Quantum graphs and their infinite path spaces

Lara Ismert

joint w/ M. Brannan, M. Hamidi, B. Nelson, M. Wasilewski

East Coast Operator Algebra Symposium

October 22, 2022

What operator algebraists do

Let G = (V, A) be a finite simple graph with edge set E and infinite path space X_A :

$$\Rightarrow \mathcal{O}_{A}, \quad \mathcal{O}_{E}, \quad \mathcal{C}(X_{A}) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$$

In fact, $\mathcal{O}_A \cong \mathcal{O}_E \cong C(X_A) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$.

Let \mathcal{G} be a quantum graph.

- What do associated C*-algebras look like?
- What is their relationship?

A classical graph's Cuntz-Krieger algebra

Let G = (V, A) be a finite simple graph with |V| = n.

Definition

A Cuntz–Krieger (CK) G-family is a set $\{S_i : 1 \le i \le n\}$ in a C^* -algebra D such that for each $1 \le i \le n$

 \triangleright S_i is a partial isometry

•
$$S_i^* S_i = \sum_j A_{ij} S_j S_j^*$$

• $\sum_i S_i S_i^* = 1$

The Cuntz–Krieger algebra \mathcal{O}_A is the universal C^* -algebra generated by a CK *G*-family.

A classical graph's Cuntz–Pimsner algebra

Let G = (V, A) be a finite simple graph. The edge set E for G is

 $E = \{(v, w) : A_{vw} = 1\} \subseteq V \times V$ (read from right to left).

Definition

The edge correspondence for G is the C*-correspondence $C(E) \subseteq C(V \times V)$ over C(V) where for any $\xi, \eta \in C(E)$, $f \in C(V)$, $(v, w) \in E$:

$$(\xi \cdot f)(v, w) := \xi(v, w)f(v)
 (f \cdot \xi)(v, w) := f(w)\xi(v, w)
 \langle \xi, \eta \rangle(v) = \sum_{v \leftarrow w} \overline{\xi(v, w)}\eta(v, w)$$

Can construct the Cuntz–Pimsner algebra \mathcal{O}_E , which is universal with respect to covariant Toeplitz representations of C(E).

A classical graph's Exel crossed product

Let G = (V, A) be a finite simple graph. Define

$$X_A := \{ (v_{k_1}, v_{k_2}, ...) : v_{k_i} \in V, A_{k_i k_{i+1}} = 1 \ \forall i \in \mathbb{N} \}.$$

Consider the left shift $\sigma: X_A \to X_A$ given by

$$\sigma(v_{k_1}, v_{k_2}, ...) := (v_{k_2}, v_{k_3}, ...).$$

Definition

Suppose G has no sinks. The natural Exel system associated to G is the triple $(C(X_A), \alpha, \mathcal{L})$ where $\alpha, \mathcal{L} : C(X_A) \rightarrow C(X_A)$ act on $f \in C(X_A)$ by:

$$\begin{aligned} \bullet \ \alpha(f) &:= f \circ \sigma \\ \bullet \ [\mathcal{L}(f)](\theta) &:= \frac{1}{|\sigma^{-1}(\{\theta\})|} \sum_{\gamma \in \sigma^{-1}(\{\theta\})} f(\gamma) \quad \forall \theta \in X_{\mathcal{A}} \end{aligned}$$

 $(C(X_A), \alpha, \mathcal{L})$ gives rise to the Exel crossed product $C(X_A) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$.

Summary of C^* -algebras associated to classical graphs

Graph structure	C*-algebra	
A	\mathcal{O}_{A}	
C(E)	\mathcal{O}_E	
(X_A, σ)	$C(X_A)\rtimes_{\alpha,\mathcal{L}}\mathbb{N}$	

Theorem If G has no sinks and no sources, then

$$\mathcal{O}_A \cong \mathcal{O}_E \cong C(X_A) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}.$$

Summary of C^* -algebras associated to classical graphs

Classical graphs

Structure	C*-algebra		
A	$\mathcal{O}_{\mathcal{A}}$		
C(E)	\mathcal{O}_E		
(X_A,σ)	$C(X_A)\rtimes_{\alpha,\mathcal{L}}\mathbb{N}$		

