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Model Problem

Let f be defined in R with support in [−π, π). Given

f̂(ωk) =
〈
f, eiωkx

〉
, k = −N, · · · , N,

(ωk not necessarily ∈ Z)

compute

• an approximation to the underlying function f ,

• an approximation to the locations and values of jumps in the
underlying function; i.e.,

[f ](x) := f(x+)− f(x−).
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Motivating Application – Magnetic Resonance Imaging

Physics of MRI dictates that the MR scanner collect samples of
the Fourier transform of the specimen being imaged.
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Motivating Application – Magnetic Resonance Imaging

• Collecting non-uniform measurements has certain advantages;
for example, they are easier and faster to collect, and, aliased
images retain diagnostic qualities.
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Challenges in Non-Uniform Reconstruction

• Computational Issues

• The FFT is not directly applicable.

• Direct versus iterative solvers . . .

• Sampling Issues
Typical MR sampling patterns have non uniform sampling
density; i.e., the high modes are sparsely sampled
(|ωk − k| > 1 for k large).

• Other Issues
Piecewise-smooth functions and Gibbs artifacts
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Why Direct Methods?

• Faster (by a small but non-negligible factor) than iterative
formulations.

• Provide good initial solutions to seed iterative algorithms.

• Sometimes used as preconditioners in solving iterative
formulations.
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Model (1D) Sampling Patterns

Jittered Sampling: ωk = k ± U [0, µ], k = −N, · · · , N
U [a, b]: iid uniform distribution in [a, b] with equiprobable +/– jitter.
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Model (1D) Sampling Patterns

Log Sampling: ωk+ = a eb(2πk), k = 1, . . . , N, b =
ln(N/a)

2πN

a controls the closest sampling point to the origin.
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Model (1D) Sampling Patterns

Polynomial Sampling: ωk+ = a kb, k = 1, . . . , N, a =
1

N b−1

b is the polynomial order.
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Uniform Re-Sampling (Rosenfeld1)

Consider a two step reconstruction process:

1 Approximate the Fourier coefficients at equispaced modes

2 Compute a standard (filtered) Fourier partial sum

Basic Premise
f is compactly supported in physical space. Hence, the Shannon
sampling theorem is applicable in Fourier space; i.e.,

f̂(ω) =

∞∑
k=−∞

sinc(ω − k)f̂k, ω ∈ R.

1An optimal and efficient new gridding algorithm using singular value
decomposition, D. Rosenfeld, Magn Reson Med. 1998 Jul;40(1):14–23.
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Uniform Re-Sampling – Implementation

We truncate the problem as follows

f̂(ωk) ≈
∑
|`|≤M

sinc(ωk − `)f̂`, k = −N, · · · , N


f̂(ω−N )
·
·
·

f̂(ωN )


︸ ︷︷ ︸

measurements f̂

≈


sinc(ω−N +M) . . . sinc(ω−N −M)

· . . . . . .
· . . . . . .
· . . . . . .

sinc(ωN +M) . . . sinc(ωN −M)


︸ ︷︷ ︸

Sampling system matrix A ∈ R2N+1 × 2M+1


f̂(ω−M )
·
·
·

f̂(ωM )


︸ ︷︷ ︸

re-sampled coefficients f̄
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Uniform Re-Sampling – Implementation

The (equispaced) re-sampled coefficients are approximated as

f̄ = A†f̂ ,

where A† is the Moore-Penrose pseudo-inverse of A.

• A and its properties characterize the resulting approximation.

• Regularization may be used (truncated SVD, Tikhonov
regularization) in the presence of noise.

• A† is a dense matrix in general. A block variant of this
method exists (Block Uniform Re-Sampling, which constructs
a sparse A†.
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Uniform Re-sampling – Examples

Reconstruction from Polynomial (quadratic) samples.
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Uniform Re-sampling – Examples

Reconstruction from Polynomial (quadratic) samples.

