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Figure: A motivating example

Fourier samples violate the quadrature rule for discrete Fourier expansion

Computational issue – no FFT available

Mathematical issue – given these coefficients, can we/how do we
reconstruct the function?

Resolution – what accuracy can we achieve given a finite (usually small)
number of coefficients?
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Application – Magnetic Resonance Imaging

Non-Cartesian sampling trajectories
have some advantages

greater resistance to motion
artifacts

instrumentation concerns – ease
in generating gradient
waveforms
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(b) Sampling Trajectory

Reconstructed phantom

(c) Reconstructed Image

Figure: MR Imaging
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In this Talk

We will discuss

Issues with non-harmonic Fourier reconstruction

Conventional reconstruction methods

Accuracy vs Sampling Density

Spectral Re-projection methods

Incorporating edge information in the reconstruction
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Problem Formulation

Let f be defined on R and supported in (−π, π)

It has a Fourier transform representation, f̂(ω), defined as

f̂(ω) =
1

2π

Z π

−π
f(x)e−iωxdx, ω ∈ R

Objective

Recover f given a finite number of its non-harmonic Fourier coefficients,

f̂(ωk), k = −N, ..., N ωk not necessarily ∈ Z

We will refer to {ωk}N−N as the
sampling pattern/trajectory

We will be particularly
interested in sampling patterns
with variable sampling density

We will pay special attention to
piecewise-smooth f
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Non-harmonic Fourier Series

The data we are given correspond to
〈f, eiωkx〉, k = −N, ..., N
{eiωkx} may not constitute a basis for arbitrary
sampling patterns

Classical works by Paley-Weiner, Kadec and
others show that for {eiωkx} to be a basis

sup
k
|ωk − k| <

1

4

Even if they constitute a basis, the dual basis is
not {e−iωkx}, but a numerically unstable
Lagrange-type polynomial

Computational cost issues since the fast Fouier
transform (FFT) algorithm requires equispaced
data points and evaluation nodes
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Non-harmonic Fourier Reconstruction – Naive Methods

Reconstruction methods which do
not work

setting non-harmonic
coefficients to zero

linear or other general
interpolation schemes for
coefficients

“Non-harmonic” Fourier partial
sum

SN f̃(x) :=

NX
k=−N

f̂(ωk)eiωkx
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Figure: Non-harmonic Fourier sum Reconstruction,N = 128
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Conventional Reconstruction Methods

Several approaches available to perform reconstruction

Convolutional gridding – most popular

Uniform resampling

Iterative Methods

– “Fix” the quadrature rule while evaulating
the non-harmonic sum

SN f̃(x) =
NX

k=−N

αkf̂(ωk)eikx

– αk are density compensation factors
– Evaluated using a “non-uniform” FFT
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Figure: Evaluating the non-uniform
Fourier sum

Although there are distinct difference in methodology and computational cost,
reconstruction accuracy is similar in most schemes. We will look at uniform
re-sampling (URS) to obtain an intuitive understanding of the problems in
reconstruction
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Figure: Uniform Resampling

Although there are distinct difference in methodology and computational cost,
reconstruction accuracy is similar in most schemes. We will look at uniform
re-sampling (URS) to obtain an intuitive understanding of the problems in
reconstruction
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Figure: Iterative Reconstruction

Although there are distinct difference in methodology and computational cost,
reconstruction accuracy is similar in most schemes. We will look at uniform
re-sampling (URS) to obtain an intuitive understanding of the problems in
reconstruction
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Figure: Iterative Reconstruction

Although there are distinct difference in methodology and computational cost,
reconstruction accuracy is similar in most schemes. We will look at uniform
re-sampling (URS) to obtain an intuitive understanding of the problems in
reconstruction
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Uniform Re-sampling

Reconstruction is accomplished in two steps:

1 recover equispaced coefficients f̂(k)

2 partial Fourier reconstruction using the FFT algorithm

Since f is compactly supported, we use the sampling theorem to relate f̂(ωk)
and f̂(k).

f̂(ω) =

∞X
p=−∞

f̂(p) sinc(ω − p), ω ∈ R, p ∈ N

To recover f̂(k), we have to invert the above system, i.e., solve .

Ax = b, Aij = sinc(ωi − j), b =
n
f̂(ωk)

oN
k=−N

, x =
n
f̂(p)

oM
p=−M

Any number of methods to do so - iterative methods, pseudoinverse-based
methods with regularization ...

