Quantum graphs and their infinite path spaces

Lara Ismert
joint w/ M. Brannan, M. Hamidi, B. Nelson, M. Wasilewski

East Coast Operator Algebra Symposium

October 22, 2022

What operator algebraists do

Let $G=(V, A)$ be a finite simple graph with edge set E and infinite path space X_{A} :

$$
\Rightarrow \quad \mathcal{O}_{A}, \quad \mathcal{O}_{E}, \quad C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}
$$

In fact, $\mathcal{O}_{A} \cong \mathcal{O}_{E} \cong C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$.
Let \mathcal{G} be a quantum graph.

- What do associated C^{*}-algebras look like?
- What is their relationship?

A classical graph's Cuntz-Krieger algebra

Let $G=(V, A)$ be a finite simple graph with $|V|=n$.

Definition

A Cuntz-Krieger (CK) G-family is a set $\left\{S_{i}: 1 \leq i \leq n\right\}$ in a
C^{*}-algebra D such that for each $1 \leq i \leq n$

- S_{i} is a partial isometry
- $S_{i}^{*} S_{i}=\sum_{j} A_{i j} S_{j} S_{j}^{*}$
- $\sum_{i} S_{i} S_{i}^{*}=1$

The Cuntz-Krieger algebra \mathcal{O}_{A} is the universal C^{*}-algebra generated by a CK G-family.

A classical graph's Cuntz-Pimsner algebra

Let $G=(V, A)$ be a finite simple graph. The edge set E for G is

$$
\left.E=\left\{(v, w): A_{v w}=1\right\} \subseteq V \times V \quad \text { (read from right to left }\right)
$$

Definition

The edge correspondence for G is the C^{*}-correspondence $C(E) \subseteq C(V \times V)$ over $C(V)$ where for any $\xi, \eta \in C(E)$, $f \in C(V),(v, w) \in E:$

- $(\xi \cdot f)(v, w):=\xi(v, w) f(v)$
- $(f \cdot \xi)(v, w):=f(w) \xi(v, w)$
- $\langle\xi, \eta\rangle(v)=\sum_{v \leftarrow w} \overline{\xi(v, w)} \eta(v, w)$

Can construct the Cuntz-Pimsner algebra \mathcal{O}_{E}, which is universal with respect to covariant Toeplitz representations of $C(E)$.

A classical graph's Exel crossed product

Let $G=(V, A)$ be a finite simple graph. Define

$$
X_{A}:=\left\{\left(v_{k_{1}}, v_{k_{2}}, \ldots\right): v_{k_{i}} \in V, A_{k_{i} k_{i+1}}=1 \forall i \in \mathbb{N}\right\} .
$$

Consider the left shift $\sigma: X_{A} \rightarrow X_{A}$ given by

$$
\sigma\left(v_{k_{1}}, v_{k_{2}}, \ldots\right):=\left(v_{k_{2}}, v_{k_{3}}, \ldots\right)
$$

Definition

Suppose G has no sinks. The natural Exel system associated to G is the triple $\left(C\left(X_{A}\right), \alpha, \mathcal{L}\right)$ where $\alpha, \mathcal{L}: C\left(X_{A}\right) \rightarrow C\left(X_{A}\right)$ act on $f \in C\left(X_{A}\right)$ by:

- $\alpha(f):=f \circ \sigma$
- $[\mathcal{L}(f)](\theta):=\frac{1}{\left|\sigma^{-1}(\{\theta\})\right|} \sum_{\gamma \in \sigma^{-1}(\{\theta\})} f(\gamma) \quad \forall \theta \in X_{A}$
$\left(C\left(X_{A}\right), \alpha, \mathcal{L}\right)$ gives rise to the Exel crossed product $C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$.

