Constructing Approximation Kernels for
Non-Harmonic Fourier Data

Aditya Viswanathan
aditya.v@Qcaltech.edu

California Institute of Technology

SIAM Annual Meeting 2013
July 10 2013

/19



Joint work with

Anne Gelb Sidi Kaber

Research supported in part by National Science Foundation grants
CNS 0324957, DMS 0510813 and DMS 0652833 (FRG).

FSil

0/19



Motivating Application — Magnetic Resonance Imaging

t: Homer J. Simpson

Physics of MRI dictates that the MR scanner collect samples of
the Fourier transform of the specimen being imaged.
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Motivating Application — Magnetic Resonance Imaging

Spiral scan trajectory Flosstte Trajectory

» Collecting non-uniform measurements has certain advantages;
for example, they are easier and faster to collect, and, aliased
images retain diagnostic qualities.

» Reconstructing images from such measurements accurately
and efficiently is, however, challenging.



Model Problem

Let f be defined in R with support in [—7, 7). Given
f'(wk) = <f, ei“’km>, k=-N,---,N, w not necessarily € Z,

compute

» an approximation to the underlying (possibly
piecewise-smooth) function f,

» an approximation to the locations and values of jumps in the
underlying function; i.e., [f](z) := f(z*) — f(z7).

Issues

» Sparse sampling of the high frequencies, i.e.,
k large.

» The DFT is not defined for wy # k; the FFT is not directly
applicable.

w — k| > 1 for



Outline

Non-Harmonic Fourier Reconstruction
Uniform Re-sampling
Convolutional Gridding
Harmonic and Non-Harmonic Kernels
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Uniform Re-sampling (Rosenfeld)

fwr)-
» Due to our familiarity with harmonic Fourier reconstructions

and the applicability of FFTs, we will consider a two step
process:

» We consider direct methods of recovering f and [f] from

1. Approximate the Fourier coefficients at equispaced modes
2. Compute a standard (filtered) Fourier partial sum

Basic Premise

f is compactly supported in physical space. Hence, the Shannon
sampling theorem is applicable in Fourier space; i.e.,

o0

flw) = Z sinc(w — k) fr, weR.

k=—00



Uniform Re-sampling — Implementation

We truncate the problem as follows

flw)~ > sinclwp—4) f, k=-N,--- N
N————
<M , € RZN+1x2M+1
The equispaced coefficients are approximated using f;, = ATf'(wk),
where AT is the Moore-Penrose pseudo-inverse of A.

» A and its properties characterize the resulting approximation.

» Regularization may be used (truncated SVD, Tikhonov
regularization) in the presence of noise.

» AT is (unfortunately) a dense matrix in general, with the
computation of f requiring O (N?) operations.
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Uniform Re-sampling — Sampling Patterns

Consider the sampling pattern
wp,=kxU[0,u], k=-N,--- N

where Ula, b] denotes an iid uniform distribution in [a, b] with
equiprobable positive/negative jitter.
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Uniform Re-sampling — An Example

Reconstruction using jittered samples (u = 0.5).

Log. Abs. Error

Error — Fourier Modes

Recontruction
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Uniform Re-sampling — An Example

Reconstruction using jittered samples (u = 0.5).

Log. Abs. Error

Error — Fourier Modes

Reconstruction
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From Uniform Re-sampling to Convolutional Gridding

Recall that for uniform re-sampling, we use the relation
flw) = Zsinc(w — k) fir, = (f * sinc)(w)
k
Since the Fourier transform pair of the sinc function is the
box/rect function (of width 27 and centered at zero), we have
f-+— f* sinc

Now consider replacing the sinc function by a bandlimited function
¢ such that ¢(|w|) = 0 for |w| > ¢ (typically a few modes wide).
We now have

frope— [0
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Convolutional Gridding (Jackson/Meyer/Nishimura and
others)

» Gridding is an inexpensive direct approximation to the uniform
re-sampling procedure.

» Given measurements f(wy,), we compute an approximation to
f * qﬁ at the equispaced modes using

(f+d)O)~ > arflwr)pll—wy), £=—=M,... M

|6—wr|<q

» Now that we are on equispaced modes, use a (F)DFT to
reconstruct an approximation to f - ¢ in physical space.

» Recover f by dividing out ¢.
» «y are density compensation factors (DCFs) and determine
the accuracy of the reconstruction.



Analysis of the Convolution Gridding Sum

The gridding approximation can be written as

Z( > arfwr)d(t - wk)) e
(<M \|t-wr|<q

Fal) == o)

_ Yok ([ F(©etde) ([ plm)e ") et

o(x)
I &) (Z akeW"—@) <Z e”@—”)) dédn
k l

_ A{(m=9) Dy (z —n)
o(x)

_ J(f * AR)(n) é(n) D (2 — n)dn

o(x)

_ ([{/ * A%} 6] * Dy) ()
o)
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The Dirichlet Kernel — A Review

Given
fk = <f76“m>, k=-N,---,N,

a periodic repetition of f may be reconstructed using the Fourier
partial sum

Puf(z)= 3 fuc®® = (f+ Dy)(a),

|k|<N

where

|k|<N

is the Dirichlet kernel. Dy is the bandlimited (2N + 1 mode)
approximation of the Dirac delta distribution.
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The Dirichlet Kernel — A Review

DNM, N=g

08 : o Dyl H=8 H
D)), N=32

Dy

gk i i i ;

» Dy completely characterizes the Fourier approximation Py f.
» Filtered and jump approximations are similarly characterized

by equivalent filtered and (filtered) conjugate Dirichlet kernels.
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The Non-Harmonic Kernel

Consider the non-harmonic kernel

» Ay is non-periodic.

