4.6 (Part A) Exponential and Logarithmic Equations

In this section you will learn to:

- solve exponential equations using like bases
- solve exponential equations using logarithms
- solve logarithmic equations using the definition of a logarithm
- solve logarithmic equations using 1-to-1 properties of logarithms
- apply logarithmic and exponential equations to real-world problems
- convert $y = ab^x$ to an exponential equation using base *e*

Definition of a Logarithm	$y = \log_b x$ is equivalent to $b^y = x$			
Inverse Properties	$\log_b b^x = x \qquad \qquad b^{\log_b x} = x$			
Log Properties Involving One	$\log_b b = 1 \qquad \qquad \log_b 1 = 0$			
Product Rule	$\log_b(MN) = \log_b M + \log_b N$			
Quotient Rule	$\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N$			
Power Rule	$\log_b M^p = p \log_b M$			
	If $b^M = b^N$ then $M = N$.			
One-to-One Properties	If $\log_b M = \log_b N$ then $M = N$.			
	If $M = N$ then $\log_b M = \log_b N$.			

Example 1: Solve each equation by expressing each side as a power of the **same base**.

(a) $5^{x+1} = 25^{x-3}$ (b) $9^{2x} = \frac{1}{\sqrt[5]{3}}$ (c) $e^2 e^x = \frac{e^6}{e^x}$

Steps for solving EXPONENTIAL EQUATIONS: (Examples 2 – 6)

Example 2: Solve $5e^{2x} = 60$

(Examples 2 - 0)

- 1. Isolate the exponential "factor".
- **2.** Take the common/natural log of both sides.
- **3.** Simplify (Recall: $\ln b^x = x \ln b$; $\ln e^x = x$)
- 4. Solve for the variable.
- 5. Check your answer.

Example 3: Solve $3^x = 30$ using (a) common logarithms, (b) natural logarithms, and (c) the definition of a logarithm.

Example 6: Solve $2^{x+2} = 3^{x-1}$

Example 7: Use **FACTORING** to solve each of the following equations. (Hint: Use substitution or short-cut method learned in Section 1.6.)

(a) $e^{2x} - 2e^x - 3 = 0$ (b) $3^{2x} - 4 \cdot 3^x - 12 = 0$

Steps for solving LOGARITHMIC EQUATIONS:

(Examples 8-11)

- 1. Write as a single logarithm. $(\log_b M = c)$
- **2.** Change to exponential form. $(b^c = M)$
- **3.** Solve for the variable.
- **4.** Check your answer.

Example 9: Solve $\log_2 x + \log_2(x+7) = 3$

Example 10: Solve $3 \ln 2x = 12$

Example 11: Solve $\log_2(x+2) - \log_2(x-5) = 1$

Steps for solving equations using 1-to-1 properties: Example 12: $\log(x+7) - \log 3 = \log(7x+1)$ (Examples 12 - 14)

- 1. Write the equation in $\log_b M = \log_b N$ form.
- 2. Use 1-to-1 property. (Write without logarithms.)
- 3. Solve for the variable.
- 4. Check your answer.

Periodic Interest Formula	Continuous Interest Formula
$A = P \left(1 + \frac{r}{n} \right)^{nt}$	$A = Pe^{rt}$

Example 15: How long will it take \$25,000 to grow to \$500,000 at 9% interest compounded continuously?

Example 16: How long will it take \$25,000 to grow to \$500,000 at 9% interest compounded quarterly?

Example 17: What interest rate is needed for \$25,000 to double after 8 years if compounded continuously? (Round rate to nearest hundredth of a percent.)

Decay Model	$A = Pe^{rt}$	Growth Model
	$A = Pe^{rt}$ $f(t) = A_0 e^{kt}$ $A = A_0 e^{kt}$	
	$A = A_0 e^{kt}$	
	$A_0 =$	
	A =	
	k =	
	t =	

4.6 (Part B) Exponential Growth and Decay

Example 18: In 2001 the world population was approximately 6.2 billion. If the annual growth rate averaged about 1.3% per year, write an exponential equation that models this situation. Use your model to estimate the population for this year.