Summary of C^{*}-algebras associated to classical graphs

Graph structure	C^{*}-algebra
A	\mathcal{O}_{A}
$C(E)$	\mathcal{O}_{E}
$\left(X_{A}, \sigma\right)$	$C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

Theorem
If G has no sinks and no sources, then

$$
\mathcal{O}_{A} \cong \mathcal{O}_{E} \cong C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}
$$

Summary of C^{*}-algebras associated to classical graphs

Classical graphs

Structure	C^{*}-algebra
A	\mathcal{O}_{A}
$C(E)$	\mathcal{O}_{E}
$\left(X_{A}, \sigma\right)$	$C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

$\mathcal{O}_{A} \cong \mathcal{O}_{E} \cong C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

Quantum graphs

Structure	C^{*}-algebra

Quantum sets

Definition

A quantum set is a pair (B, ψ) where

- B is a (finite-dimensional) C^{*}-algebra
- ψ is a δ-form:

$$
B \xrightarrow{m^{*}} B \otimes B \xrightarrow{m} B \equiv B \xrightarrow{\delta^{2} \text { id }} B .
$$

Example
Let V be a finite set of order $n \Rightarrow C(V) \cong \mathbb{C}^{n}$.
Let $\left\{p_{v}: v \in V\right\}$ be the basis for $C(V)$, and define

$$
\psi\left(p_{v}\right):=\frac{1}{n} \quad \forall v \in V
$$

Then $(C(V), \psi)$ is a (commutative) quantum set with $\delta^{2}=n$.

Quantum sets (vertices)

Let $B=\bigoplus_{a=1}^{d} M_{N_{a}}(\mathbb{C})$ with basis $\left\{e_{i j}^{(a)}: 1 \leq a \leq d, 1 \leq i, j \leq N_{a}\right\}$.
Example
Define $\psi: B \rightarrow \mathbb{C}$ by

$$
\psi(x)=\frac{1}{\operatorname{dim} B} \sum_{a=1}^{d} N_{a} \operatorname{Tr}\left(x^{(a)}\right) \quad \forall x \in M_{N(a)}(\mathbb{C})
$$

a.k.a., "the right trace." $\Rightarrow(B, \psi)$ is a quantum set $\mathrm{w} / \delta^{2}=\operatorname{dim} B$.

Example

If $q \in B$ is a density matrix, and each $q^{(a)} \in M_{N_{a}}(\mathbb{C})$ is invertible with $\operatorname{Tr}\left(\left(q^{(a)}\right)^{-1}\right)=\delta^{2}$, then $\psi(x):=\sum_{a=1}^{d} \operatorname{Tr}\left(q^{(a)} x\right)$ defines a δ-form on B with $\delta^{2}=\operatorname{dim} B$.

Quantum graphs

Definition

A quantum graph is a triple (B, ψ, A) where (B, ψ) is a quantum set and A is a quantum adjacency matrix for (B, ψ) :

$$
B \xrightarrow{m^{*}} B \otimes B \xrightarrow{A \otimes A} B \otimes B \xrightarrow{m} B \equiv B \xrightarrow{\delta^{2} A} B
$$

Example

Let $G=(V, A)$ be a finite simple graph.
$\Rightarrow\left(C(V), \frac{1}{|V|}, A\right)$ is a quantum graph $w / \delta^{2}=n^{2}$.

Remark: All finite simple graphs can be viewed as quantum graphs.

Quantum graphs

Let (B, ψ) be a finite quantum set.

Example (Complete quantum graph)
Define $A: B \rightarrow B$ on $x \in B$ by

$$
A(x)=\delta^{2} \operatorname{Tr}(x) 1_{B}
$$

Notation: $K(B, \psi)$

Example (Trivial quantum graph)
Define $A: B \rightarrow B$ on $x \in B$ by

$$
A(x)=x .
$$

Notation: $T(B, \psi)$

Quantum Cuntz-Krieger algebras

Let $\mathcal{G}:=(B, \psi, A)$ be a quantum graph with $B=\underset{a=1}{\bigoplus_{1}} M_{N_{a}}(\mathbb{C})$.

