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Pullbacks of quotients

Theorem 1 (Pedersen)

Let B be a C ∗-algebra and let αI : B → A/I and αJ : B → A/J
be ∗-homomorphisms such that qI ◦ αI = qJ ◦ αJ . If IJ = {0}
then there exists a unique ∗-homomorphism ϕ : B → A such that
the following diagram commutes.

A/(I + J)

A/I A/J

A

B

!ϕ
αJαI

qI qJ

πJπI
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Pullbacks of quotients

Summary: If I and J are ideals of a C ∗-algebra A, then

A/(I + J)

A/I A/J

A

is a pullback diagram of C ∗-algebras if and only if
IJ(= I ∩ J) = {0}.
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Motivation

In a recent paper [3], Hajac, Reznikoff, and Tobolski provide
conditions they call admissibility on a decomposition of a
directed graph E into a pair of subgraphs (F1,F2) that imply
that the Cuntz-Krieger graph C ∗-algebras of the three graphs fit
into a pullback diagram that is dual to the pushout diagram of
the underlying graphs:

F1 ∩ F2

F1 F2

E

C ∗(F1 ∩ F2)

C ∗(F1) C ∗(F2)

C ∗(E )
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The algebras of the subgraphs considered in [3] are quotients of
C ∗(E ) by gauge-invariant ideals. However, such quotients cannot
always be realized as Cuntz-Krieger algebras of subgraphs.

F1 ∩ F2

F1 F2

E

C ∗(F1 ∩ F2)

C ∗(F1) C ∗(F2)

C ∗(E )

Spielberg introduced Relative Toeplitz graph algebras to describe
subalgebras corresonding to subgraphs [9], but they also arise as
quotients by gauge-invariant ideals that correspond to subgraphs.
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Graphs

Definition 2

A directed graph is a quadruple E = (E 0,E 1, r , s)

• E 0 is the set of vertices

• E 1 is the set of directed edges

• r , s : E 1 → E 0 are the range and source maps, respectively,
so that if e ∈ E 1 is an edge from v to w

w v
e

then r(e) = w and s(e) = v .

Notation: For v ∈ E 0, write

vE 1 = {e ∈ E 1 : r(e) = v} = r−1(v)

and similarly, E 1v for s−1(v).



Pullback
diagrams of
relative
Toeplitz
graph

algebras

S. Brooker

Introduction

Graph
Algebras

Graphs

Paths

Various graph
algebras

Ideals

The graph
groupoid

G(E)

Groupoids and
ideals

Relative
graphs,
pushouts,
and
pullbacks

7/24

Paths

Definition 3
• Denote by E ∗ the collection of finite paths in E : α ∈ E ∗

means α = e1e2 · · · en, where e1, . . . , en ∈ E 1 and
s(ei ) = r(ei+1) for 1 ≤ i < n:

r(α) := r(e1) s(en) =: s(α)
e1 e2 . . . en

• Let E∞ be the set of all (semi) infinite paths in E : x ∈ E∞

means that x = e1e2 · · · where s(ei ) = r(ei+1) for i ≥ 1:

r(x) := r(e1) · · ·
e1 e2 e3

For α ∈ E ∗, write αE ∗ = {αβ : β ∈ E ∗, r(β) = s(α)}. The sets
E ∗α, αE∞, and E ∗x for x ∈ E∞ are defined similarly.
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A graph algebra: T C ∗(E )

Definition 4

Let E be a (directed) graph. The Toeplitz graph algebra T C ∗(E )
is the universal C ∗-algebra generated by a set of mutually
orthogonal projections {Pv : v ∈ E 0} and a set of partial
isometries {Se : e ∈ E 1} satisfying the following relations:

• for all e ∈ E 1, S∗
e Se = Ps(e)

• for all e, f ∈ E 1, if e ̸= f then S∗
e Sf = 0

• for all e ∈ E 1, Pr(e)Se = Se

...But this is not the algebra people are usually referring to when
they talk about “graph C ∗-algebras.”
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The graph algebra, C ∗(E )

Definition 5

A vertex v in a graph E is called singular if it is a source,
|vE 1| = 0, or an infinite receiver, |vE 1| = ∞. Otherwise, v is
called regular. We write reg(E ) for the set of regular vetices in E .