In problems like MRI, pseudoinverse-based methods are preferred for
computational purposes - the pseudoinverse can be precomputed for a
given sampling scheme
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Representative Results
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Figure: URS solution, N = 128

Solved a square 128× 128 system

Inverted the system by computing the pseudoinverse

Pseudoinverse was computed using TSVD, with a SVD threshold of 10−5

.
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Representative Results
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Solved a square 128× 128 system

Inverted the system by computing the pseudoinverse

Pseudoinverse was computed using TSVD, with a SVD threshold of 10−5

.
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Error vs Sampling Density

Let f̂(k) denote the true coefficients and ĝ(k) the recovered equispaced
coefficients. The error in the reconstruction can be written as

e(x) =
X
|k|>N

f̂(k)eikx +
X
|k|≤N

“
f̂(k)− ĝ(k)

”
eikx

this term decreases as N increases

this term increases as N increases
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Figure: Error in uniform re-sampling

For a given sampling trajectory and function, there is a critical value Ncrit
beyond which adding coefficients does not improve the accuracy.
While filtering decreases the error, the underlying problem is not solved.
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For a given sampling trajectory and function, there is a critical value Ncrit
beyond which adding coefficients does not improve the accuracy.
While filtering decreases the error, the underlying problem is not solved.
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Figure: Error in uniform re-sampling

For a given sampling trajectory and function, there is a critical value Ncrit
beyond which adding coefficients does not improve the accuracy.
While filtering decreases the error, the underlying problem is not solved.
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Piecewise-Smooth Functions

(a) Brain scan
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(b) Cross-section of a scan

Figure: Peicewise-smooth nature of medical images

Due to the Gibbs phenomenon, we have non-physical oscillations at
discontinuities, and, more importantly, reduced order of convergence (first
order). Hence, we require a large number of coefficients to get acceptable
reconstructions.

However, by formulation of the sampling scheme and recovery procedure,
the coefficients recovered at large ω are inaccurate.

=⇒ we need more coefficients, but the coefficients we get are inaccurate!
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Spectral Re-projection

Spectral reprojection schemes were formulated to resolve the Gibbs
phenomenon. They involve reconstructing the function using an alternate
basis, Ψ (known as a Gibbs complementary basis).

Reconstruction is performed using the rapidly converging series

f(x) ≈
mX
l=0

clψl(x), where cl =
〈fN , ψl〉w
‖ψl‖2w

, fN is the Fourier expansion of f

Reconstruction is performed in each smooth interval. Hence, we require
jump discontinuity locations

High frequency modes of f have exponentially small contributions on the
low modes in the new basis

Viswanathan, Cochran, Gelb, Renaut On Fourier Reconstruction from Non-Uniform Spectral Data



Introduction Non-uniform Data Current Methods Alternate Approaches Spectral Re-projection Incorporating Edge Information

Gegenbauer Reconstruction - Results
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(a) Reconstruction
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(b) Reconstruction error

Figure: Gegenbauer reconstruction

Filtered Fourier reconstruction uses 256 coefficients

Gegenbauer reconstruction uses 64 coefficients

Parameters in Gegenbauer Reconstruction - m = 2, λ = 2
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Getting Jump Data from Fourier Coefficients

Let f contain a single jump at x = ζ.

f̂(k) =
1

2π

Z π

−π
f(x)e−ikxdx

=
1

2π

 Z ζ−

−π
f(x)e−ikxdx+

Z π

ζ+
f(x)e−ikxdx

!

=
1

2π

 
f(x)

e−ikx

−ik

˛̨̨̨ζ−
−π
−
Z ζ−

−π
f ′(x)

e−ikx

−ik dx+ f(x)
e−ikx

−ik

˛̨̨̨π
ζ+
−
Z π

ζ+
f ′(x)

e−ikx

−ik dx

!

=
1

2π

 
f(ζ−)e−ikζ − f(−π)eikπ

−ik −
Z ζ−

−π
f ′(x)

e−ikx

−ik dx

+
f(π)e−ikπ − f(ζ+)e−ikζ

−ik −
Z π

ζ+
f ′(x)

e−ikx

−ik dx

«
=
`
f(ζ+)− f(ζ−)

´ e−ikζ
2πik

+
f(−π)eikπ − f(π)e−ikπ

2πik
+O

„
1

k2

«
Since f is periodic, f(−π) = f(π) and the second term vanishes.

f̂(k) = [f ](ζ)
e−ikζ

2πik
+O

„
1

k2

«
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Obtaining Edge Information

Solve the following equation

f̂(k) =
X
p∈P

[f ](ζp)
e−ikζp

2πik

Use the concentration method on the recovered coefficients

SσN [g](x) = i

NX
k=−N

ĝ(k) sgn(k)σ

„
|k|
N

«
eikx

Solve for the jump function directly from the non-harmonic Fourier data

min ‖ [f ] ‖1

s.t. F{[f ]}|ωk
= i sgn(ω)σ

“
|ω|
N

”
f̂
˛̨̨
ωk
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Methods Incorporating Edge Information

Suppose we have access to discontinuity locations, ηj and magnitudes, [f ](ηj).

Let ĝ(k) =
X
j

[f ](ηj)
e−ikηj

2πik
, y = {ĝ(k)}Nk=−N

Solve min ‖x− y‖2 subject to ‖Ax− b‖2 < σ Notation
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Figure: Reconstruction of a test function using edge information

Compare
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Summary

We introduced the Fourier reconstruction problem for non-uniform spectral
data

We discussed the inherent problems associated with non-uniform Fourier
data

We briefly looked at conventional reconstruction methods

We studied the error characteristics and relation to sampling density

We looked at spectral re-projection and methods incorporating edge
information to obtain better reconstructions
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