Definition (BEVW, 2021)

A QCK \mathcal{G}-family is a linear map $S: B \rightarrow D$ giving rise to a family of operator-valued matrices $\left\{S^{(a)}: 1 \leq a \leq d\right\}$ such that for each $1 \leq a \leq d$:

- $S^{(a)}$ with entries $S\left(e_{i j}^{(a)}\right)$ is a matrix partial isometry
- $S^{(a)^{*}} S^{(a)}=\sum_{b} A_{a}^{b} S^{(b)} S^{(b)^{*}}$
- (BHINW, 2022) $\sum_{a, i, j} S_{i j}^{(a)}\left(S_{i j}^{(a)}\right)^{*}=\frac{1}{\delta^{2} 1}$

The QCK algebra $\mathcal{O}(\mathcal{G})$ is the universal C^{*}-algebra generated by the range of such an S.

Quantum Cuntz-Krieger algebras

Let $\mathcal{G}:=(B, \psi, A)$ be a quantum graph with $B=\underset{a=1}{\oplus_{1}} M_{N_{a}}(\mathbb{C})$.

Definition (BEVW, 2021)

A QCK \mathcal{G}-family is a linear map $S: B \rightarrow D$ giving rise to a family of operator-valued matrices $\left\{S^{(a)}: 1 \leq a \leq d\right\}$ such that for each $1 \leq a \leq d:$

- $S^{(a)}$ with entries $S\left(e_{i j}^{(a)}\right)$ is a matrix partial isometry
- $S^{(a)^{*}} S^{(a)}=\sum_{b} A_{a}^{b} S^{(b)} S^{(b)^{*}}$
- (BHINW, 2022) $\sum_{a, i, j} S_{i j}^{(a)} S_{i j}^{(a)^{*}}=\frac{1}{\delta^{2} 1}$

The QCK algebra $\mathcal{O}(\mathcal{G})$ is the universal C^{*}-algebra generated by the range of such an S.

Quantum Cuntz-Krieger algebras

Let $\mathcal{G}:=(B, \psi, A)$ be a quantum graph with $B=\bigoplus_{a=1}^{d} M_{N_{a}}(\mathbb{C})$.
Definition (BEVW, 2021)
A QCK \mathcal{G}-family is a linear map $S: B \rightarrow D$ giving rise to a family of operator-valued matrices $\left\{S^{(a)}: 1 \leq a \leq d\right\}$ such that for each $1 \leq a \leq d:$

- $S_{i j}^{(a)}=\sum_{k, \ell} S_{i k}^{(a)}\left(S_{\ell k}^{(a)}\right) * S_{\ell j}^{(a)} \quad \forall 1 \leq i, j \leq N_{a}$
- $S^{(a)^{*}} S^{(a)}=\sum_{b} A_{a}^{b} S^{(b)} S^{(b)^{*}}$
- (BHINW, 2022) $\sum_{a, i, j} S_{i j}^{(a)} S_{i j}^{(a)^{*}}=\frac{1}{\delta^{2}} 1$

The QCK algebra $\mathcal{O}(\mathcal{G})$ is the universal C^{*}-algebra generated by the range of such an S.

Quantum Cuntz-Krieger algebras

Let $\mathcal{G}:=(B, \psi, A)$ be a quantum graph with $B=\bigoplus_{a=1}^{d} M_{N_{a}}(\mathbb{C})$.

Definition (BEVW, 2021)
A QCK \mathcal{G}-family is a linear map $S: B \rightarrow D$ giving rise to a family of operator-valued matrices $\left\{S^{(a)}: 1 \leq a \leq d\right\}$ such that for each $1 \leq a \leq d$:

- $S_{i j}^{(a)}=\sum_{k, \ell} S_{i k}^{(a)}\left(S_{\ell k}^{(a)}\right)^{*} S_{\ell j}^{(a)} \quad \forall 1 \leq i, j \leq N_{a}$
- $S^{(a)^{*}} S^{(a)}=\sum_{b} A_{a}^{b} S^{(b)} S^{(b)^{*}}$
- (BHINW, 2022) $\sum_{a, i, j} S_{i j}^{(a)} S_{i j}^{(a)^{*}}=\frac{1}{\delta^{2}} 1$

