Constructing Approximation Kernels for Non-Harmonic Fourier Data

Aditya Viswanathan aditya.v@caltech.edu

California Institute of Technology

SIAM Annual Meeting 2013 July 10 2013

Joint work with

Anne Gelb

Sidi Kaber

Research supported in part by National Science Foundation grants CNS 0324957, DMS 0510813 and DMS 0652833 (FRG).

Motivating Application – Magnetic Resonance Imaging

Physics of MRI dictates that the MR scanner collect samples of the Fourier transform of the specimen being imaged.

Motivating Application - Magnetic Resonance Imaging

- Collecting non-uniform measurements has certain advantages; for example, they are easier and faster to collect, and, aliased images retain diagnostic qualities.
- Reconstructing images from such measurements accurately and efficiently is, however, challenging.

Model Problem

Let f be defined in $\mathbb R$ with support in $[-\pi,\pi)$. Given

 $\hat{f}(\omega_k) = \left\langle f, e^{i\omega_k x} \right\rangle, \quad k = -N, \cdots, N, \quad \omega_k \text{ not necessarily} \in \mathbb{Z},$

compute

- ➤ an approximation to the underlying (possibly piecewise-smooth) function *f*,
- ► an approximation to the locations and values of jumps in the underlying function; i.e., [f](x) := f(x⁺) - f(x⁻).

Issues

- Sparse sampling of the high frequencies, i.e., $|\omega_k k| > 1$ for k large.
- ► The DFT is not defined for $\omega_k \neq k$; the FFT is not directly applicable.

Outline

Introduction Motivating Application Simplified Model Problem

Non-Harmonic Fourier Reconstruction Uniform Re-sampling Convolutional Gridding Harmonic and Non-Harmonic Kernels

Designing Convolutional Gridding Kernels

Edge Detection Concentration Method Design of Non-Harmonic Edge Detection Kernels

Uniform Re-sampling (Rosenfeld)

- We consider *direct* methods of recovering f and [f] from $\hat{f}(\omega_k)$.
- Due to our familiarity with harmonic Fourier reconstructions and the applicability of FFTs, we will consider a two step process:
 - 1. Approximate the Fourier coefficients at equispaced modes
 - 2. Compute a standard (filtered) Fourier partial sum

Basic Premise

f is compactly supported in physical space. Hence, the $Shannon\ sampling\ theorem$ is applicable in Fourier space; i.e.,

$$\hat{f}(\omega) = \sum_{k=-\infty}^{\infty} \operatorname{sinc}(\omega - k) \hat{f}_k, \quad \omega \in \mathbb{R}.$$

Uniform Re-sampling – Implementation

We truncate the problem as follows

$$\mathbf{\hat{f}}(\omega_{\mathbf{k}}) \approx \sum_{|\ell| \le M} \underbrace{\operatorname{sinc}(\omega_{k} - \ell)}_{A \in \mathbb{R}^{2N+1 \times 2M+1}} \mathbf{\hat{f}}_{\ell}, \quad k = -N, \cdots, N$$

The equispaced coefficients are approximated using $\bar{\mathbf{f}}_{\ell} = A^{\dagger} \hat{\mathbf{f}}(\omega_{\mathbf{k}})$, where A^{\dagger} is the Moore-Penrose pseudo-inverse of A.

- $\blacktriangleright~A$ and its properties characterize the resulting approximation.
- Regularization may be used (truncated SVD, Tikhonov regularization) in the presence of noise.
- ► A^{\dagger} is (unfortunately) a dense matrix in general, with the computation of $\overline{\mathbf{f}}$ requiring $\mathcal{O}(N^2)$ operations.

Uniform Re-sampling – Sampling Patterns

Consider the sampling pattern

$$\omega_k = k \pm U[0,\mu], \quad k = -N, \cdots, N$$

where U[a, b] denotes an iid uniform distribution in [a, b] with equiprobable positive/negative *jitter*.

Jitter μ	$\kappa(A)$
0.1	1.371
0.5	27.806
1.0	1.690×10^3
5.0	1.137×10^8
10.0	1.875×10^9

Uniform Re-sampling – An Example

Reconstruction using *jittered* samples ($\mu = 0.5$).