Quantum graphs

Structure	C*-algebra

 $\mathcal{O}_A \cong \mathcal{O}_E \cong C(X_A) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

Quantum sets

Definition

A quantum set is a pair (B, ψ) where

▶ *B* is a (finite-dimensional) *C**-algebra

• ψ is a δ -form:

$$B \xrightarrow{m^*} B \otimes B \xrightarrow{m} B \equiv B \xrightarrow{\delta^2 \operatorname{id}} B.$$

Example

Let V be a finite set of order $n \Rightarrow C(V) \cong \mathbb{C}^n$. Let $\{p_v : v \in V\}$ be the basis for C(V), and define

$$\psi(p_{v}) := rac{1}{n} \quad \forall v \in V.$$

Then $(C(V), \psi)$ is a (commutative) quantum set with $\delta^2 = n$.

Quantum sets (vertices)

Let
$$B = \bigoplus_{a=1}^d M_{N_a}(\mathbb{C})$$
 with basis $\{e_{ij}^{(a)}: 1 \le a \le d, 1 \le i, j \le N_a\}.$

Example

Define $\psi: B \to \mathbb{C}$ by

$$\psi(x) = \frac{1}{\dim B} \sum_{a=1}^{d} N_a \operatorname{Tr}(x^{(a)}) \quad \forall x \in M_{\mathcal{N}(a)}(\mathbb{C}),$$

a.k.a., "the right trace." \Rightarrow (B, ψ) is a quantum set w/ $\delta^2 = \dim B$.

Example

If $q \in B$ is a density matrix, and each $q^{(a)} \in M_{N_a}(\mathbb{C})$ is invertible with $\operatorname{Tr}((q^{(a)})^{-1}) = \delta^2$, then $\psi(x) := \sum_{a=1}^d \operatorname{Tr}(q^{(a)}x)$ defines a δ -form on B with $\delta^2 = \dim B$.

Quantum graphs

Definition

A quantum graph is a triple (B, ψ, A) where (B, ψ) is a quantum set and A is a quantum adjacency matrix for (B, ψ) :

$$B \xrightarrow{m^*} B \otimes B \xrightarrow{A \otimes A} B \otimes B \xrightarrow{m} B \equiv B \xrightarrow{\delta^2 A} B$$

Example

Let G = (V, A) be a finite simple graph. $\Rightarrow (C(V), \frac{1}{|V|}, A)$ is a quantum graph w/ $\delta^2 = n^2$.

Remark: All finite simple graphs can be viewed as quantum graphs.

Quantum graphs

Let (B, ψ) be a finite quantum set.

Example (Complete quantum graph) Define $A : B \rightarrow B$ on $x \in B$ by

$$A(x) = \delta^2 \mathrm{Tr}(x) \mathbf{1}_B.$$

Notation: $K(B, \psi)$

Example (Trivial quantum graph) Define $A : B \rightarrow B$ on $x \in B$ by

$$A(x) = x.$$

Notation: $T(B, \psi)$

Let $\mathcal{G} := (B, \psi, A)$ be a quantum graph with $B = \bigoplus_{a=1}^{d} M_{N_a}(\mathbb{C})$.

Definition (BEVW, 2021)

A QCK *G*-family is a linear map $S : B \to D$ giving rise to a family of operator-valued matrices $\{S^{(a)} : 1 \le a \le d\}$ such that for each $1 \le a \le d$:

• $S^{(a)}$ with entries $S(e_{ij}^{(a)})$ is a matrix partial isometry

•
$$S^{(a)*}S^{(a)} = \sum_{b} A^{b}_{a} S^{(b)} S^{(b)*}$$

• (BHINW, 2022)
$$\sum_{a,i,j} S_{ij}^{(a)} (S_{ij}^{(a)})^* = \frac{1}{\delta^2} 1$$

Let $\mathcal{G} := (B, \psi, A)$ be a quantum graph with $B = \bigoplus_{a=1}^{d} M_{N_a}(\mathbb{C})$.

