
DIFFERENTIABILITY FOR FUNCTIONS OF

SEVERAL VARIABLES

We begin by reviewing the concept of differentiation for functions of one variable.

Definition 1. Let f : D ⊂ R → R and let a be an interior point of D. Then f is differentiable at a means

lim
h→0

f(a + h)− f(a)
h

= f ′(a)

or equivalently

lim
x→a

f(x)− f(a)
x− a

= f ′(a)

exists. The number f ′(a) is called the derivative of f at a.

Geometrically the derivative of a function at a is interpreted as the slope of the line tangent to the graph of
f at the point (a, f(a)). Not every function is differentiable at every number in its domain even if that function
is continuous. For example f(x) = |x| is not differentiable at 0 but f is continuous at 0. However we do have
the following theorem.

Theorem 1. If f is differentiable at a, then f is continuous at a.

Extending the definition of differentiability in its present form to functions of several variables is not possible
because the definition involves division and dividing by a vector or by a point in n dimensional space is not
possible. To carry out the extension an equivalent definition is developed that involves division by a distance.
The limit statement can be rewritten as

lim
x→a

f(x)− f(a)
x− a

− f ′(a) = 0 or lim
x→a

f(x)− f(a)− (x− a)f ′(a)
x− a

= 0.

One final modification is still necessary.

lim
x→a

f(x)− f(a)− (x− a)f ′(a)
|x− a|

= 0.

So the following definition is equivalent to the original one.

Definition 2. Let f : D ⊂ R → R and let a be an interior point of D. Then f is differentiable at a means
there is a number, f ′(a), such that

lim
x→a

f(x)− f(a)− (x− a)f ′(a)
|x− a|

= 0.

One way to interpret this expression is that f(x) − f(a) − (x − a)f ′(a) tends to 0 faster than |x − a| does
and consequently f(x) is approximately equal to f(a) + (x− a)f ′(a). The equation y = f(a) + (x− a)f ′(a) is
the equation of the line tangent to the graph of f at the point (a, f(a)). So f(x) is approximated very well by
its tangent line. This observation is the bases for linear approximation.

Using this form of the definition as a model it is possible to construct a definition of differentiability for
functions of several variables. What goes in the denominator is fairly easy to see; namely, |P − P0|. Similarly
the first two term in the numerator would become f(P )−f(P0). But what should replace the term (x−a)f ′(a)?
First we note that it must be a number. One of the factors will be (P0 − P ) or better yet (

−−→
P0P ) — a vector.

Consequently the other must also be a vector and the product will be the dot product. With these observation
the definition of differentiability for functions of several variable is as follows.
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Definition 3. Let f : D ⊂ Rn → R and let P0 be an interior point of D. Then f is differentiable at P0 means
there is a vector, which will be denoted by f ′(P0) for now, such that

lim
P→P0

f(P )− f(P0)− (
−−→
P0P ) · f ′(P0)

|P − P0|
= 0.

For functions of two variables the definition becomes the following.

Definition 4. Let f : D ⊂ R2 → R and let (x0, y0) be an interior point of D. Then f is differentiable at
(x0, y0) means there are two numbers, f1(x0, y0) and f2(x0, y0) such that

lim
(x,y)→(x0,y0)

f(x, y)− f(x0, y0)− (x− x0)f1(x0, y0)− (y − y0)f2(x0, y0)√
(x− x0)2 + (y − y0)2

= 0. (1)

The vector f1(x0, y0)i+f2(x0, y0)j or the pair (f1(x0, y0), f2(x0, y0)) is called the derivative of f at the point
(x0, y0).

Interpret this definition as requiring that the graph of f have a tangent plane at the point (x0, y0, f(x0, y0)).
In fact it is easy to get an equation for this tangent plane. It is

z = f(x0, y0) + f1(x0, y0)(x− x0) + f2(x0, y0)(y − y0).

A vector normal to this plane is f1(x0, y0)i + f2(x0, y0)j − k. The two numbers, f1(x0, y0) and f2(x0, y0), are
computed using techniques learned for computing derivatives of functions of one variable. To find f1(x0, y0) let
y = y0 in equation (1) of Definition 4. We get

lim
x→x0

f(x, y0)− f(x0, y0)− (x− x0)f1(x0, y0)
|x− x0|

= 0.