Error - Fourier Modes

Recontruction

Uniform Re-sampling – An Example

Reconstruction using *jittered* samples ($\mu = 0.5$).

Error - Fourier Modes

Reconstruction

From Uniform Re-sampling to Convolutional Gridding

Recall that for uniform re-sampling, we use the relation

$$\hat{f}(\omega) = \sum_k \mathrm{sinc}(\omega - k) \hat{f}_k = (\hat{f} * \mathrm{sinc})(\omega)$$

Since the Fourier transform pair of the sinc function is the box/rect function (of width 2π and centered at zero), we have

$$f \cdot \Pi \longleftrightarrow \hat{f} * \operatorname{sinc}$$

Now consider replacing the sinc function by a bandlimited function $\hat{\phi}$ such that $\hat{\phi}(|\omega|) = 0$ for $|\omega| > q$ (typically a few modes wide). We now have

$$f \cdot \phi \longleftrightarrow \hat{f} * \hat{\phi}$$

Convolutional Gridding (Jackson/Meyer/Nishimura and others)

- Gridding is an inexpensive *direct* approximation to the uniform re-sampling procedure.
- Given measurements $\hat{f}(\omega_k),$ we compute an approximation to $\hat{f} \ast \hat{\phi}$ at the equispaced modes using

$$(\hat{f} * \hat{\phi})(\ell) \approx \sum_{|\ell - \omega_k| \le q} \alpha_k \hat{f}(\omega_k) \hat{\phi}(\ell - \omega_k), \quad \ell = -M, \dots, M.$$

- Now that we are on equispaced modes, use a (F)DFT to reconstruct an approximation to f ⋅ φ in physical space.
- Recover f by dividing out ϕ .
- ► α_k are density compensation factors (DCFs) and determine the accuracy of the reconstruction.

Analysis of the Convolution Gridding Sum

The gridding approximation can be written as

$$f_{cg}(x) = \frac{\sum_{\ell \le M} \left(\sum_{|\ell - \omega_k| \le q} \alpha_k \hat{f}(\omega_k) \hat{\phi}(\ell - \omega_k) \right) e^{i\ell x}}{\phi(x)}$$

$$= \frac{\sum_k \sum_{\ell} \alpha_k \left(\int f(\xi) e^{-i\omega_k \xi} d\xi \right) \left(\int \phi(\eta) e^{-i(\ell - \omega_k)\eta} d\eta \right) e^{i\ell x}}{\phi(x)}$$

$$= \frac{\int f(\xi) \phi(\eta) \left(\sum_k \alpha_k e^{i\omega_k(\eta - \xi)} \right) \left(\sum_{\ell} e^{i\ell(x - \eta)} \right)}{\phi(x)} d\xi d\eta$$

$$= \frac{\int (f * A_N^{\alpha})(\eta) \phi(\eta) D_N(x - \eta) d\eta}{\phi(x)}$$

$$= \frac{\left(\left[\{f * A_N^{\alpha}\} \cdot \phi \right] * D_N \right)(x)}{\phi(x)} \right]$$

The Dirichlet Kernel – A Review

Given

$$\hat{f}_k := \left\langle f, e^{ikx} \right\rangle, \quad k = -N, \cdots, N,$$

a periodic repetition of $f\,$ may be reconstructed using the Fourier partial sum

$$P_N f(x) = \sum_{|k| \le N} \hat{f}_k e^{ikx} = (f * D_N)(x),$$

where

$$D_N(x) = \sum_{|k| \le N} e^{ikx}$$

is the Dirichlet kernel. D_N is the bandlimited (2N + 1 mode) approximation of the Dirac delta distribution.

The Dirichlet Kernel – A Review

- D_N completely characterizes the Fourier approximation $P_N f$.
- Filtered and jump approximations are similarly characterized by equivalent filtered and (filtered) conjugate Dirichlet kernels.

