A Note on V. I. Arnold's Chord Conjecture

Casim Abbas

1 Introduction

This paper makes a contribution to a conjecture of V. I. Arnold in contact geometry, which he stated in his 1986 paper [4]. A [4] on a closed, oriented three manifold M is a 1-form τ so that $\tau \wedge d\tau$ is a volume form. There is a distinguished vectorfield X_{τ} , called the Reeb vectorfield of τ , which is defined by $i_{X_{\tau}}d\tau \equiv 0$ and $i_{X_{\tau}}\tau \equiv 1$. The standard example on S³ is the following: Consider the 1-form λ on \mathbf{R}^4 defined by

$$\lambda = \frac{1}{2}(x_1 dy_1 - y_1 dx_1 + x_2 dy_2 - y_2 dx_2).$$

This induces a contact form on the unit three sphere S^3 . Observe that all the orbits of the Reeb vectorfield are periodic; they are the fibres of the Hopf fibration. Note that the dynamics of the Reeb vectorfield changes drastically in general if we replace λ by the contact form $f\lambda$ where f is a nowhere vanishing function on S^3 (see the example in [3]; see also [1], [2]). A Legendrian knot in a contact manifold (M, τ) is a knot which is everywhere tangent to ker τ . Then V. I. Arnold stated the following conjecture.

Conjecture ([4]). Let λ be the above contact form on the three sphere. If f: $S^3 \to (0, \infty)$ is a smooth function and \mathcal{L} is a Legendrian knot in S^3 , then there is a *characteristic chord* for $(f\lambda, \mathcal{L})$, i.e., a trajectory x of the Reeb vectorfield and some number $T \neq 0$ so that $x(0) \in \mathcal{L}$ and $x(T) \in \mathcal{L}$.

There is almost nothing known about this problem. V. I. Arnold only mentioned the case where $f \equiv 1$: Projecting the Legendrian knot onto S² using the Hopf fibration, we observe that the area enclosed by this curve is a multiple of 4π . Hence, it must have

Received 1 July 1998. Revision received 20 October 1998. Communicated by Helmut Hofer.

218 Casim Abbas

a self-intersection, which in turn shows that an orbit of the Reeb vectorfield intersects the Legendrian knot at two different times.

Definition 1.1. A three-dimensional submanifold of \mathbf{R}^4 is called a *strictly convex hypersurface in* \mathbf{R}^4 if it is closed and if it bounds a compact, strictly convex set containing the origin.

We provide an existence proof for characteristic chords in the case where the contact manifold is a strictly convex hypersurface $S \subset \mathbf{R}^4$ with contact form $\lambda|_S$, and where we confine ourselves to special Legendrian knots: We only consider Legendrian knots which are not linked with a certain periodic orbit of the Reeb vectorfield. Our result is based on the following crucial theorem by H. Hofer, K. Wysocki, and E. Zehnder [10], [8].

Theorem 1.2. Let S be a strictly convex hypersurface in \mathbb{R}^4 and let J be a complex structure on the symplectic vectorbundle ker $\lambda \to S$ compatible with $d\lambda$; i.e., $d\lambda \circ (\mathrm{Id} \times \mathrm{J})$ should be a bundle metric on ker λ (such J always exist; see [3]). Then there exist: an unknotted periodic orbit P_0 of the Reeb vectorfield X_{λ} with self-linking number -1 and generalized Conley-Zehnder index 3 (*binding orbit*); and a diffeomorphism

 $\Phi: S^1 \times \mathbf{C} \longrightarrow S \setminus P_0$

with the following properties.

For every $\tau \in S^1,$ the map $u_\tau := \Phi(\tau,.)$ is an embedding and has the following properties:

• $u_{\tau}(\mathbf{C})$ is transversal to X_{λ} .

• $u_{\tau}(Re^{2\pi it}) \to P_0(T_0t)$ as $R \to +\infty$ with convergence in C^{∞} , where T_0 is the minimal period of P_0 .