Definition (BEVW, 2021)

A QCK *G*-family is a linear map $S : B \to D$ giving rise to a family of operator-valued matrices $\{S^{(a)} : 1 \le a \le d\}$ such that for each $1 \le a \le d$:

• $S^{(a)}$ with entries $S(e_{ij}^{(a)})$ is a matrix partial isometry

•
$$S^{(a)*}S^{(a)} = \sum_{b} A^{b}_{a} S^{(b)} S^{(b)*}$$

• (BHINW, 2022)
$$\sum_{a,i,j} S_{ij}^{(a)} S_{ij}^{(a)*} = \frac{1}{\delta^2} 1$$

Let $\mathcal{G} := (B, \psi, A)$ be a quantum graph with $B = \bigoplus_{a=1}^{d} M_{N_a}(\mathbb{C})$.

Definition (BEVW, 2021)

A QCK *G*-family is a linear map $S : B \to D$ giving rise to a family of operator-valued matrices $\{S^{(a)} : 1 \le a \le d\}$ such that for each $1 \le a \le d$:

•
$$S_{ij}^{(a)} = \sum_{k,\ell} S_{ik}^{(a)} (S_{\ell k}^{(a)})^* S_{\ell j}^{(a)}$$
 $\forall 1 \le i, j \le N_a$
• $S^{(a)^*} S^{(a)} = \sum_b A_a^b S^{(b)} S^{(b)^*}$
• (BHINW, 2022) $\sum_{a,i,j} S_{ij}^{(a)} S_{ij}^{(a)^*} = \frac{1}{\delta^2} 1$

Let $\mathcal{G} := (B, \psi, A)$ be a quantum graph with $B = \bigoplus_{a=1}^{d} M_{N_a}(\mathbb{C})$.

Definition (BEVW, 2021)

A QCK *G*-family is a linear map $S : B \to D$ giving rise to a family of operator-valued matrices $\{S^{(a)} : 1 \le a \le d\}$ such that for each $1 \le a \le d$:

•
$$S_{ij}^{(a)} = \sum_{k,\ell} S_{ik}^{(a)} (S_{\ell k}^{(a)})^* S_{\ell j}^{(a)} \quad \forall 1 \le i,j \le N_a$$

•
$$S^{(a)*}S^{(a)} = \sum_{b} A^{b}_{a} S^{(b)} S^{(b)*}$$

• (BHINW, 2022)
$$\sum_{a,i,j} S_{ij}^{(a)} S_{ij}^{(a)^*} = \frac{1}{\delta^2} 1$$

Let $\mathcal{G} := (B, \psi, A)$ be a quantum graph with $B = \bigoplus_{a=1}^{d} M_{N_a}(\mathbb{C})$.

Definition (BEVW, 2021)

A QCK *G*-family is a linear map $S : B \to D$ giving rise to a family of operator-valued matrices $\{S^{(a)} : 1 \le a \le d\}$ such that for each $1 \le a \le d$:

Definition

A QCK *G*-family is a linear map $S : B \to D$ giving rise to a family of operator-valued matrices $\{S^{(a)} : 1 \le a \le d\}$ with entries $S_{ij}^{(a)} := S(e_{ij}^{(a)})$ such that for each $1 \le a \le d$: $S_{ij}^{(a)} = \sum_{k,\ell} S_{ik}^{(a)} (S_{\ell k}^{(a)})^* S_{\ell j}^{(a)} \quad \forall 1 \le i,j \le N_a$ $\sum_{k} (S_{ki}^{(a)})^* S_{kj}^{(a)} = \sum_{b,\ell,m} A_{ija}^{\ell m b} \sum_{n} S_{\ell n}^{(b)} (S_{mn}^{(b)})^* \quad \forall 1 \le i,j \le N_a$ $\sum_{a,i,j} S_{ij}^{(a)} S_{ij}^{(a)*} = \delta^2 1$

The QCK algebra $\mathcal{O}(\mathcal{G})$ is the universal C^* -algebra generated by the range of such an S, $\{S(e_{ij}^{(a)}): 1 \le a \le d, 1 \le i, j \le N_a\}$. **Remark:** these relations are very "coarse"—They do not (as far as we know) guarantee generators to be partial isometries. Summary of C^* -algebras associated to (quantum) graphs

Let G = (V, A) be a classical (simple) graph and $\mathcal{G} = (B, \psi, A)$ be a quantum graph.