Error – Fourier Modes Reconstruction
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Uniform Re-sampling – Examples

Reconstruction from Polynomial (quadratic) samples.

Reconstruction Error Reconstruction

8 / 30



Further Reading

• New Approach to Gridding using Regularization and
Estimation Theory, D. Rosenfeld, Magn Reson Med. 2002;
48:193–202

• Applying the uniform resampling (URS) algorithm to a
Lissajous trajectory: Fast image reconstruction with optimal
gridding, Moriguchi H., Wendt M., Duerk JL., Magn Reson
Med. 2000; 44:766–781
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From Uniform Re-sampling to Convolutional Gridding

Recall that for uniform re-sampling, we use the relation

f̂(ω) =
∑
k

sinc(ω − k)f̂k = (f̂ ∗ sinc)(ω)

Since the Fourier transform pair of the sinc function is the
box/rect function (of width 2π and centered at zero), we have

f ·Π←→ f̂ ∗ sinc

Now consider replacing the sinc function by a bandlimited function
φ̂ such that φ̂(|ω|) = 0 for |ω| > q (typically a few modes wide).
We now have

f · φ←→ f̂ ∗ φ̂

10 / 30



Convolutional Gridding (Jackson/Meyer/Nishimura . . . )

• Gridding is an inexpensive direct approximation to the uniform
re-sampling procedure.

• Given measurements f̂(ωk), we compute an approximation to
f̂ ∗ φ̂ at the equispaced modes using

(f̂ ∗ φ̂)(`) ≈
∑

|`−ωk|≤q

αkf̂(ωk)φ̂(`− ωk), ` = −M, . . . ,M.

• αk are desity compensation factors (DCFs) and determine the
accuracy of the reconstruction.
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Convolutional Gridding (Jackson/Meyer/Nishimura . . . )

Figure : Gridding to a Cartesian Grid3

3http://web.eecs.umich.edu/ fessler/papers/files/talk/06/isbi,p2,slide,bw.pdf
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Convolutional Gridding (Jackson/Meyer/Nishimura . . . )

• Now that we are on equispaced modes, use a (F)DFT to
reconstruct an approximation to f · φ in physical space.

• Recover f by dividing out φ.

• This is typically implemented using a non-uniform FFT.
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Why Do We Need Density Compensation?

DN (x) =
∑
|k|≤N

eikx AN (x) =
∑
|k|≤N

eiωkx
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Why Do We Need Density Compensation?

Uniform Samples Quadratic Samples
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Density Compensation – Examples

Figure : Voronoi Cells for Radial and Spiral Sampling3

3Modern Sampling Theory: Mathematics and Applications, eds. J. J.
Benedetto, P. J.S.G. Ferreira, Birkhauser, 2001
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Density Compensation – Examples

Choose α = {αk}N−N such that3

∑
|k|≤N

αke
iωkx ≈

{
1 x = 0
0 else

Discretizing on an equispaced grid, we obtain the linear system of
equations

Dα = b,

where

• D`,j = eiω`xj denotes the (non-harmonic) DFT matrix, and

• b denotes the desired point spread function (Dirac delta).

3See Sampling density compensation in MRI: rationale and an iterative
numerical solution, Pipe JG, Menon P., Magn Reson Med. 1999 Jan;41(1):
179–86 for details and implementation.
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Convolutional Gridding – Representative Reconstructions

Reconstruction from Polynomial (quadratic) samples.
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Convolutional Gridding – Representative Reconstructions

Reconstruction from Polynomial (quadratic) samples.