- The maps u_τ satisfy the following partial differential equation:

 $\pi_{\lambda}\partial_{s}u_{\tau}+J(u_{\tau})\pi_{\lambda}\partial_{t}u_{\tau}=0, \text{ where } \pi_{\lambda}\text{: } TS \rightarrow \text{ker}\,\lambda \text{ is the projection along } \chi_{\lambda},$

 $d(\mathfrak{u}_{\tau}^*\lambda\circ\mathfrak{i})=0.$

• $d\lambda|_{u_{\tau}(\mathbf{C})}$ is nondegenerate and $\int_{\mathbf{C}} u_{\tau}^* d\lambda = T_0 \in (0, \infty)$.

• Each $u_{\tau}(C)$ gives rise to a global surface of section; i.e. the closure of $u_{\tau}(C)$ is an embedded disk D_{τ} with $\partial D_{\tau} = P_0$, and for each point $p \in S \setminus P_0$, there are real numbers $t^-(p) < 0$ and $t^+(p) > 0$ so that

 $\varphi_{t^{-}(p)}(p), \ \varphi_{t^{+}(p)}(p) \in \overset{\circ}{D_{\tau}} = u_{\tau}(\mathbf{C}),$

where ϕ denotes the flow of X_{λ} .

H. Hofer, K. Wysocki, and E. Zehnder have actually shown that any periodic orbit P_0 of X_{λ} , which is unknotted with self-linking number -1 and generalized Conley-Zehnder index 3, is a binding orbit as described in Theorem 1.2 (see Theorem 1.6 in [9] and Section 7 of [10]). Our result is the following theorem.

Theorem 1.3. Let S be a strictly convex hypersurface in \mathbb{R}^4 equipped with the contact form $\lambda|_S$. Let $\mathcal{L} \subset S$ be a Legendrian knot with the following additional property: Assume there is an unknotted periodic orbit P_0 of X_λ which has self-linking number -1 and generalized Conley-Zehnder index 3, so that \mathcal{L} and P_0 are not linked. Then there exists a characteristic chord for the knot \mathcal{L} .

We note that such an orbit P_0 always exists in view of Theorem 1.2, so there are many knots \mathcal{L} for which the assumptions are satisfied. The obvious drawback is, of course, that the hypothesis is in general difficult to verify.

Remark. The assumption of P_0 having generalized Conley-Zehnder index 3 can be dropped since Theorem 1.2 also holds without this assumption (see [7]). In fact, it follows from Theorem 1.2 that there always exist at least two unknotted periodic orbits P_0 and P_1 which have self-linking number -1 and are linked with $lk(P_0, P_1) = 1$. In view of this remark, the following is true.

Theorem 1.4. Let S be a strictly convex hypersurface in \mathbb{R}^4 equipped with the contact form $\lambda|_S$. Let $\mathcal{L} \subset S$ be a Legendrian knot with the following additional property: Assume there is an unknotted periodic orbit P_0 of X_{λ} which has self-linking number -1, so that \mathcal{L} and P_0 are not linked. Then there exists a characteristic chord for the knot \mathcal{L} .

The relation between Theorem 1.3 and V. I. Arnold's conjecture is the following: The projection along the rays issuing from the origin in \mathbb{R}^4 defines a diffeomorphism $\phi: S^3 \to S$ by $z \mapsto h(z)z$ with a suitable smooth function $h: S^3 \to (0, \infty)$. Then $\phi^*\lambda|_S = h^2\lambda|_{S^3}$. Hence Theorem 1.3 gives an affirmative answer to V. I. Arnold's conjecture if we restrict the class of admissible Legendrian knots and the class of contact forms $f\lambda$. 220 Casim Abbas

2 Proof of Theorem 1.3

We assume, of course, that $P_0 \cap \mathcal{L} = \emptyset$ since we are done otherwise. Let us choose $\tau_0 \in S^1$ so that our given knot \mathcal{L} and $u_{\tau_0}(\mathbf{C})$ intersect transversally.