Comparing this statement to Definition 2 we see that f1(x0, y0) is the derivative of the function h(x) = f(x, y0)
at x0. For example suppose f(x, y) = x2y + xy3. Then h(x) = x2y0 + xy3

0 . Differentiating h with respect to x;
that is, treating y0 as a constant, we get that f1(x0, y0) = 2x0y0 + y3

0 or more generally for each (x, y) we have
f1(x, y) = 2xy +y3. Notice that this equation is obtained by differentiating the formula for f(x, y) with respect
to x treating y as if it were a constant. In a similar fashion f2(x, y) is obtained by differentiating the formula
for f(x, y) with respect to y treating x as a constant. So for the preceding example we get f2(x, y) = x2 +3xy2.

We call f1(x, y) the first order partial derivative of f with respect to x (or with respect to the first variable)
and f2(x, y) the first order partial derivative of f with respect to y (or with respect to the second variable). As
the word, “first” indicates, there are “second”, “third” etc. order partial derivatives as well. We will discuss
them later. When it is clear that we are dealing with first order partial derivatives the word “first” is often
omitted. The following notation is also used to denote partial derivatives.

f1(x, y) =
∂f

∂x
(x, y) =

∂

∂x
f(x, y) = fx(x, y).

In the last expression the same symbol x is use for two different purposes. First, as a subscript where it denotes
the variable of differentiation and second, as the first coordinate of a point in R2. Strictly speaking such a dual
use of one symbol is improper, but this abuse is so common as to be acceptable. As one would expect there is
analogous notation for f2(x, y).

The situation for functions of more than two variables is analogous. In the general case, the derivative is a
vector in n space and it is computed by computing all of the first order partial derivatives.

As in the case of functions of one variable, differentiability implies continuity.

Theorem 2. Let f : D ⊂ Rn → R and let P0 be an interior point of D. Suppose f is differentiable at P0.
Then f is continuous at P0.

Proof: First write

f(P )− f(P0) = f(P )− f(P0)− (P − P0) ·
−−→
P0P + (P − P0) ·

−−→
P0P

=
f(P )− f(P0)− (P − P0) ·

−−→
P0P

|P − P0|
|P − P0|+ (P − P0) ·

−−→
P0P
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Since both terms on the right hand side have limit 0 as P → P0,

lim
P→P0

f(P )− f(P0) = 0; that is, lim
P→P0

f(P ) = f(P0).

The converse of the preceding theorem is not true since the converse of the analogous theorem for functions
of one variable is not true.

The analogy between differentiation for functions of one variable and for functions of several variable is not
a total analogy. For functions of one variable if the derivative, f ′(x), can be computed, then f is differentiable
at x. The corresponding assertion for functions of two variables is false which stands to reason after considering
for a moment what it takes to compute the derivative, (f1(x, y), f2(x, y)), of a function of two variable. To find
f1(x0, y0) one need only know the values of the function, f , at points on the line y = y0 and to find f2(x0, y0)
one need only know the values of f at points on the line x = x0. Consequently, the values of f at points not on
these two lines play no role in determining the derivative of f . However these values certainly are taken into
account when determining whether or not f is differentiable at (x0, y0); that is, if the graph of f has a tangent
plane at the point (x0, y0). For example let

f(x) =

{
0 if x = 0 or y = 0
1 otherwise .

Since f is 0 on the two coordinate axes, f1(0, 0) = 0 = f2(0, 0) but f is not continuous at (0, 0) and by the
preceding theorem, f can’t be differentiable at (0, 0). You might suspect that if f is continuous at (x0, y0) and
the first order partial derivatives exist there, then f is differentiable at (x0, y0) but that conjecture is false as
the following example shows. Let

f(x, y) =


xy√

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

The graph of f is pictured below.
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Again since f is 0 on the two coordinate axes, f1(0, 0) = 0 = f2(0, 0). So if f were differentiable at (0, 0),
we would have that

lim
(x,y)→(x0,y0)

f(x, y)√
x2 + y2

= 0; that is, lim
(x,y)→(x0,y0)

xy

x2 + y2
= 0.

But if the limit is computed along the path y = x, we get limx→0
x2

2x2 = 1
2 .

The natural question to ask then is under what conditions can we conclude that f is differentiable at (x, y).
The answer is contained in the following theorem.
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Theorem 3. Let f : D ⊂ Rn → R and let P0 be an interior point of D. Suppose all n of the first order partial
derivatives of f exist in a ball about P0 and are continuous at P0. Then f is differentiable at P0.

For example let f(x, y) =
√

y2 − x2 = (y2 − x2)1/2. Then f1(x, y) = −x(y2 − x2)−1/2 and f2(x, y) =
y(y2 − x2)−1/2. These two functions are continuous in the region consisting of that part of R2 above the
graph of y = |x| together with that part of R2 below the graph of y = −|x|. According to the theorem, f is
differentiable on this region.
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