Reconstruction Reconstruction Error
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Convolutional Gridding – Representative Reconstructions

Reconstruction from Spiral samples (Voronoi weights)4

True Image (Phantom) Reconstruction
4A gridding algorithm for efficient density compensation of arbitrarily

sampled Fourier-domain data, W. Q. Malik et. al., Proc. IEEE Sarnoff Symp.
Princeton, NJ, USA, Apr. 2005
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Convolutional Gridding – Representative Reconstructions

Reconstruction from Spiral samples (Voronoi weights)4

Cross Section Reconstruction

4A gridding algorithm for efficient density compensation of arbitrarily
sampled Fourier-domain data, W. Q. Malik et. al., Proc. IEEE Sarnoff Symp.
Princeton, NJ, USA, Apr. 2005
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Further Reading

• A fast sinc function gridding algorithm for Fourier inversion in
computer tomography, J. O’Sullivan, IEEE Trans Med Imag
1985; MI–4:200–207.

• Selection of a convolution function for Fourier inversion using
gridding, J. Jackson, C. Meyer, D. Nishimura, and A.
Macovski, IEEE Trans Med Imag 1991; 10:473–478.

• The gridding method for image reconstruction by Fourier
transformation, H. Schomberg and J. Timmer, IEEE Trans
Med Imag 1995; 14:596–607.

• Rapid gridding reconstruction with a minimal oversampling
ratio, P. Beatty, D. Nishimura, and J. Pauly, IEEE Trans Med
Imag 2005; 24:799–808.
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Non-Uniform Fourier Transforms (Greengard and Lee, 2004)

Non-uniform FFTs efficiently evaluate trigonometric sums of the
form

(Type I) F (k) =
1

N

N−1∑
j=0

fje
−ikxj , xj ∈ [0, 2π), k = −M

2
, . . . ,

M

2
−1.

(Type II) f(xj) =

M
2
−1∑

k=−M
2

F (k)eikxj , xj ∈ [0, 2π).

at a computational cost of O(N logN +M).
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Non-Uniform Fourier Transforms (Greengard and Lee, 2004)

The Type I FFT describes the Fourier coefficients of the function

f(x) =

N−1∑
j=0

fjδ(x− xj)

viewed as a periodic function on [0, 2π].

Note that f is not well resolved by a uniform mesh in x.
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Non-Uniform Fourier Transforms (Greengard and Lee, 2004)

Instead, let us compute an approximation to fτ defined as

fτ (x) = (f ∗ gτ )(x) =

∫ 2π

0
f(y)gτ (x− y)dy,

where gτ (x) is a periodic one-dimensional heat kernel on [0, 2π]
given by

gτ (x) =

∞∑
l=−∞

e(x−2lπ)2/4τ .

fτ may be approximated on a uniform grid using

fτ (2πm/Mr) =

N−1∑
j=0

fjgτ (2πm/Mr − xj).
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Non-Uniform Fourier Transforms (Greengard and Lee, 2004)

Figure : Non-Uniform FFT using Gaussian Window Functions5

fτ is a 2π-periodic C∞ function and can be well-resolved by a
uniform mesh in x whose spacing is determined by τ .

5See Accelerating the Nonuniform Fast Fourier Transform, L. Greengard, J.
Lee, SIAM Rev., Vol. 46, No. 3, pp. 443–454.
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Non-Uniform Fourier Transforms (Greengard and Lee, 2004)

The Fourier coefficients of fτ can be computed with high accuracy
using a standard FFT on an oversampled grid. For example,

Fτ (k) =
1

2π

∫ 2π

0
fτ (x)e−ikxdx ≈ 1

M r

Mr−1∑
m=0

fτ (2πm/Mr)e
−ik2πm/Mr .

We may then obtain F (k) by a deconvolution; i.e.,

F (k) =
√
π/τek

2τFτ (k).

Typical parameters: Mr = 2M, τ = 12/M2. Gaussian spreading of
each source to the nearest 24 points yields 12 digits of accuracy.
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Other Implementations and Further Reading

• Accelerating the Nonuniform Fast Fourier Transform, L.
Greengard and J. Lee, SIAM Rev., 46:3(2004), pp. 443–454.

• Fast Fourier Transforms for Nonequispaced Data, A. Dutt and
V. Rokhlin, SIAM J. Sci. Comput., 14 (1993), pp.
1368–1393.