» The non-harmonic kernel is a poor approximation to the Dirac
delta distribution.

» Depending on the mode distribution, Ay may be
non-decaying.

» Filtering is of no help under these circumstances.
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The Non-Harmonic Kernel
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The Non-Harmonic Kernel
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Outline

Designing Convolutional Gridding Kernels
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Designing Gridding Kernels

» Recall that the convolutional gridding sum can be written in

the form

({f * AN} - ¢l * Dn) (x)
¢(x)
where the (weighted) non-harmonic kernel

AN (z) = Z ek,

|k|<N

fcy(x) =

> «y, are free design parameters which we choose such that A%;
is compactly supported and a good reconstruction kernel
(such as the Dirichlet kernel) in the interval of interest.

12 /19



Design Problem — Formulation

Choose o = {ay,}Vy such that

WL T Z eléx ‘Z” =T
Y e xS
|k|<N 0 else

Discretizing on an equispaced grid, we obtain the linear system of
equations
Da = b,

where

» D;; = ™% denotes the (non-harmonic) DFT matrix, and

_ sin(M+1/2)x
> bp - sin(zp/2 3
the equispaced grid.

) - IT are the values of the Dirichlet kernel on
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Design Problem — Formulation

Choose o = {ay,}Vy such that

‘ g o™ x| <7
D ke R Qi<
|k|<N 0 else

Discretizing on an equispaced grid, we obtain the linear system of
equations
Da = b,
where
» D;; = ™% denotes the (non-harmonic) DFT matrix, and

» b, are the values of the (filtered) Dirichlet kernel on the
equispaced grid.
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Numerical Results

Reconstruction

Functien and Approximations in Physical Space -trapezoidalWgts

Functien and Approximations in Physical Spare -I2optimal
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> wy logarithmically spaced
» N = 256 measurements

» lterative weights solved using LSQR
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Numerical Results

Reconstruction Error

o Pointwise Error in Physical Space -trape zoidalWets

o Pointwise Error in Physical Space -12optimal

> wy, logarithmically spaced
» N = 256 measurements

> |terative weights solved using LSQR
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Numerical Results

DCF weights «
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» wy logarithmically spaced
» N = 256 measurements
» lterative weights solved using LSQR
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Outline

Edge Detection
Concentration Method
Design of Non-Harmonic Edge Detection Kernels

14 /19



Concentration Method (Gelb, Tadmor)

» Approximate the singular support of f using the generalized
conjugate partial Fourier sum

y=1i Z F(k)sgn(k <|]I\€/J> eike

» opn(n) = (| |) are known as concentration factors which
are required to satisfy certain admissibility conditions.

» Under these conditions,

S (x) = [fl(z) + O(e), €=¢€(N)> 0 being small

i.e., S{[f] concentrates at the singular support of f.
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Concentration Factors

Factor Expression
Trigonometric UT(n) = W
a s
Si(a) :/ sin(z) dx
0 X
Polynomial op(n)=—-prn?

p is the order of the factor

Exponential | og(n) = Cnexp { L J

an(n—1)
C - normalizing constant
« - order
C= T x

fi_w exp [ﬁ} dr

Table: Examples of concentration factors

Caoncantration Faclors

Figure:
Envelopes of Factors in k-space
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Some Examples

(a) Trigonometric Factor (b) Exponential Factor

Figure: Jump Function Approximation, N = 128
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Designing Non-Harmonic Edge Detection Kernels

Choose o = {ay,}Vy such that

. i Y sgn(o(|I[/N)e™ o] <7
D ke A ji<n
|k|<N 0 else

Discretizing on an equispaced grid, we obtain the linear system of
equations
Da = b,
where
» D;; = ™% denotes the (non-harmonic) DFT matrix, and

> Bp are the values of the generalized conjugate Dirichlet kernel
on the equispaced grid.
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Numerical Results

Jump Approximation and Corresponding Weights

Jump Furction Approximation in Physical Spacs -I2optimak-Jump
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Summary and Future Directions

1. Applications such as MR imaging require reconstruction from
non-harmonic Fourier measurements.

2. Assuming the function of interest is compactly supported, the
underlying relation between non-harmonic and harmonic
Fourier data is the Shannon sampling theorem (sinc
interpolation).

3. Convolutional gridding is an efficient approximation to
sinc-based resampling.

4. A set of free parameters known as the density compensation
factors (DCFs) allow us to design gridding kernels with
favorable characteristics.

5. To do — compare results with frame theoretic approaches, use
banded DCFs to obtain better gridding approximations.
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