Quantum Cuntz-Krieger algebras

Let $\mathcal{G}:=(B, \psi, A)$ be a quantum graph with $B=\underset{a=1}{\oplus_{d}} M_{N_{a}}(\mathbb{C})$.
Definition (BEVW, 2021)
A QCK \mathcal{G}-family is a linear map $S: B \rightarrow D$ giving rise to a family of operator-valued matrices $\left\{S^{(a)}: 1 \leq a \leq d\right\}$ such that for each $1 \leq a \leq d$:

- $S_{i j}^{(a)}=\sum_{k, \ell} S_{i k}^{(a)}\left(S_{\ell k}^{(a)}\right) * S_{\ell j}^{(a)} \quad \forall 1 \leq i, j \leq N_{a}$
- $\sum_{k}\left(S_{k i}^{(a)}\right)^{*} S_{k j}^{(a)}=\sum_{b, \ell, m} A_{i j a}^{\ell m b} \sum_{n} S_{\ell n}^{(b)}\left(S_{m m}^{(b)}\right)^{*} \quad \forall 1 \leq i, j \leq N_{a}$
- (BHINW, 2022) $\sum_{a, i, j} S_{i j}^{(a)} S_{i j}^{(a)^{*}}=\delta^{2} 1$

The QCK algebra $\mathcal{O}(\mathcal{G})$ is the universal C^{*}-algebra generated by the range of such an S.

Quantum Cuntz-Krieger algebras

Definition

A QCK \mathcal{G}-family is a linear map $S: B \rightarrow D$ giving rise to a family of operator-valued matrices $\left\{S^{(a)}: 1 \leq a \leq d\right\}$ with entries
$S_{i j}^{(a)}:=S\left(e_{i j}^{(a)}\right)$ such that for each $1 \leq a \leq d$:

- $S_{i j}^{(a)}=\sum_{k, \ell} S_{i k}^{(a)}\left(S_{\ell k}^{(a)}\right)^{*} S_{\ell j}^{(a)} \quad \forall 1 \leq i, j \leq N_{a}$
$-\sum_{k}\left(S_{k i}^{(a)}\right)^{*} S_{k j}^{(a)}=\sum_{b, \ell, m} A_{i j a}^{\ell m b} \sum_{n} S_{\ell n}^{(b)}\left(S_{m n}^{(b)}\right)^{*} \quad \forall 1 \leq i, j \leq N_{a}$
$-\sum_{a, i, j} S_{i j}^{(a)} S_{i j}^{(a)^{*}}=\delta^{2} 1$
The QCK algebra $\mathcal{O}(\mathcal{G})$ is the universal C^{*}-algebra generated by the range of such an $S,\left\{S\left(e_{i j}^{(a)}\right): 1 \leq a \leq d, 1 \leq i, j \leq N_{a}\right\}$. Remark: these relations are very "coarse"-They do not (as far as we know) guarantee generators to be partial isometries.

Summary of C^{*}-algebras associated to (quantum) graphs
Let $G=(V, A)$ be a classical (simple) graph and $\mathcal{G}=(B, \psi, A)$ be a quantum graph.

Classical

Structure	C^{*}-algebra
A	\mathcal{O}_{A}
$C(E)$	\mathcal{O}_{E}
$\left(X_{A}, \sigma\right)$	$C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

$\mathcal{O}_{A} \cong \mathcal{O}_{E} \cong C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

Quantum

Structure	C^{*}-algebra
A	$\mathcal{O}(\mathcal{G})$

Summary of C^{*}-algebras associated to (quantum) graphs

Classical

Structure	C^{*}-algebra
A	\mathcal{O}_{A}
$C(E)$	\mathcal{O}_{E}
$\left(X_{A}, \sigma\right)$	$C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

$\mathcal{O}_{A} \cong \mathcal{O}_{E} \cong C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