C		
Structure	C*-algebra	St
A	$\mathcal{O}_{\mathcal{A}}$	
C(E)	\mathcal{O}_E	
(X_A,σ)	$C(X_A)\rtimes_{\alpha,\mathcal{L}}\mathbb{N}$	

Classie

 $\mathcal{O}_A \cong \mathcal{O}_F \cong \mathcal{C}(X_A) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

Structure	C*-algebra
A	$\mathcal{O}(\mathcal{G})$

Quantum

Summary of C^* -algebras associated to (quantum) graphs

Classical				
Structure C*-algebra				
A	\mathcal{O}_A			
C(E)	\mathcal{O}_E			
(X_A,σ)	$C(X_A)\rtimes_{\alpha,\mathcal{L}}\mathbb{N}$			

 $\mathcal{O}_A \cong \mathcal{O}_E \cong C(X_A) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

Quantum

Structure	C*-algebra
A	$\mathcal{O}(\mathcal{G})$
?	?

Quantum edge correspondences

Classically, $C(E) \subseteq C(V \times V) \cong C(V) \otimes C(V)$, and C(E) is generated as C^* -correspondence over C(V) by

$$1_E = \sum_{e \in E} \xi_e = \sum_{(v,w) \in V \times V} A_{vw} \xi_{(v,w)} = \sum_{(v,w) \in V \times V} A_{vw} p_v \otimes p_w.$$

Definition (BHINW, 2022)

Let $\mathcal{G} := (B, \psi, A)$ be a quantum graph. The quantum edge correspondence E for \mathcal{G} is the C^* -correspondence

$$span\{x \cdot \varepsilon \cdot y : x, y \in B\} \subseteq B \otimes_{\psi} B$$

over *B*, where $\varepsilon := \frac{1}{\delta^2} (id \otimes A) m^*(1_B)$. If *G* is classical, $\varepsilon = 1_E$.

Examples of quantum edge correspondences

Example

Let $\mathcal{K}(B,\psi)$ be a complete quantum graph. Then $\varepsilon = 1_B \otimes 1_B$, so

$$E = \operatorname{span} \{ x \cdot 1_B \otimes 1_B \cdot y : x, y \in B \} = \operatorname{span} \{ x \otimes y : x, y \in B \}$$

is all of $B \otimes_{\psi} B$.

Example

Let $T(B, \psi)$ be a trivial quantum graph. Then $\varepsilon = \frac{1}{\delta^2}m^*(1_B)$, so $E = \operatorname{span}\{x \cdot m^*(1_B) \cdot y : x, y \in B\} = m^*(B)$,

which is isomorphic to B as B-correspondences.

Summary of C^* -algebras associated to (quantum) graphs

Classical				
Structure C*-algebra				
A \mathcal{O}_A				
C(E)	\mathcal{O}_E			
(X_A,σ)	$C(X_A)\rtimes_{\alpha,\mathcal{L}}\mathbb{N}$			

 $\mathcal{O}_A \cong \mathcal{O}_E \cong C(X_A) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

Quantum

Structure	C*-algebra
A	$\mathcal{O}(\mathcal{G})$
Е	\mathcal{O}_E

 $\mathcal{O}(\mathcal{G}) \cong \mathcal{O}_E$?

Local quantum Cuntz-Krieger algebras

Question: If \mathcal{G} is a quantum graph with quantum edge correspondence E, is it true that $\mathcal{O}(\mathcal{G}) \cong \mathcal{O}_E$?

Answer: We're not sure. But we do know ...

Theorem (BHINW, 2022)

Let $\mathcal{G} := (B, \psi, A)$ be a quantum graph and let E be its quantum edge correspondence. Define $J(\mathcal{G})$ to be the ideal in $\mathcal{O}(\mathcal{G})$ generated by the "local relations"

$$\sum_{k} S_{ik}^{(a)} (S_{\ell k}^{(a)})^* S_{mj}^{(b)} - \delta_{a=b} \delta_{\ell=m} S_{ij}^{(a)}$$

$$(S_{ri}^{(a)})^* S_{tj}^{(b)} - \delta_{a=b} \delta_{r=t} \sum_{c,\ell,m} A_{ija}^{\ell m c} \sum_{n} S_{\ell n}^{(c)} (S_{mn}^{(c)})^*$$

Then

$$\mathcal{O}(\mathcal{G})/J(\mathcal{G})\cong \mathcal{O}_E.$$

Summary of C^* -algebras associated to (quantum) graphs

Classical					
Structure	cture C*-algebra				
A	\mathcal{O}_{A}				
C(E)	\mathcal{O}_E				
(X_A,σ)	$C(X_A) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$				

 $\mathcal{O}_A \cong \mathcal{O}_E \cong C(X_A) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

Quantum

Structure	C*-algebra
A	$\mathcal{O}(\mathcal{G})$
Е	\mathcal{O}_E
?	? × _{?,?} ℕ

 $\mathcal{O}(\mathcal{G})/J(\mathcal{G})\cong \mathcal{O}_E$

Exel systems for some quantum graphs

Example (Complete quantum graph)

The quantum edge correspondence *E* for $K(B, \psi)$ was $B \otimes_{\psi} B$, "all possible edges."

 \Rightarrow The infinite path space should contain "all possible paths."

Consider the C*-algebra $B^{\otimes \mathbb{N}}$ with $\alpha, \mathcal{L}: B^{\otimes \mathbb{N}} \to B^{\otimes \mathbb{N}}$ by

$$\blacktriangleright \ \alpha(f) = \mathbf{1}_B \otimes f$$

$$\blacktriangleright \ \mathcal{L}(f_1 \otimes f_2 \otimes ...) = \psi(f_1)f_2 \otimes f_3 \otimes ...$$

 $\Rightarrow (B^{\otimes \mathbb{N}}, \alpha, \mathcal{L})$ is an Exel system.

Theorem (Brannan-Hamidi-I-Nelson-Wasilewski, 2022)

$$B^{\otimes \mathbb{N}} \rtimes_{\alpha, \mathcal{L}} \mathbb{N} \cong \mathcal{O}_{\dim B} \cong \mathcal{O}(E).$$

Exel systems for some quantum graphs

Example (Trivial quantum graph)

Recall that the quantum edge correspondence E for $T(B, \psi)$ was $m^*(B) \cong B$, "a loop at each vertex."

 \Rightarrow The infinite path space should just be "infinite loops at each vertex." Consider the C*-algebra B with $\alpha, \mathcal{L} : B \rightarrow B$ by

 \Rightarrow (*B*, id, id) is an Exel system.

Theorem (BHINW + Others)

$$B \rtimes_{id,id} \mathbb{N} \cong B \otimes C(\mathbb{T}) \cong \mathcal{O}(E).$$

Infinite path space for a quantum graph

In examples, the C*-algebras on which we defined dynamics came from $E^{\otimes_B \mathbb{N}}$:

• Complete: $E = B \otimes_{\psi} B$

$$\Rightarrow E^{\otimes_B \mathbb{N}} = (B \otimes_{\psi} B) \otimes_B (B \otimes_{\psi} B) \ldots \cong B^{\otimes \mathbb{N}}.$$

• Trivial: $E \cong B$

$$\Rightarrow E^{\otimes_B \mathbb{N}} = B \otimes_B B \otimes_B B \ldots \cong B.$$

▶ General: *E* is a *C**-correspondence over *B*

 $\Rightarrow E^{\otimes_{\mathcal{B}}\mathbb{N}} = a C^*$ -correspondence, not a C^* -algebra

If $E^{\otimes_B \mathbb{N}}$ is not a C^* -algebra, we don't have the ability to construct an Exel system, at least not the existing kind.

Goals (& GOALS)

Classical		Quantum		
Structure	C*-algebra	Structure	C*-algebra	
A	$\mathcal{O}_{\mathcal{A}}$	А	$\mathcal{O}(\mathcal{G})$	
C(E)	\mathcal{O}_E	E	\mathcal{O}_E	
(X_A,σ)	$C(X_A) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$	$(C(X_A), \alpha, \mathcal{L})$	$C(X_A) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$	
		<u>.</u>		

 $\mathcal{O}_A \cong \mathcal{O}_E \cong C(X_A) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

 $\begin{array}{l} \mathcal{O}(\mathcal{G})/J(\mathcal{G}) \cong \mathcal{O}_E \\ \cong \ \mathcal{C}(X_A) \rtimes_{\alpha, \mathcal{L}} \mathbb{N} \end{array}$