• Nonuniform Fast Fourier Transforms using Min-Max
Interpolation, J. A. Fessler and B. P. Sutton, IEEE Trans.
Signal Process., 51 (2003), pp. 560–574.

• Fast Fourier Transforms for Nonequispaced Data: A Tutorial,
D. Potts, G. Steidl, and M. Tasche, in Modern Sampling
Theory: Mathematics and Applications, J. J. Benedetto and
P. Ferreira, eds., Appl. Numer. Harmon. Anal., Birkhauser,
Boston, 2001, pp. 249–274.
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Why are Edges Important?

• Edges are important descriptors of underlying features in a
function.

• Edges are often necessary to perform operations such as
segmentation and feature recognition.

• Edges may also be incorporated in function reconstruction
schemes (for example, spectral re-projection methods)
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Detecting Edges from Fourier Data

• Edge detection from Fourier data is non-trivial – it requires
the estimation of local features from global data.

• Applying conventional edge detectors (Sobel, Prewitt,
Canny ...) is not optimal – they can pick up Gibbs oscillations
as edges.
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Edge Detection from Non-Uniform Fourier Data

Two approaches (direct methods)

• Edge detection on re-sampled Fourier data

f̂(ωk)ωk /∈Z
(B)URS−−−−−→ f̂(`)`∈Z

Edge Detection−−−−−−−−−−→ Edges

• Edge detection using convolutional gridding

f̂(ωk)ωk /∈Z
Gridding−−−−−→ (f̂ ∗ φ̂)(`)`∈Z

Edge Detection−−−−−−−−−−→ Edges

f̂(ωk)ωk /∈Z
Gridding−−−−−−−−→

Special DCFs
([̂f ] ∗ φ̂)(`)`∈Z

F−1

−−−→ Edges
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Concentration Method (Gelb, Tadmor)

• Define the jump function as follows

[f ](x) := f(x+)− f(x−)

[f ] identifies the singular support of f .

• Approximate the singular support of f using the generalized
conjugate partial Fourier sum

SσN [f ](x) = i

N∑
k=−N

f̂(k) sgn(k)σ

( |k|
N

)
eikx

• σk,N (η) = σ
(
|k|
N

)
are known as concentration factors.
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Concentration Method (Gelb, Tadmor)

Admissibility conditions for σ:

1

N∑
k=1

σ

(
k

N

)
sin(kx) is odd.

2
σk,N (η)

η
∈ C2(0, 1)

3

∫ 1

ε

σk,N (η)

η
−→ −π, ε = ε(N) > 0 being small.
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Concentration Method (Gelb, Tadmor)

Theorem (Concentration Property, (Tadmor, Zou))

Assume that f(·) ∈ BV [−π, π] is a piecewise C2–smooth function
and let σk,N be an admissible concentration factor. Then,
SσN [f ](x) satisfies the concentration property

SσN [f ](x) =

 O
(

logN
N

)
, d(x) . logN

N

O
(

logN
(Nd(x))s

)
, d(x)� 1

N ,

where d(x) denotes the distance between x and the nearest jump
discontinuity and s = sσ > 0 depends on our choice of σ.
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Concentration Factors

Factor Expression

Trigonometric σT (η) =
π sin(αη)

Si(α)

Si(α) =

∫ α

0

sin(x)

x
dx

Polynomial σP (η) = −p π ηp
p is the order of the factor

Exponential σE(η) = Cη exp
[

1
αη (η−1)

]
C - normalizing constant

α - order
C = π∫ 1− 1

N
1
N

exp
[

1
α τ (τ−1)

]
dτ

Table : Examples of concentration factors
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Some Examples
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Figure : Jump Function Approximation, N = 128
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Statistical Formulation

Objective

Design a statistically optimal edge detector which accepts a noisy
concentration sum approximation and returns a list of jump
locations and jump values
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Statistical Formulation

• This is a binary detection theoretic problem – is any given
point in the domain an edge (hypothesis H1) or not
(hypothesis H0)?

