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Motivating Application – Magnetic Resonance Imaging

Physics of MRI dictates that the MR scanner collect samples of
the Fourier transform of the specimen being imaged.
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Motivating Application – Magnetic Resonance Imaging

I Collecting non-uniform measurements has certain advantages;
for example, they are easier and faster to collect, and, aliased
images retain diagnostic qualities.

I Reconstructing images from such measurements accurately
and efficiently is, however, challenging.
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Model Problem

Let f be defined in R with support in [−π, π). Given

f̂(ωk) =
〈
f, eiωkx

〉
, k = −N, · · · , N, ωk not necessarily ∈ Z,

compute

I an approximation to the underlying (possibly
piecewise-smooth) function f ,

I an approximation to the locations and values of jumps in the
underlying function; i.e., [f ](x) := f(x+)− f(x−).

Issues

I Sparse sampling of the high frequencies, i.e., |ωk − k| > 1 for
k large.

I The DFT is not defined for ωk 6= k; the FFT is not directly
applicable.
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Uniform Re-sampling (Rosenfeld)

I We consider direct methods of recovering f and [f ] from
f̂(ωk).

I Due to our familiarity with harmonic Fourier reconstructions
and the applicability of FFTs, we will consider a two step
process:

1. Approximate the Fourier coefficients at equispaced modes
2. Compute a standard (filtered) Fourier partial sum

Basic Premise

f is compactly supported in physical space. Hence, the Shannon
sampling theorem is applicable in Fourier space; i.e.,

f̂(ω) =

∞∑
k=−∞

sinc(ω − k)f̂k, ω ∈ R.
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Uniform Re-sampling – Implementation

We truncate the problem as follows

f̂(ωk) ≈
∑
|`|≤M

sinc(ωk − `)︸ ︷︷ ︸
A ∈ R2N+1×2M+1

f̂`, k = −N, · · · , N

The equispaced coefficients are approximated using f̄` = A†f̂(ωk),
where A† is the Moore-Penrose pseudo-inverse of A.

I A and its properties characterize the resulting approximation.

I Regularization may be used (truncated SVD, Tikhonov
regularization) in the presence of noise.

I A† is (unfortunately) a dense matrix in general, with the
computation of f̄ requiring O

(
N2
)

operations.
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Uniform Re-sampling – Sampling Patterns

Consider the sampling pattern

ωk = k ± U [0, µ], k = −N, · · · , N
where U [a, b] denotes an iid uniform distribution in [a, b] with
equiprobable positive/negative jitter.

Jitter µ κ(A)

0.1 1.371
0.5 27.806
1.0 1.690× 103

5.0 1.137× 108

10.0 1.875× 109
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Uniform Re-sampling – An Example

Reconstruction using jittered samples (µ = 0.5).

Error – Fourier Modes Recontruction
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Uniform Re-sampling – An Example

Reconstruction using jittered samples (µ = 0.5).

Error – Fourier Modes Reconstruction
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From Uniform Re-sampling to Convolutional Gridding

Recall that for uniform re-sampling, we use the relation

f̂(ω) =
∑
k

sinc(ω − k)f̂k = (f̂ ∗ sinc)(ω)

Since the Fourier transform pair of the sinc function is the
box/rect function (of width 2π and centered at zero), we have

f ·Π←→ f̂ ∗ sinc

Now consider replacing the sinc function by a bandlimited function
φ̂ such that φ̂(|ω|) = 0 for |ω| > q (typically a few modes wide).
We now have

f · φ←→ f̂ ∗ φ̂
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Convolutional Gridding (Jackson/Meyer/Nishimura and
others)

I Gridding is an inexpensive direct approximation to the uniform
re-sampling procedure.

I Given measurements f̂(ωk), we compute an approximation to
f̂ ∗ φ̂ at the equispaced modes using

(f̂ ∗ φ̂)(`) ≈
∑

|`−ωk|≤q

αkf̂(ωk)φ̂(`− ωk), ` = −M, . . . ,M.

I Now that we are on equispaced modes, use a (F)DFT to
reconstruct an approximation to f · φ in physical space.

I Recover f by dividing out φ.

I αk are density compensation factors (DCFs) and determine
the accuracy of the reconstruction.
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Analysis of the Convolution Gridding Sum
The gridding approximation can be written as

fcg(x) =

∑
`≤M

 ∑
|`−ωk|≤q

αkf̂(ωk)φ̂(`− ωk)

 ei`x

φ(x)

=

∑
k

∑
` αk

(∫
f(ξ)e−iωkξdξ

) (∫
φ(η)e−i(`−ωk)ηdη

)
ei`x

φ(x)

=

∫ ∫
f(ξ)φ(η)

(∑
k

αke
iωk(η−ξ)

)
︸ ︷︷ ︸

AαN (η − ξ)

(∑
`

ei`(x−η)

)
︸ ︷︷ ︸

DN (x− η)

dξdη

φ(x)

=

∫
(f ∗AαN )(η)φ(η)DN (x− η)dη

φ(x)

=
([{f ∗AαN} · φ] ∗DN ) (x)

φ(x)
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The Dirichlet Kernel – A Review

Given
f̂k :=

〈
f, eikx

〉
, k = −N, · · · , N,

a periodic repetition of f may be reconstructed using the Fourier
partial sum

PNf(x) =
∑
|k|≤N

f̂ke
ikx = (f ∗DN )(x),

where
DN (x) =

∑
|k|≤N

eikx

is the Dirichlet kernel. DN is the bandlimited (2N + 1 mode)
approximation of the Dirac delta distribution.
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The Dirichlet Kernel – A Review

I DN completely characterizes the Fourier approximation PNf .
I Filtered and jump approximations are similarly characterized

by equivalent filtered and (filtered) conjugate Dirichlet kernels.
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The Non-Harmonic Kernel

Consider the non-harmonic kernel

AN (x) =
∑
|k|≤N

eiωkx

I AN is non-periodic.

