ECOAS 2022

property proximal von Neumann algebras
joint with Srivatsa Kunnarwalkam Elegandli

$$P \rightarrow group vNa LP$$

 $P \rightarrow (X, M) p.m.p.$ free orgodic action \rightarrow group measure space $L^{(X),AP}$
distinguish these vNas by the initial data,
thudy thructure : e.g. LP is prime, i.e. $LP \neq M, \overline{o}M_{2}$
 $dim(Mi) = \infty$
has no Cartan subalgibre
 $L^{\infty}(X) \wedge P$ has $L^{\infty}(X)$ as its ranique Cartan, up to
stanitury conjugacy
(reduce the classification to OF_{1} of $Pn X$)
relation

Ozawa's Solidity theorem '03: If $\Gamma = IF_n$, then $L\Gamma$ is solid (any diffuse subalgebra $A < L\Gamma$ has amenable relative commutant $A' \cap L\Gamma$) and hence LIF_n is prime for $n \ge 2$. this is time for all biexait groups

 Γ is biexait if $\Gamma \land S(\Gamma)$ is topological amenable action $\cdot S(\Gamma) = \int f \in l^{\infty}\Gamma \mid f - Rif \in C_{0}\Gamma$, $\forall t \in \Gamma_{2}^{2} \subset l^{\infty}\Gamma$, \cdot action : restriction of left action on $l^{\infty}\Gamma$ \cdot amenable : $S(\Gamma) \land_{r}\Gamma$ is nuclear C^{*} - algebra.

main examples : hyperbolic groups

(
$$0$$
 Java - Popa'or. Chiffon - Sinolair 'II) Γ non-amon bieraid weakly amon
then $L\Gamma$ has no Corlon
On the group measure side:
($Popa - Vass'II$) Γ non-amon bieraid weakly amon, then any
free organic pimp action $\Gamma\Lambda(X,M)$, $L^{\infty}(X) \times I\Gamma$ has a configue Cortan
(\forall Hn $\Lambda(X,M)$, $Hn (X,Y)$, $L^{\infty}(X) \times I\Gamma$ has a configue Cortan
(\forall Hn $\Lambda(X,M)$, $Hn (X,Y)$, $L^{\infty}(X) \times I\Gamma = 2^{\infty}(Y) \times I\Gamma_{m} \Longrightarrow n=m$)
For $X \sim_{M} Hn \Lambda Y$
In Bontonnot - Loana - Reterson 'L's , the Biexant method is further
generalized.
 Γ is proposely preside if \overline{A} Γ -inv state on $S(\Gamma)$.
(Bostonnet - Ioana - Reterson 'L's , the Biexant method is further
generalized.
 Γ is proposely preside if \overline{A} Γ -inv state on $S(\Gamma)$.
(Bostonnet - Ioana - Reterson 'L's) $\Gamma\Lambda$ (X,M) for eggedic P im P treackly compact
($I : \varphi: IB(L(X)) \rightarrow C$ state $L^{\infty}(X)$ control and Γ -inv) Γ is prop per
then $L^{\infty}(X) \wedge I\Gamma$ has $L^{\infty}(X)$ as its configue weakly compact Cortan
Examples: reonamonable biesast
 $Proposely relative S_{Ln}(2) : M=3$
 \cdot mapping class groups. Horky Harang: Lecureux '20
 $\cdot \Lambda$ for Γ . Λ non-brind, Γ ron-amon D KE '22.
 \cdot any group ME. $W^{*}F$ to above groups Ishan Reterson Rade 'II.
Non-example. ME class of inner amonable

Thm (P. Kunnawalkam - Elayandli, Peterson '22)
$$\Gamma$$
 is prop prox
iff $L\Gamma$ is prop prox.
 $\ell^{\infty}\Gamma \longrightarrow \mathcal{B}(\ell^{2}\Gamma)$
restriction
 $\mathcal{S}(\Gamma) \longrightarrow \mathcal{S}(L\Gamma)$
density property of $\mathcal{K}(LM)^{(1,1100)}$
 \mathcal{E} is $11:1100.1$ to room continuous

 Γ biexant, then any nonamen $\Lambda < \Gamma$ is not inner amen any nonamen $N \subset L\Gamma$ has no (Gamma) Popa asks if $L\Sigma \hookrightarrow L\Gamma$, Σ nonamen inner amen. $Thm : \Gamma$ biexant, $N \subset L\Gamma$ a subalg. Then either N is amen or N is prop prox. In particular, $L\Sigma \hookrightarrow L\Gamma$.

Ex: $M_1 * M_2$, M_1 diffuse $L\Gamma$, Γ prop prox $L^{\infty}(X) \times \Gamma$, $\Gamma \wedge (X, M)$ Gaussian action from non-amen rep Γ prop prox.