Definition 6

Let E be a graph. The Cuntz-Krieger algebra of E , denoted
C ∗(E ), is defined as T C ∗(E ), but with the additional

requirement that for all v ∈ reg(E ), Pv =
∑
e∈vE1

SeS
∗
e .

The relation
Pv =

∑
e∈vE1

SeS
∗
e

is called the Cuntz-Krieger relation at v .
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One more graph algebra

Definition 7

Let E be a graph, and let A ⊆ reg(E ). The relative Toeplitz
graph algebra of E given by A, denoted T C ∗(E ,A), is defined as
T C ∗(E ), but with the additional requirement that for all v ∈ A,

Pv =
∑
e∈vE1

SeS
∗
e .

Note that T C ∗(E ) = T C ∗(E , ∅), and C ∗(E ) = T C ∗(E , reg(E )).
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Gauge-invariant ideals of graph algebras

Definition 8

• Let E be a graph. A set H ⊆ E 0 is called hereditary if for
any e ∈ HE 1, s(e) ∈ H.

• For a hereditary set H ⊆ E 0, we define a subgraph FH of E
by F 0

H = E 0 \ H, F 1
H = E 1F 0

H .

Note that F 1
H = E 1F 0

H = F 0
HE

1F 0
H , since H is hereditary.

Theorem 9 [8]

The gauge-invariant ideals of T C ∗(E ) are parameterized by pairs
(H,A) where H is a hereditary subset of E 0 and A ⊆ reg(FH).
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Groupoids

Definition 10

A groupoid is a small category G in which every morphism has an
inverse. Denote by G (0) the set of objects (identified with their
identity morphisms), called units. For a general element g ∈ G ,
define range and source maps r , s : G → G (0) by

r(g) = gg−1, s(g) = g−1g .

Given a topological groupoid G , the (full) groupoid C ∗-algebra
C ∗(G ) is built from *-representations of the convolution
*-algebra CC (G ) (see [5] for details).
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The groupoid of a graph

We use the description from [10]. This is not the usual description.

Definition 11

Let E be a directed graph. The groupoid of E , G (E ), is defined
as follows:

• The unit space is G (E )(0) = E∞ ∪ E ∗, the set of all infinite
and finite paths in E .

• The elements of G (E ) are equivalence classes of triples,
written [α, β, x ], where α, β ∈ E ∗, x ∈ G (E )(0), and
s(α) = s(β) = r(x).

(· · · )

α

β

x
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What is [α, β, x ] ∈ G (E )?

Let t = [α, β, x ] ∈ G (E ).

(· · · )

α

β

x

Then r(t) = [r(α), r(α), αx ] ≡ αx and s(t) = βx ∈ G (E )(0).
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Equivalence classes

Let t = [α, β, x ] ∈ G (E ), where x = γy .

(· · · )

α
γ

β

y

x = γy

Then (α, β, x) = (α, β, γy) ∼ (αγ, βγ, y).

So, t = [α, β, x ] = [αγ, βγ, y ].
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The groupoid of a graph: topology

For α ∈ E ∗, let Z (α) = αG (E )(0). Then sets of the form
Z (α) \

⋃n
1 Z (βi ) form a basis of compact-open sets for a totally

disconnected, locally compact Hausdorff topology on the unit
space.

This induces a basis of compact-open bisections for an LCH
topology on the whole groupoid, with respect to which G (E ) is
an étale, amenable, locally compact, Hausdorff groupoid.

In [10] it is proven that C ∗(G (E )) ∼= T C ∗(E ). We use the
groupoid picture to work with the gauge-invariant ideals of
T C ∗(E ) and their quotients.
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Groupoids and ideals

Definition 12

Let G be a groupoid. A G-invariant (or just invariant) set is a
subset S ⊆ G (0) such that

∀t ∈ G , r(t) ∈ S ⇐⇒ s(t) ∈ S .