We define the map

$$\begin{split} \Psi: \ Z &= \mathsf{D} \times \mathbf{R} \longrightarrow \mathsf{S} \backslash \mathsf{P}_0, \\ (x, y, z) &\longmapsto \varphi_z(\mathfrak{u}_0(x, y)), \end{split}$$

where φ denotes the flow of X_{λ} , D is the open unit disk in \mathbf{R}^2 , and $u_0 = \Phi(\tau_0, \varphi(.))$ with φ being the diffeomorphism φ : D \rightarrow C, $re^{i\varphi} \mapsto (1 - r^2)^{-1}re^{i\varphi}$. Then \mathcal{L} and $\Sigma := u_0(D)$ intersect transversally.

Denote by

$$\mathsf{T}^{\pm}:\, \Sigma \longrightarrow \mathbf{R}^{\pm}$$

the positive (resp., negative) return time; i.e., $T^+(p)$ (resp., $T^-(p)$) is the smallest positive (resp., largest negative) time t where we have $\phi_t(p) \in \Sigma$. Let us denote by $P_{\Sigma}: \Sigma \to \Sigma$ the Poincaré map; i.e., $P_{\Sigma}(p) = \phi_{T^+(p)}(p)$. The inverse P_{Σ}^{-1} is given by $p \longmapsto \phi_{T^-(p)}(p)$. We observe that

$$\inf_{\mathbf{p}\in\Sigma}|\mathsf{T}^{\pm}(\mathbf{p})|>0 \tag{1}$$

and that the derivative of Ψ is an isomorphism at every point $(x, y, z) \in Z$. Assume now

 $\Psi(\mathbf{x},\mathbf{y},z) = \Psi(\mathbf{x}',\mathbf{y}'.z')$

for some points $(x, y, z), (x', y', z') \in Z$. Then

 $\varphi_{z-z'}(u_0(x, y)) = u_0(x', y')$

and there is some $k \in \mathbf{Z}$ so that

$$\mathfrak{u}_0(\mathbf{x}',\mathbf{y}')=\mathsf{P}^k_\Sigma(\mathfrak{u}_0(\mathbf{x},\mathbf{y}))$$

and

$$z'=z-\sum_{l=0}^{|k|-1}(\mathsf{T}^\pm\circ\mathsf{P}_{\Sigma}^{\pm l}\circ u_0)(x,y),$$

where $\pm = \text{sign } k$ and $P_{\Sigma}^{0} := \text{Id}_{\Sigma}$. Using this and (1), we see that $\Psi: Z \to S \setminus P_{0}$ is the universal cover of $S \setminus P_{0}$. A straightforward calculation shows that the 1-form $\nu = \Psi^{*} \lambda$ on Z is given by

$$\nu = \mathrm{d}z + \mathrm{u}_0^* \lambda.$$

Moreover, it is a contact form with Reeb vectorfield

$$X_{\nu}(x, y, z) = \frac{\partial}{\partial z} = (0, 0, 1).$$

Let $\gamma: [0,1] \to S \setminus P_0$ be a parametrization of our Legendrian knot \mathcal{L} ; i.e., $\gamma(0) = \gamma(1)$, $\gamma([0,1]) = \mathcal{L}$, and γ is an embedding. Take any lift $\tilde{\gamma}: [0,1] \to Z$ of γ . Note that $\tilde{\gamma}$ is a smoothly embedded curve since Ψ is a local diffeomorphism. Moreover, $\tilde{\gamma}$ is Legendrian with respect to the contact structure ker γ on Z.

The homology groups $H_1(\mathcal{L}, \mathbb{Z})$ and $H_1(S \setminus P_0, \mathbb{Z})$ are isomorphic to \mathbb{Z} ; denote generators by $[\mathcal{L}]$ and $[S \setminus P_0]$. Then the inclusion $\mathcal{L} \hookrightarrow S \setminus P_0$ induces a homomorphism $i_* \colon H_1(\mathcal{L}, \mathbb{Z}) \to H_1(S \setminus P_0, \mathbb{Z})$, so there exists $k \in \mathbb{Z}$ so that $i_*[\mathcal{L}] = k[S \setminus P_0]$. Then $lk(\mathcal{L}, S \setminus P_0) = k$ is the linking number of \mathcal{L} and P_0 in S. By our assumption that \mathcal{L} and P_0 are not linked, we have k = 0.