The Non-Harmonic Kernel

Consider the non-harmonic kernel

$$A_N(x) = \sum_{|k| \le N} e^{i\omega_k x}$$

- ► *A_N* is non-periodic.
- The non-harmonic kernel is a poor approximation to the Dirac delta distribution.
- ► Depending on the mode distribution, *A_N* may be non-decaying.
- ► Filtering is of no help under these circumstances.

The Non-Harmonic Kernel

Jittered Modes

$$\omega_k = k \pm U[0,\mu], \quad \mu = 1.5$$

The Non-Harmonic Kernel

Log Modes

 ω_k logarithmically spaced

Outline

Introduction Motivating Application Simplified Model Problem

Non-Harmonic Fourier Reconstruction Uniform Re-sampling Convolutional Gridding Harmonic and Non-Harmonic Kernels

Designing Convolutional Gridding Kernels

Edge Detection Concentration Method Design of Non-Harmonic Edge Detection Kernels

Designing Gridding Kernels

Recall that the convolutional gridding sum can be written in the form

$$f_{cg}(x) = \frac{\left(\left[\left\{f * A_N^{\alpha}\right\} \cdot \phi\right] * D_N\right)(x)}{\phi(x)}$$

where the (weighted) non-harmonic kernel

$$A_N^{\alpha}(x) = \sum_{|k| \le N} \alpha_k e^{i\omega_k x}$$

α_k are free design parameters which we choose such that A^α_N is compactly supported and a good reconstruction kernel (such as the Dirichlet kernel) in the interval of interest.

Design Problem – Formulation

Choose $\boldsymbol{\alpha} = \{ \alpha_k \}_{-N}^N$ such that

$$\sum_{|k| \le N} \alpha_k e^{i\omega_k x} \approx \begin{cases} \sum_{|\ell| \le M} e^{i\ell x} & |x| \le \pi \\ 0 & \text{else} \end{cases}$$

Discretizing on an equispaced grid, we obtain the linear system of equations

$$D\boldsymbol{\alpha} = \mathbf{b},$$

where

- ▶ $D_{\ell,j} = e^{i\omega_\ell x_j}$ denotes the (non-harmonic) DFT matrix, and
- ► $b_p = \frac{\sin(M+1/2)x_p}{\sin(x_p/2}) \cdot \Pi$ are the values of the Dirichlet kernel on the equispaced grid.

Design Problem – Formulation

Choose $\boldsymbol{\alpha} = \{ \alpha_k \}_{-N}^N$ such that

$$\sum_{|k| \le N} \alpha_k e^{i\omega_k x} \approx \begin{cases} \sum_{|\ell| \le M} \sigma_\ell e^{i\ell x} & |x| \le \pi \\ 0 & \text{else} \end{cases}$$

Discretizing on an equispaced grid, we obtain the linear system of equations

$$D\boldsymbol{\alpha} = \mathbf{b},$$

where

- ▶ $D_{\ell,j} = e^{i\omega_\ell x_j}$ denotes the (non-harmonic) DFT matrix, and
- ▶ b_p are the values of the (filtered) Dirichlet kernel on the equispaced grid.

- ω_k logarithmically spaced
- ▶ N = 256 measurements
- Iterative weights solved using LSQR

Reconstruction Error

- ω_k logarithmically spaced
- ▶ N = 256 measurements
- Iterative weights solved using LSQR

DCF weights lpha

- ω_k logarithmically spaced
- N = 256 measurements
- Iterative weights solved using LSQR

Outline

Introduction Motivating Application Simplified Model Problem

Non-Harmonic Fourier Reconstruction Uniform Re-sampling Convolutional Gridding Harmonic and Non-Harmonic Kernels

Designing Convolutional Gridding Kernels

Edge Detection Concentration Method Design of Non-Harmonic Edge Detection Kernels

Concentration Method (Gelb, Tadmor)

► Approximate the singular support of *f* using the *generalized* conjugate partial Fourier sum

$$S_N^{\sigma}[f](x) = i \sum_{k=-N}^N \hat{f}(k) \operatorname{sgn}(k) \sigma\left(\frac{|k|}{N}\right) \, e^{ikx}$$

- $\sigma_{k,N}(\eta) = \sigma(\frac{|k|}{N})$ are known as *concentration factors* which are required to satisfy certain admissibility conditions.
- Under these conditions,

 $S_N^\sigma[f](x) = [f](x) + \mathcal{O}(\epsilon), \quad \epsilon = \epsilon(N) > 0 \text{ being small}$

i.e., $S_N^{\sigma}[f]$ concentrates at the singular support of f.