Example 19: An account has a continuous interest rate of *k*.

(a) How long will it take your money to double if compounded continuously?

(b) How long will it take it to triple?

- (c) At 3% interest, how long will it take an investment to double? Triple?
- (d) What interest rate is needed for an investment to double after 5 years?

Steps for finding growth/decay model (when growth or decay rate is not given:

- **1.** Use $A = A_0 e^{kt}$ to find k. (Estimate k to 6 decimal places.)
- **2.** Substitute k into growth/decay model: $A = A_0 e^{kt}$

Example 20: The **minimum wage** in 1970 was \$1.60. In 2000 it was \$5.15.

(a) Find a growth model for this situation.

- (b) Estimate the minimum wage for this year.
- (c) Estimate the minimum wage 10 years from now.
- (d) Based on this model, when will the minimum wage be \$10.00?

Example 21: Carbon-14 testing is used to determine the age of fossils, artifacts and paintings. Carbon-14 has a half-life of 5715 years.

(a) Find an exponential decay model for Carbon-14.

(b) A painting was discovered containing 96% of its original Carbon-14. Estimate the age of the painting.

(c) An art collector plans to purchase a painting by Leonardo DaVinci for a considerable amount of money. (DaVinci lived from 1452-1519). Could the painting in part (b) possibly be one of DaVinci's works? **Example 22 (optional):** Arsenic-74 has a half-life of 17.5 days.

(a) Find an exponential decay model for this situation.

(b) How long will it take for 5% of the original amount of arsenic-74 to remain in a blood system? (Round to nearest day.)

(c) What is the decay rate (per day) to the nearest tenth of a percent.

Expressing an Exponential Model in Base e: $y = ab^x$ is equivalent to $y = ae^{(\ln b)x}$ or $y = ae^{x \ln b}$

Example 23: Rewrite each equation in terms of base *e*.

(a) $y = 68(2)^x$ (b) $y = 5000(.5)^x$ (c) $y = 2.7(0.25)^x$ (d) $y = 25(3.5)^x$

4.6 (Part C) Linear vs Exponential Functions

Example 24: Which of the following tables could represent linear functions? Which could represent exponential functions? If linear or exponential, determine the equation for the function.

(a)

x	0	1	2	3	4	5
f(x)	36	30	24	18	12	6

(b)

x	0	1	2	3	4	5
g(x)	32	16	8	4	2	1

(c)

t	2	4	6	8	10
Q(t)	3	9	15	21	27

(d)

q	0	1	2	3	4	5
h(q)	4	1	0	1	4	9

(e)

x	-2	-1	0	1	2
у	32	48	72	108	162

Example 25: Spartanville had a population of 28,000 in 2007. Give a formula for its population, P, in terms of t years after 2007 if P decreases by

- (a) 2.75% per year.
- (b) 750 people per year.

Example 26: The following functions give the populations of several towns with time *t* in years.

- A. $P(t) = 12,000(1.05)^{t}$
- B. $P(t) = 6000(1.035)^{t}$
- C. $P(t) = 15,000(.94)^{t}$
- D. P(t) = 1200 + 300t
- E. $P(t) = 900(1.15)^t$
- F. P(t) = 5000 25t
- (a) Which town had a constant population decrease? Find the average rate of change per year.
- (b) Which town has the fastest annual growth rate? What is the annual growth rate?
- (c) Which towns were decreasing in size?
- (d) What is the annual rate of decrease (decay) for Town C? At this rate how many people will be left after 150 years?
- (e) Which town had the smallest initial population?

4.6 Homework Problems

Solve each equation by expressing each side as a power of the same base.

1.
$$3^{x+3} = 9^{x-2}$$
 2. $5^{2x} = \frac{1}{\sqrt[3]{5}}$ 3. $e^x e = \frac{e^7}{e^x}$ 4. $\left(\frac{1}{3}\right)^{-3x-2} = 9^{x+1}$

Solve the exponential equations. Round answers to two decimal places.