Quantum

Structure	C^{*}-algebra
A	$\mathcal{O}(\mathcal{G})$
$?$	$?$

Quantum edge correspondences

Classically, $C(E) \subseteq C(V \times V) \cong C(V) \otimes C(V)$, and $C(E)$ is generated as C^{*}-correspondence over $C(V)$ by

$$
1_{E}=\sum_{e \in E} \xi_{e}=\sum_{(v, w) \in V \times V} A_{v w} \xi_{(v, w)}=\sum_{(v, w) \in V \times V} A_{v w} p_{v} \otimes p_{w} .
$$

Definition (BHINW, 2022)

Let $\mathcal{G}:=(B, \psi, A)$ be a quantum graph. The quantum edge correspondence E for \mathcal{G} is the C^{*}-correspondence

$$
\operatorname{span}\{x \cdot \varepsilon \cdot y: x, y \in B\} \subseteq B \otimes_{\psi} B
$$

over B, where $\varepsilon:=\frac{1}{\delta^{2}}(\mathrm{id} \otimes A) m^{*}\left(1_{B}\right)$. If \mathcal{G} is classical, $\varepsilon=1_{E}$.

Examples of quantum edge correspondences

Example

Let $K(B, \psi)$ be a complete quantum graph. Then $\varepsilon=1_{B} \otimes 1_{B}$, so

$$
E=\operatorname{span}\left\{x \cdot 1_{B} \otimes 1_{B} \cdot y: x, y \in B\right\}=\operatorname{span}\{x \otimes y: x, y \in B\}
$$

is all of $B \otimes_{\psi} B$.

Example
Let $T(B, \psi)$ be a trivial quantum graph. Then $\varepsilon=\frac{1}{\delta^{2}} m^{*}\left(1_{B}\right)$, so

$$
E=\operatorname{span}\left\{x \cdot m^{*}\left(1_{B}\right) \cdot y: x, y \in B\right\}=m^{*}(B)
$$

which is isomorphic to B as B-correspondences.

Summary of C^{*}-algebras associated to (quantum) graphs

Classical

Structure	C^{*}-algebra
A	\mathcal{O}_{A}
$C(E)$	\mathcal{O}_{E}
$\left(X_{A}, \sigma\right)$	$C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

$\mathcal{O}_{A} \cong \mathcal{O}_{E} \cong C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

Quantum

Structure	C^{*}-algebra
A	$\mathcal{O}(\mathcal{G})$
E	\mathcal{O}_{E}
$\mathcal{O}(\mathcal{G}) \cong \mathcal{O}_{E} ?$	

Local quantum Cuntz-Krieger algebras

Question: If \mathcal{G} is a quantum graph with quantum edge correspondence E, is it true that $\mathcal{O}(\mathcal{G}) \cong \mathcal{O}_{E}$?
Answer: We're not sure. But we do know...

Theorem (BHINW, 2022)

Let $\mathcal{G}:=(B, \psi, A)$ be a quantum graph and let E be its quantum edge correspondence. Define $J(\mathcal{G})$ to be the ideal in $\mathcal{O}(\mathcal{G})$ generated by the "local relations"

$$
\begin{aligned}
& \sum_{k} S_{i k}^{(a)}\left(S_{\ell k}^{(a)}\right)^{*} S_{m j}^{(b)}-\delta_{a=b} \delta_{\ell=m} S_{i j}^{(a)} \\
> & \left(S_{r i}^{(a)}\right)^{*} S_{t j}^{(b)}-\delta_{a=b} \delta_{r=t} \sum_{c, \ell, m} A_{i j a}^{\ell m c} \sum_{n} S_{\ell n}^{(c)}\left(S_{m n}^{(c)}\right)^{*}
\end{aligned}
$$

Then

$$
\mathcal{O}(\mathcal{G}) / J(\mathcal{G}) \cong \mathcal{O}_{E} .
$$

Summary of C^{*}-algebras associated to (quantum) graphs

Classical

Structure	C^{*}-algebra
A	\mathcal{O}_{A}
$C(E)$	\mathcal{O}_{E}
$\left(X_{A}, \sigma\right)$	$C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