Concentration Factors

Factor	Expression	
Trigonometric	$\sigma_T(\eta) = \frac{\pi \sin(\alpha \eta)}{Si(\alpha)}$	Concentration Factors
	$Si(\alpha) = \int_0^\alpha \frac{\sin(x)}{x} dx$	3
Polynomial	$\sigma_P(\eta) = -p \pi \eta^p$	2
	p is the order of the factor	1.5
Exponential	$\sigma_E(\eta) = C\eta \exp\left[\frac{1}{\alpha \eta (\eta - 1)}\right]$	
	C - normalizing constant	
	lpha - order	-80 -60 -40 -20 0 20 40 60 8 k
	$C = \frac{\pi}{\int_{\frac{1}{N}}^{1-\frac{1}{N}} \exp\left[\frac{1}{\alpha \tau (\tau-1)}\right] d\tau}$	Figure: Envelopes of Eactors in k space

Table: Examples of concentration factors

Some Examples

Designing Non-Harmonic Edge Detection Kernels

Choose $\boldsymbol{\alpha} = \{ \alpha_k \}_{-N}^N$ such that

$$\sum_{|k| \leq N} \alpha_k e^{i\omega_k x} \approx \left\{ \begin{array}{cc} i \sum_{|\ell| \leq M} \mathrm{sgn}(l) \sigma(|l|/N) e^{i\ell x} & |x| \leq \pi \\ 0 & \text{else} \end{array} \right.$$

Discretizing on an equispaced grid, we obtain the linear system of equations

$$D\boldsymbol{\alpha} = \mathbf{\tilde{b}},$$

where

- ▶ $D_{\ell,j} = e^{i\omega_\ell x_j}$ denotes the (non-harmonic) DFT matrix, and
- \tilde{b}_p are the values of the generalized conjugate Dirichlet kernel on the equispaced grid.

Jump Approximation and Corresponding Weights

- ω_k logarithmically spaced
- ▶ N = 256 measurements
- Iterative weights solved using LSQR

Summary and Future Directions

- 1. Applications such as MR imaging require reconstruction from non-harmonic Fourier measurements.
- 2. Assuming the function of interest is compactly supported, the underlying relation between non-harmonic and harmonic Fourier data is the Shannon sampling theorem (sinc interpolation).
- 3. Convolutional gridding is an efficient approximation to sinc-based resampling.
- 4. A set of free parameters known as the density compensation factors (DCFs) allow us to design gridding kernels with favorable characteristics.
- 5. To do compare results with frame theoretic approaches, use banded DCFs to obtain better gridding approximations.

Selected References

- D. Rosenfeld, An Optimal and Efficient New Gridding Algorithm Using Singular Value Decomposition, in Magn. Reson. Med., Vol. 40, No. 1 (1998), pp. 14–23.
- J. Jackson, C. Meyer and D. Nishimura, Selection of a Convolution Function for Fourier Inversion Using Gridding, in IEEE Trans. Med. Img., Vol. 10, No. 3 (1991), pp. 473–478.
- J. Fessler and B. Sutton, Nonuniform Fast Fourier Transforms Using Min-Max Interpolation, in IEEE Trans. Sig. Proc., Vol. 51, No. 2 (2003), pp. 560–574.
- J. Pipe and P. Menon, Sampling Density Compensation in MRI: Rationale and an Iterative Numerical Solution, in Magn. Reson. Med., Vol. 41, No. 1 (1999), pp. 179–186.
- 5. A. Gelb and E. Tadmor, *Detection of Edges in Spectral Data*, in Appl. Comp. Harmonic Anal., 7 (1999), pp. 101–135.