• The Neyman–Pearson lemma tells us that the statistically
optimal construction in this case is a correlation detector,
which computes correlations of SσN [f ] with a template
waveform .

• Uses a small number of measurements in a neighborhood of
the given point5; for example, to see if the grid point x0 is an
edge, use

Y =

SσN [f ](x0 − h)
SσN [f ](x0)

SσN [f ](x0 + h)


5This will identify the closest grid point to an edge.
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Statistical Formulation
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Figure : The Template
Waveform and Template
Vector

Resulting edge detector takes the form

−→ H1 : MTC−1
V Y > γ

• CV is the covariance matrix (depends on the noise
characteristics and stencil).

• γ is a threshold which controls the probability of correct
detection.
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Examples – Edge Detection with Noisy Fourier Data
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Figure : Edge Detection with Noisy Data, N = 50, ρ = 0.02, 5−point
Trigonometric detector
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Examples – Edge Detection with Noisy Fourier Data
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Figure : Edge Detection with Noisy Data, N = 50, ρ = 0.02, 5−point
Trigonometric detector
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Two Dimensional Extensions
For images, apply the method to each dimension separately

SσN [f ](x(ȳ)) = i

N∑
l=−N

sgn(l)σ

( |l|
N

) N∑
k=−N

f̂k,l e
i(kx+lȳ)

(overbar represents the dimension held constant.)
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Two Dimensional Extensions
For images, apply the method to each dimension separately

SσN [f ](x(ȳ)) = i

N∑
l=−N

sgn(l)σ

( |l|
N

) N∑
k=−N

f̂k,l e
i(kx+lȳ)

(overbar represents the dimension held constant.)
Edge Map
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DCF Design for Edge Detection

Choose α = {αk}N−N such that

∑
|k|≤N

αke
iωkx ≈

 i
∑
|`|≤M

sgn(l)σ(|l|/N)ei`x |x| ≤ π

0 else

Discretizing on an equispaced grid, we obtain the linear system of
equations

Dα = b̃,

where

• D is the (non-harmonic) DFT matrix with D`,j = eiω`xj , and

• b̃ is a vector containing the values of the generalized
conjugate Dirichlet kernel on the equispaced grid.

27 / 30



Numerical Results

Jump Approximation and Corresponding Weights

• ωk logarithmically spaced

• N = 256 measurements

• Iterative weights solved using LSQR

28 / 30



Outline

1 Introduction

2 Non-Uniform Fourier Reconstruction
Uniform Re-Sampling
Convolutional Gridding
Non-Uniform FFTs

3 Edge Detection
Concentration Method

4 Spectral Re-Projection

28 / 30



Spectral Re-projection

• Spectral reprojection schemes were formulated to resolve the
Gibbs phenomenon. They involve reconstructing the function
using an alternate basis, Ψ (known as a Gibbs complementary
basis).

• Reconstruction is performed using the rapidly converging
series

f(x) ≈
m∑
l=0

clψl(x), where cl =
〈SNf, ψl〉w
‖ψl‖2w

• Reconstruction is performed in each smooth interval. Hence,
we require jump discontinuity locations

• High frequency modes of f have exponentially small
contributions on the low modes in the new basis
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Gegenbauer Reconstruction – Representative Result
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Figure : Gegenbauer reconstruction

• Filtered Fourier reconstruction uses 256 coefficients

• Gegenbauer reconstruction uses 64 coefficients

• Parameters in Gegenbauer Reconstruction - m = 2, λ = 2
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Some Open Problems

1 Design of Density Compensation Factors and Gridding
Windows

2 Exploiting piecewise-smooth structure and edges in
reconstruction schemes

3 Parallel imaging

4 Dynamical sampling models and reconstruction schemes for
motion corrected imaging
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