$\mathcal{O}_{A} \cong \mathcal{O}_{E} \cong C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

Quantum

Structure	C^{*}-algebra
A	$\mathcal{O}(\mathcal{G})$
E	\mathcal{O}_{E}
$?$	$? \rtimes_{?, ? \mathbb{N}}$

Exel systems for some quantum graphs

Example (Complete quantum graph)

The quantum edge correspondence E for $K(B, \psi)$ was $B \otimes_{\psi} B$, "all possible edges."
\Rightarrow The infinite path space should contain "all possible paths."
Consider the C^{*}-algebra $B^{\otimes \mathbb{N}}$ with $\alpha, \mathcal{L}: B^{\otimes \mathbb{N}} \rightarrow B^{\otimes \mathbb{N}}$ by

- $\alpha(f)=1_{B} \otimes f$
- $\mathcal{L}\left(f_{1} \otimes f_{2} \otimes \ldots\right)=\psi\left(f_{1}\right) f_{2} \otimes f_{3} \otimes \ldots$
$\Rightarrow\left(B^{\otimes \mathbb{N}}, \alpha, \mathcal{L}\right)$ is an Exel system.
Theorem (Brannan-Hamidi-l-Nelson-Wasilewski, 2022)

$$
B^{\otimes \mathbb{N}} \rtimes_{\alpha, \mathcal{L}} \mathbb{N} \cong \mathcal{O}_{\operatorname{dim} B} \cong \mathcal{O}(E) .
$$

Exel systems for some quantum graphs

Example (Trivial quantum graph)

Recall that the quantum edge correspondence E for $T(B, \psi)$ was $m^{*}(B) \cong B$, "a loop at each vertex."
\Rightarrow The infinite path space should just be "infinite loops at each vertex." Consider the C^{*}-algebra B with $\alpha, \mathcal{L}: B \rightarrow B$ by

- $\alpha(f)=f$
- $\mathcal{L}(f)=f$
$\Rightarrow(B, \mathrm{id}, \mathrm{id})$ is an Exel system.
Theorem (BHINW + Others)

$$
B \rtimes_{i d, i d} \mathbb{N} \cong B \otimes C(\mathbb{T}) \cong \mathcal{O}(E)
$$

Infinite path space for a quantum graph

In examples, the C^{*}-algebras on which we defined dynamics came from $E^{\otimes_{B} \mathbb{N}}$:

- Complete: $E=B \otimes_{\psi} B$

$$
\Rightarrow E^{\otimes_{B} \mathbb{N}}=\left(B \otimes_{\psi} B\right) \otimes_{B}\left(B \otimes_{\psi} B\right) \ldots \cong B^{\otimes \mathbb{N}}
$$

- Trivial: $E \cong B$

$$
\Rightarrow E^{\otimes_{B} \mathbb{N}}=B \otimes_{B} B \otimes_{B} B \ldots \cong B
$$

- General: E is a C^{*}-correspondence over B

$$
\Rightarrow E^{\otimes_{B} \mathbb{N}}=\text { a } C^{*} \text {-correspondence, not a } C^{*} \text {-algebra }
$$

If $E^{\otimes_{B} \mathbb{N}}$ is not a C^{*}-algebra, we don't have the ability to construct an Exel system, at least not the existing kind.

Goals (\& GOALS)

Classical

Structure	C^{*}-algebra
A	\mathcal{O}_{A}
$C(E)$	\mathcal{O}_{E}
$\left(X_{A}, \sigma\right)$	$C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

$\mathcal{O}_{A} \cong \mathcal{O}_{E} \cong C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

Quantum

Structure	C^{*}-algebra
A	$\mathcal{O}(\mathcal{G})$
E	\mathcal{O}_{E}
$\left(C\left(X_{A}\right), \alpha, \mathcal{L}\right)$	$C\left(X_{A}\right) \rtimes_{\alpha, \mathcal{L}} \mathbb{N}$