5. $5^x = 27$ 6. $2e^{3x} = 30$ 7. $10^x + 36 = 150$ 8. $5^{x-3} = 137$ 9. $e^{4x-5} - 7 = 11,243$ 10. $5^{2x+3} = 3^{x-1}$ 11. $e^{x+1} = 10^{2x}$ 12. $40e^{0.6x} - 3 = 237$

Solve by factoring. Write the answer using exact values.

13. $e^{2x} - 4e^x + 3 = 0$ 14. $e^{2x} - 3e^x + 2 = 0$ 15. $e^{2x} - 2e^x = 3$ 16. $e^{4x} + 5e^{2x} = 24$

Solve each logarithmic equation.

17. $\log_4(3x+2) = 3$	18. $5\ln(2x) = 20$
19. $\log_5 x + \log_5 (4x - 1) = 1$	20. $\log_3(x-5) + \log_3(x+3) = 2$
21. $\log(x+4) - \log x = \log 4$	22. $\log(5x+1) = \log(2x+3) + \log 2$
23. $\log(x+4) - \log 2 = \log(5x+1)$	24. $\ln(x-4) + \ln(x+1) = \ln(x-8)$

- 25. How long will it take \$2000 to grow to \$10,000 at 5% if compounded (a) continuously and (b) compounded quarterly.
- 26. What interest rate is needed for \$1000 to double after 10 years if compounded continuously?
- 27. The formula $A = 22.9e^{0.0183t}$ models the population of Texas, *A*, in millions, *t* years after 2005. (a) What was the population in Texas in 2005? (b) Estimate the population in 2012? (c) When will the population reach 27 million?
- 28. You have \$2300 to invest. What interest rate is needed for the investment to grow to \$3000 in two years if the investment is compounded quarterly?
- 29. What interest is needed for an investment to triple in four years if it is compounded (a) semiannually and (b) continuously?
- 30. How much money would you need to invest now in order to have \$15,000 saved in two years if the principal is invested at an interest rate of 6.2% compounded (a) quarterly and (b) continuously?
- 31. A certain type of radioactive iodine has a half-life of 8 days.
 - (a) Find an exponential decay model, $A = A_0 e^{kt}$, for this type of iodine. Round the *k* value in your formula to six decimal places.
 - (b) Use your model from part (a) to determine how long it will take for a sample of this type of radioactive iodine to decay to 10% of its original amount. Round your final answer to the nearest whole day.

- 32. The population in Tanzania in 1987 was about 24.3 million, with an annual growth rate of 3.5%. If the population is assumed to change continuously at this rate.
 - (a) estimate the population in 2008.
 - (b) in how many years after 1987 will the population be 30,000,000?
- 33. The half-life of aspirin in your bloodstream is 12 hours. How long will it take for the aspirin to decay to 70% of the original dosage?
- 34. The growth model $A = 107.4e^{0.012t}$ describes Mexico's population, A, in millions t years after 2006.
 - (a) What is Mexico's growth rate?
 - (b) How long will it take Mexico to double its population?

4.6 Homework Answers: 1. 7 2. $-\frac{1}{6}$ 3. 3 4. 0 5. {2.05} 6. {.90} 7. {2.06} 8. {6.06} 9. {3.58} 10. {-2.80} 11. {.28} 12. {2.99} 13. {0, ln 3} 14. {0, ln 2} 15. {ln 3} 16. $\left\{\frac{\ln 3}{2}\right\}$ 17. $\left\{\frac{62}{3}\right\}$ 18. $\left\{\frac{e^4}{2}\right\}$ 19. $\left\{\frac{5}{4}\right\}$ 20. {6} 21. $\left\{\frac{4}{3}\right\}$ 22. {5} 23. $\left\{\frac{2}{9}\right\}$ 24. ϕ 25. (a) 32.19 years; (b) 32.39 years 26. 6.93% 27. (a) 22.9 million; (b) 26.03 million; (c) 2014 28. 13.5% 29. (a) 29.44%; (b) 27.47% 30. (a) \$13,263.31; (b) \$13,250.70 31. (a) $A = A_0 e^{-0.086643t}$ (b) 27 days 32. (a) 50.68 million; (b) 6.02 years 33. 6.2 hours 34. (a) 1.2%; (b) about 58 years