be a sequence of random variables. Then the following are equivalent:

(a) ι is a maximal partially spreadable sequence;

(b) ι is a stationary Markov sequence.
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Let ι ≡ (ιn)n≥0 ∶ (A, ϕ) → (M, ψ) be a sequence of random variables,
where (A, ϕ) and (M, ψ) are noncommutative probability spaces.

Theorem (Köstler, K., Wills 2020)

A maximal partially spreadable sequence ι is a stationary Markov sequence.

The converse result is more delicate ...

Theorem (Köstler, K., Wills 2020)

A “nice” stationary Markov sequence ι is partially spreadable.

Here “nice” means that the stationary Markov sequence can be produced
as a so-called coupling to a spreadable noncommutative Bernoulli
shift. Roughly speaking, the results as available in the context of tensor
products of von Neumann algebras stay true “in spirit”.
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