If $\{\mathcal{L}\}\$ is a generator of $\pi_1(\mathcal{L}) \approx \mathbb{Z}$, and if $i_{\#}$: $\pi_1(\mathcal{L}) \to \pi_1(S \setminus P_0)$ is the homomorphism induced by the inclusion i, then the following hold.

- \mathcal{L} and P_0 are not linked if and only if $i_{\#}\{\mathcal{L}\} \in \pi_1(S \setminus P_0)$ is the trivial class.
- A lift $\tilde{\gamma}$: $[0,1] \rightarrow Z$ of γ is a closed curve if and only if \mathcal{L} and P_0 are not linked.

Hence, any lift $\tilde{\gamma}$: $[0,1] \rightarrow Z = D \rightarrow \mathbf{R}$ of γ is a closed curve. Writing $\tilde{\gamma}(t) = (\zeta(t), z(t)) \in D \times \mathbf{R}$, we obtain

$$0 = \int_{S^1} \tilde{\gamma}^* \nu = \int_{S^1} \zeta^*(\mathfrak{u}_0^* \lambda)$$

We use the following lemma (Proposition 5.4. of [10]).

Lemma 2.1. Consider on D the 2-form $f(x, y)dx \wedge dy$ with f > 0 and integrable on D. Then there exists a diffeomorphism τ : $D \rightarrow D$ satisfying

$$\tau^*(f\,dx\wedge dy)=c\,dx\wedge dy$$

for a suitable constant c > 0.

Applying this to our situation, we get

$$\tau^* d(u_0^* \lambda) = c \, dx \wedge dy.$$

If $\overline{\zeta}$: $\overline{D} \to D$ is any smooth extension of ζ : $S^1 \to D$, and if we write $\overline{\xi} := \tau^{-1} \circ \overline{\zeta}$, $\xi := \tau^{-1} \circ \zeta$, then

$$0 = \int_{S^1} \zeta^*(u_0^*\lambda)$$

= $\int_{\overline{D}} \overline{\zeta}^* d(u_0^*\lambda)$
= $c \int_{\overline{D}} \overline{\xi}^*(dx \wedge dy)$
= $\frac{c}{2} \int_{S^1} \xi^*(xdy - ydx).$

This means that the area of the set enclosed by the curve ξ equals zero, so ξ must have a self-intersection. This implies that ζ must also have a self-intersection; hence there is a characteristic chord for the Legendrian knot $\tilde{\gamma}$. Because $\tilde{\gamma}$ was a lift of the curve γ with respect to Ψ and because Ψ maps orbits of X_{ν} to orbits of X_{λ} , we also have obtained a characteristic chord for the knot \mathcal{L} .

References

- [1] C. Abbas, *Asymptotic behaviour of pseudoholomorphic half-planes in symplectisations*, PhD thesis, Eidgenössische Technische Hochschule, Zürich, 1997.
- [2] ——, Finite energy surfaces and the chord problem, Duke Math. J. **96** (1999), 241-316.
- [3] C. Abbas and H. Hofer, *Holomorphic curves and global questions in contact geometry*, to appear in Birkhäuser.
- [4] V. I. Arnold, First steps in symplectic topology, Russ. Math. Surv. 41 (1986), 1–21.
- [5] Y. Eliashberg, to appear in IAS/Park City Math. Ser.
- [6] Y. Eliashberg and H. Hofer, *Contact homology*, in preparation.
- [7] H. Hofer, private communication.
- [8] H. Hofer, K. Wysocki, and E. Zehnder, A characterization of the tight three sphere, Duke Math. J. 81 (1995), 159–226.
- [9] ——, A characterization of the tight three sphere, II, to appear in Comm. Pure Appl. Math.
- [10] ----, The dynamics on a strictly convex energy surface in \mathbb{R}^4 , to appear in Ann. of Math., 1998.

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA