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A Note on V. I. Arnold’s Chord Conjecture

Casim Abbas

1 Introduction

This paper makes a contribution to a conjecture of V. I. Arnold in contact geometry,which

he stated in his 1986 paper [4]. A [4] on a closed, oriented three manifold M is a 1-form τ

so that τ ∧ dτ is a volume form. There is a distinguished vectorfield Xτ, called the Reeb

vectorfield of τ, which is defined by iXτdτ ≡ 0 and iXττ ≡ 1. The standard example on S3

is the following: Consider the 1-form λ on R4 defined by

λ = 1

2
(x1dy1 − y1dx1 + x2dy2 − y2dx2).

This induces a contact form on the unit three sphere S3. Observe that all the orbits of

the Reeb vectorfield are periodic; they are the fibres of the Hopf fibration. Note that the

dynamics of the Reeb vectorfield changes drastically in general if we replace λ by the

contact form fλwhere f is a nowhere vanishing function on S3 (see the example in [3]; see

also [1], [2]). A Legendrian knot in a contact manifold (M,τ) is a knot which is everywhere

tangent to ker τ. Then V. I. Arnold stated the following conjecture.

Conjecture ([4]). Let λ be the above contact form on the three sphere. If f: S3 → (0,∞)

is a smooth function and L is a Legendrian knot in S3, then there is a characteristic

chord for (fλ,L), i.e., a trajectory x of the Reeb vectorfield and some number T 6= 0 so that

x(0) ∈ L and x(T ) ∈ L.

There is almost nothing known about this problem. V. I. Arnold only mentioned

the case where f ≡ 1: Projecting the Legendrian knot onto S2 using the Hopf fibration,

we observe that the area enclosed by this curve is a multiple of 4π. Hence, it must have
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a self-intersection, which in turn shows that an orbit of the Reeb vectorfield intersects

the Legendrian knot at two different times.

Definition 1.1. A three-dimensional submanifold of R4 is called a strictly convex hyper-

surface in R4 if it is closed and if it bounds a compact, strictly convex set containing the

origin.

We provide an existence proof for characteristic chords in the case where the

contact manifold is a strictly convex hypersurface S ⊂ R4 with contact form λ|S, and

where we confine ourselves to special Legendrian knots: We only consider Legendrian

knots which are not linked with a certain periodic orbit of the Reeb vectorfield. Our result

is based on the following crucial theorem by H. Hofer, K. Wysocki, and E. Zehnder [10],

[8].

Theorem 1.2. Let S be a strictly convex hypersurface in R4 and let J be a complex struc-

ture on the symplectic vectorbundle ker λ→ S compatible with dλ; i.e., dλ◦ (Id× J) should

be a bundle metric on ker λ (such J always exist; see [3]). Then there exist: an unknotted

periodic orbit P0 of the Reeb vectorfield Xλ with self-linking number −1 and generalized

Conley-Zehnder index 3 (binding orbit); and a diffeomorphism

Φ: S1 × C −→ S\P0

with the following properties.

For every τ ∈ S1, the map uτ := Φ(τ, .) is an embedding and has the following

properties:

• uτ(C) is transversal to Xλ.

• uτ(Re2πit)→ P0(T0t) as R→+∞with convergence inC∞,where T0 is the minimal

period of P0.

• The maps uτ satisfy the following partial differential equation:

πλ∂suτ + J(uτ)πλ∂tuτ = 0, where πλ: TS→ ker λ is the projection along χλ,

d(u∗τλ ◦ i) = 0.

• dλ|uτ(C) is nondegenerate and
∫

C u
∗
τdλ = T0 ∈ (0,∞).

• Each uτ(C) gives rise to a global surface of section; i.e. the closure of uτ(C) is

an embedded disk Dτ with ∂Dτ = P0, and for each point p ∈ S\P0, there are real numbers

t−(p) < 0 and t+(p) > 0 so that

ϕt−(p)(p), ϕt+(p)(p) ∈
◦
Dτ= uτ(C),

where ϕ denotes the flow of Xλ.
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H. Hofer, K. Wysocki, and E. Zehnder have actually shown that any periodic orbit

P0 ofXλ,which is unknotted with self-linking number−1 and generalized Conley-Zehnder

index 3, is a binding orbit as described in Theorem 1.2 (see Theorem 1.6 in [9] and Section 7

of [10]). Our result is the following theorem.

Theorem 1.3. Let S be a strictly convex hypersurface in R4 equipped with the contact

form λ|S. Let L ⊂ S be a Legendrian knot with the following additional property: Assume

there is an unknotted periodic orbit P0 of Xλ which has self-linking number −1 and

generalized Conley-Zehnder index 3, so that L and P0 are not linked. Then there exists a

characteristic chord for the knot L.

We note that such an orbit P0 always exists in view of Theorem 1.2, so there

are many knots L for which the assumptions are satisfied. The obvious drawback is, of

course, that the hypothesis is in general difficult to verify.

Remark. The assumption of P0 having generalized Conley-Zehnder index 3 can be

dropped since Theorem 1.2 also holds without this assumption (see [7]). In fact, it follows

from Theorem 1.2 that there always exist at least two unknotted periodic orbits P0 and

P1 which have self-linking number −1 and are linked with lk(P0, P1) = 1. In view of this

remark, the following is true.

P

P

0

1

Theorem 1.4. Let S be a strictly convex hypersurface in R4 equipped with the contact

form λ|S. Let L ⊂ S be a Legendrian knot with the following additional property: Assume

there is an unknotted periodic orbit P0 of Xλ which has self-linking number −1, so that

L and P0 are not linked. Then there exists a characteristic chord for the knot L.

The relation between Theorem 1.3 and V. I. Arnold’s conjecture is the following:

The projection along the rays issuing from the origin in R4 defines a diffeomorphism

φ: S3 → S by z 7−→ h(z)z with a suitable smooth function h: S3 → (0,∞). Then φ∗λ|S =
h2λ|S3 . Hence Theorem 1.3 gives an affirmative answer to V. I. Arnold’s conjecture if we

restrict the class of admissible Legendrian knots and the class of contact forms fλ.
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2 Proof of Theorem 1.3

We assume, of course, that P0 ∩L = ∅ since we are done otherwise. Let us choose τ0 ∈ S1

so that our given knot L and uτ0 (C) intersect transversally.

We define the map

Ψ: Z = D× R −→ S\P0,

(x, y, z) 7−→ ϕz(u0(x, y)),

where ϕ denotes the flow of Xλ, D is the open unit disk in R2, and u0 = Φ(τ0, φ(.)) with

φ being the diffeomorphism φ: D → C , reiϕ 7−→ (1 − r2)−1reiϕ. Then L and Σ := u0(D)

intersect transversally.

Denote by

T±: Σ −→ R±

the positive (resp., negative) return time; i.e., T+(p) (resp., T−(p) ) is the smallest positive

(resp., largest negative) time t where we have ϕt(p) ∈ Σ. Let us denote by PΣ: Σ → Σ the

Poincaré map; i.e., PΣ(p) = ϕT+(p)(p). The inverse P−1
Σ is given by p 7−→ ϕT−(p)(p). We observe

that

inf
p∈Σ
|T±(p)| > 0 (1)

and that the derivative of Ψ is an isomorphism at every point (x, y, z) ∈ Z. Assume now

Ψ(x, y, z) = Ψ(x′, y′.z′)

for some points (x, y, z), (x′, y′, z′) ∈ Z. Then

ϕz−z′ (u0(x, y)) = u0(x′, y′)

and there is some k ∈ Z so that

u0(x′, y′) = PkΣ(u0(x, y))

and

z′ = z−
|k|−1∑
l=0

(T± ◦ P±lΣ ◦ u0)(x, y),

where ± = sign k and P0
Σ := IdΣ. Using this and (1), we see that Ψ: Z → S\P0 is the

universal cover of S\P0. A straightforward calculation shows that the 1-form ν = Ψ∗λ on

Z is given by

ν = dz+ u∗0λ.
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Moreover, it is a contact form with Reeb vectorfield

Xν(x, y, z) = ∂

∂z
= (0,0,1).

Let γ: [0,1] → S\P0 be a parametrization of our Legendrian knot L; i.e., γ(0) = γ(1),

γ([0,1]) = L, and γ is an embedding. Take any lift γ̃: [0,1] → Z of γ. Note that γ̃ is a

smoothly embedded curve since Ψ is a local diffeomorphism. Moreover, γ̃ is Legendrian

with respect to the contact structure kerν on Z.

The homology groups H1(L,Z) and H1(S\P0,Z) are isomorphic to Z; denote genera-

tors by [L] and [S\P0]. Then the inclusion L↪→S\P0 induces a homomorphism i∗: H1(L,Z)→
H1(S\P0,Z), so there exists k ∈ Z so that i∗[L] = k [S\P0]. Then lk(L, S\P0) = k is the linking

number of L and P0 in S. By our assumption that L and P0 are not linked, we have k = 0.

If {L} is a generator of π1(L) ≈ Z, and if i#: π1(L)→ π1(S\P0) is the homomorphism

induced by the inclusion i, then the following hold.

• L and P0 are not linked if and only if i#{L} ∈ π1(S\P0) is the trivial class.

• A lift γ̃: [0,1]→ Z of γ is a closed curve if and only if L and P0 are not linked.

Hence, any lift γ̃: [0,1] → Z = D → R of γ is a closed curve. Writing γ̃(t) =
(ζ(t), z(t)) ∈ D× R, we obtain

0 =
∫
S1
γ̃∗ν =

∫
S1
ζ∗(u∗0λ).

We use the following lemma (Proposition 5.4. of [10]).

Lemma 2.1. Consider on D the 2-form f(x, y)dx ∧ dy with f > 0 and integrable on D.

Then there exists a diffeomorphism τ: D→ D satisfying

τ∗(f dx ∧ dy) = c dx ∧ dy

for a suitable constant c > 0.

Applying this to our situation, we get

τ∗d(u∗0λ) = c dx ∧ dy.

If ζ: D→ D is any smooth extension of ζ: S1 → D, and if we write ξ := τ−1 ◦ζ, ξ := τ−1 ◦ζ,
then

0 =
∫
S1
ζ∗(u∗0λ)

=
∫
D

ζ
∗
d(u∗0λ)

= c
∫
D

ξ
∗
(dx ∧ dy)

= c

2

∫
S1
ξ∗(xdy− ydx).
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This means that the area of the set enclosed by the curve ξ equals zero, so ξ must have a

self-intersection. This implies that ζ must also have a self-intersection; hence there is a

characteristic chord for the Legendrian knot γ̃. Because γ̃ was a lift of the curve γ with

respect to Ψ and because Ψ maps orbits of Xν to orbits of Xλ, we also have obtained a

characteristic chord for the knot L.
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