I The non-harmonic kernel is a poor approximation to the Dirac
delta distribution.

I Depending on the mode distribution, AN may be
non-decaying.

I Filtering is of no help under these circumstances.
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The Non-Harmonic Kernel

Jittered Modes

ωk = k ± U [0, µ], µ = 1.5
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The Non-Harmonic Kernel

Log Modes
ωk logarithmically spaced
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Designing Gridding Kernels

I Recall that the convolutional gridding sum can be written in
the form

fcg(x) =
([{f ∗AαN} · φ] ∗DN ) (x)

φ(x)

where the (weighted) non-harmonic kernel

AαN (x) =
∑
|k|≤N

αke
iωkx.

I αk are free design parameters which we choose such that AαN
is compactly supported and a good reconstruction kernel
(such as the Dirichlet kernel) in the interval of interest.
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Design Problem – Formulation

Choose α = {αk}N−N such that

∑
|k|≤N

αke
iωkx ≈


∑
|`|≤M

ei`x |x| ≤ π

0 else

Discretizing on an equispaced grid, we obtain the linear system of
equations

Dα = b,

where

I D`,j = eiω`xj denotes the (non-harmonic) DFT matrix, and

I bp =
sin(M+1/2)xp

sin(xp/2
) ·Π are the values of the Dirichlet kernel on

the equispaced grid.
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Design Problem – Formulation

Choose α = {αk}N−N such that

∑
|k|≤N

αke
iωkx ≈


∑
|`|≤M

σ`e
i`x |x| ≤ π

0 else

Discretizing on an equispaced grid, we obtain the linear system of
equations

Dα = b,

where

I D`,j = eiω`xj denotes the (non-harmonic) DFT matrix, and

I bp are the values of the (filtered) Dirichlet kernel on the
equispaced grid.
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Numerical Results

Reconstruction

I ωk logarithmically spaced

I N = 256 measurements

I Iterative weights solved using LSQR
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Numerical Results

Reconstruction Error

I ωk logarithmically spaced

I N = 256 measurements

I Iterative weights solved using LSQR

14 / 19



Numerical Results

DCF weights α

I ωk logarithmically spaced

I N = 256 measurements

I Iterative weights solved using LSQR
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Concentration Method (Gelb, Tadmor)

I Approximate the singular support of f using the generalized
conjugate partial Fourier sum

SσN [f ](x) = i

N∑
k=−N

f̂(k) sgn(k)σ

(
|k|
N

)
eikx

I σk,N (η) = σ( |k|N ) are known as concentration factors which
are required to satisfy certain admissibility conditions.

I Under these conditions,

SσN [f ](x) = [f ](x) +O(ε), ε = ε(N) > 0 being small

i.e., SσN [f ] concentrates at the singular support of f .
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Concentration Factors

Factor Expression

Trigonometric σT (η) =
π sin(αη)

Si(α)

Si(α) =

∫ α

0

sin(x)

x
dx

Polynomial σP (η) = −p π ηp
p is the order of the factor

Exponential σE(η) = Cη exp
[

1
αη (η−1)

]
C - normalizing constant

α - order
C = π∫ 1− 1

N
1
N

exp
[

1
α τ (τ−1)

]
dτ

Table: Examples of concentration factors

Figure:
Envelopes of Factors in k-space
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Some Examples
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Figure: Jump Function Approximation, N = 128
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Designing Non-Harmonic Edge Detection Kernels

Choose α = {αk}N−N such that

∑
|k|≤N

αke
iωkx ≈

 i
∑
|`|≤M

sgn(l)σ(|l|/N)ei`x |x| ≤ π

0 else

Discretizing on an equispaced grid, we obtain the linear system of
equations

Dα = b̃,

where

I D`,j = eiω`xj denotes the (non-harmonic) DFT matrix, and

I b̃p are the values of the generalized conjugate Dirichlet kernel
on the equispaced grid.
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Numerical Results

Jump Approximation and Corresponding Weights

I ωk logarithmically spaced

I N = 256 measurements

I Iterative weights solved using LSQR
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Summary and Future Directions

1. Applications such as MR imaging require reconstruction from
non-harmonic Fourier measurements.

2. Assuming the function of interest is compactly supported, the
underlying relation between non-harmonic and harmonic
Fourier data is the Shannon sampling theorem (sinc
interpolation).

3. Convolutional gridding is an efficient approximation to
sinc-based resampling.

4. A set of free parameters known as the density compensation
factors (DCFs) allow us to design gridding kernels with
favorable characteristics.

5. To do – compare results with frame theoretic approaches, use
banded DCFs to obtain better gridding approximations.
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