For an invariant set S , we write SC for the relative complement
G (0) \ S of S in G (0). Note that S ⊆ G (0) is invariant if and only
if SC is invariant.

The gauge-invariant ideals of T C ∗(E ) = C ∗(G (E )) are given by
the open G (E )-invariant sets U ⊆ G (E )(0): Given U, G (E )|U is
a groupoid whose unit space is U, and we have the following
short exact sequence:

0 → C ∗(G (E )|U) → C ∗(G (E )) → C ∗(G (E )|UC ) → 0
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Connecting the dots

Earlier we said that the gauge-invariant ideals of T C ∗(E )
correspond to pairs (H,A) where H ⊆ E 0 is hereditary, and
A ⊆ reg(FH). Thus, each pair (H,A) corresponds to an open
invariant set U(H,A) ⊆ G (E )(0).

We give a description of the set U(H,A) in [2], and get the
following:

Theorem 13 [2] (B-Spielberg 2022)

If JH,A is the ideal C ∗(G (E )|U(H,A)) of C
∗(G (E )) = T C ∗(E )

corresponding to a hereditary set H ⊆ E 0 and a subset
A ⊆ reg(FH), then

T C ∗(E )/JH,A
∼= T C ∗(FH ,A).
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Results

We can use relationships between the open invariant subsets of
the unit space (and their closed invariant complements) to
characterize relationships between ideals and quotients of
T C ∗(E ).

Then we can realize these unit space relationships in terms of
pairs of the form (H,A), and state results entirely in the
language of graphs and graph algebras.

Theorem 14 [2] (B-Spielberg 2022)

Let E be a graph, H ⊆ E 0 a hereditary set, and F = FH . Let
A ⊆ reg(E ) and B ⊆ reg(F ). Then T C ∗(F ,B) is the quotient of
T C ∗(E ,A) by a gauge-invariant ideal if and only if A ∩ F 0 ⊆ B.
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Relative graphs

In [2] we introduce a category of relative graphs, in which an
object is a pair (F ,B) consisting of a directed graph F and a set
B ⊆ reg(F ), and a morphisim α : (F ,B) → (E ,A) is an inclusion
of graphs F ↪→ E satisfying the conditions under which
T C ∗(F ,B) is isomorphic to the quotient of T C ∗(E ,A) by an
ideal that we denote by J(E ,A;F ,B).
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Pushouts of relative graphs

Theorem 15 [2] (B-Spielberg 2022)

The category of relative graphs admits pushouts: If
αi : (F0,A0) → (Fi ,Ai ) are relative graph morphisms for i = 1, 2,
then define (E ,A) by

E = F1 ⊔F0 F2,

A = (A1 \ F 0
0 ) ∪ (A2 \ F 0

0 ) ∪ (A1 ∩ A2).

(F0,A0)

(F1,A1) (F2,A2)

(E ,A)

α1 α2

β2β1
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The main result: We get pullbacks!

T C ∗(E ,A)

J(E ,A;F2,A2)

T C ∗(F2,A2)
T C ∗(F2,A2)

J(F2,A2;F0,A0)
T C ∗(F0,A0)

T C ∗(F1,A1)

J(F1,A1;F0,A0)

T C ∗(E ,A)
T C ∗(E ,A)

J(E ,A;F1,A1)
T C ∗(F1,A1)

T C ∗(E ,A)

J(E ,A;F0,A0)

∼=
∼=

∼=

∼=

∼=

Theorem 16 [2] (B-Spielberg 2022)

Given the pushout (E ,A) of relative graphs (F1,A1), (F2,A2)
over (F0,A0) as in Theorem 15, the corresponding commuting
square of relative Toeplitz graph C ∗-algebras is a pullback
diagram if and only if

A0 ⊆ A1 ∪ A2.
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