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A Monoid Structure on Diagrams

An example of what we'll call a partition diagram :

• • @ @ •

⑨ ⑧ ② 00 Be

key features :

• Has r labeled Vertices on top and bottom for some r>☐

• The vertices are grouped into connected components

by edges



A Monoid Structure on Diagrams
A multiplication formula :

i) put the first diagram on top of the second
,

identifying corresponding vertices in the middle

ii ) Restrict to the top and bottom
, preserving which

vertices are connected in the larger diagram

• • • • • •

• • @

• • • → ↑ 9 9 →
• ⑨ •

• ⑨ •

⑨ • @

@ • • @ • •



A Monoid Structure on Diagrams
• • ⑨

• • ⑨

• • @
• . . : : :→ →
• • ⑨

• • ⑨

• • @

• • @

• • ⑨

• • ⑨

• • @

• • • • •

!→ →• • ⑨
• • ⑨

8 •

• • @
• • @

• • ⑨

• • ⑨

• • @

• • • → : : :→
• • ⑨ • • ⑨

• • @ • • @



Schur-Weyl Duality

Vn : an n - dimensional E- vector space

GLn(¢) : group of nxn invertible matrices over ¢

GLn(¢) acts on Vn by the usual matrix - vector multiplication

Vn⊕r : the rtʰ tensor power of Vn
.

You can think of

elements here as V. ④ b.④ . . . ④ Vr with each Vi c- Vn
( really they're linear combinations of these but we only need

to work with a basis )

Glen (G) also acts on vn④r in the following way :

A. (v. ④ v. D- . . ④ Vr) = (Av , / ☒ (AND - . . ④ (Avr)



Schur-Weyl Duality

Sr : The symmetric group on r symbols

Sr also acts on Vn④ʳ by permuting the factors :

G. (V, ④ Vg④ -
- ' ④ Vr) = Voy ,, ④V(↳④ - - - ⊕ V0 _ '(r)

④r
Glinda Vn 5 Sr

Natural question : How do these two actions interact

with each other?



Schur-Weyl Duality

④r
Glinda Un Dsr

It's not too hard to see these actions commute i. e.

0
. (A. (v ,④ . . . ④Vr) ) = A. (o. (V , ④ - - •④Vr) )

The more interesting fact is that they are mutual centralizers
( the Sr action gives all the maps that commute with the Glencoe)
action and vice versa )

This is called Schur- Weyl duality , first discovered

by Schur and then popularized by Weyl who used it to

classify Un and Glu representations



Schur-Weyl Duality

Main point :

This duality connects the representation theory of the two

objects
, letting us better understand both by studying either.

More precisely :

As a consequence, we have a decomposition

④ r
≈ ⑦ E

"

-05
"

Vn
✗

at a Glu Ca) ✗ Sr module, giving us e.g .

• A correspondence between irreducible Gln (6) and % modules

where the multiplicity of one is the dimension of the other

• The same coefficients show up studying E'④ Em
and ( s

✗
①gu)↑

""Hml

six ✗ SIMI



The Partition Algebra

We can restrict the action of Glen (e) to

just the nxn permutation matrices

ii.
Glni)

a
☐

④ rI Ving
u

Sn Sr

The object that completes this picture is what

is called the partition Algebra



The Partition Algebra

What does this Sn action look like ?

Write e
,
,

. . .

,
en for a basis of Vn

,

then for •c- Sn
6. ei = eoci )

write I=( ii, . . .

,
ir) with 1≤ i

, ,
. . . .ir ≤ n

,

then e±= ei
,

④ - - - ④ ei
,
for all such I forms a basis

of Vn④r
.

For o E Sn
,

o
. Ey = (Oei , )④ -

- < ④ Geir ) = eoci
, ,
④ ' ' ' ① eocir)= exit

when • ( it = Colin
,

. . .

,
•Cir))



The Partition Algebra

Given this action of Sn
,

how do we determine

what maps commute with it ?

End ( vn④r) : the space of linear maps Vn④r→Vn④r

Ends
.
(Vpr) : the maps in End(Vn④r) which commute with

the Sn action

we're looking for a basis of Ends
,
(VF)



The Partition Algebra

Generally for ME End(Vn④r)
,

we can describe it by :

I

Mee = EM , ej
The condition ME Ends

, / vn☒r) amounts to

one, = Moree

En en ;-) = ÉMÉ"e,
comparing the coefficient on eocj , tells us that

I slit

ME =Moy, for a" I. I
,

o
.



The Partition Algebra

Visualizing some of these conditions for Ends
,
(4×02) :

[
It 12 13 21 222331 3233

I I

11 Te
-

E (1 42,131 (12,3-3)
12 b C

13 b 112) 22,22 21,23 21,33

21 b C
(13) 33,33 32,31 32,11

22 C a

23 C b (23) 11,11 13,12 13,22

31 C b
32 C b (123) 22,22 23,21 23,11

33
_ A- (132) 33,33 31,32 31,22

Each of these orbits represents a basis element
,

so how

can we compactly represent these orbits ?



The Partition Algebra
≤ liiiyj.jo)
E (1 42,131 (12,3-31

112) 22,22 21,23 21,33

(13) 33,33 32,31 32,11

(23) 11,11 13,12 13,22

(123) 22,22 23,21 23,11

(132) 33,33 31,32 31,22

j
, j, j

, j, I
, iz

@ @ @ • @ @

• • • • • •

i
, i

,
i
, is i

, is



The Partition Algebra

If we label these graphs with 1 . ..ir on top and I . .;F
on the bottom

,
we get set partitions from connected components

I • • 2

→ { { ii. II} }
1- • • I

l • • 2

→ { { Ii }
,

{23
,

{I }}
Too • I

1 • •
£

→ { { 1,23, { i}, { I}}
1- • • I

write Ar for the set of these set partitions of [river]



The Partition Algebra

These graphs representing an orbit are not unique . E.g.

"

• of £ &

and

• • B &

T I T I

represent the same orbit
.

However
,

all the graphs

representing a particular orbit have the same connected

components . So we define a diagram as an

equivalence class of graphs on the vertices Er] UEF]
with the same connected components .



The Partition Algebra
④2) has a basis indexed by :for example

, Ends
,
/ Vy
- -

• • • • • • @ •

so @ so @ so @ so @

@ • • • @ • @ •

so @ no • so @ so •

• • • • @ • • •

so @ no • so @ so @

• • • • @ •

so @ so • so @

( need n≥2r for an the diagrams to appear)



The Partition Algebra

We'll now call Endsn /vn⊕r) the partition

algebra Pr ( n ) ( introduced by P
.

Martin in 1990s]

The basis obtained this way is called the orbit basis
,

which we'll write as

{% : " c- Sr}
This basis does a great job capturing the

vector space structure of Print
,

but it doesn't

do much to elucidate the algebra structure .



The Partition Algebra

An example of orbit basis multiplication :

T
-•

9
Too

.
:-||

= (n - 4) T •→

;
+ In -3) T -• •

to
.

1.
•
£0

• •

+ In -3) T ;-•y g.
+ In - 2) T

E.1 ↑
.



The Partition Algebra

Given set partitions F- { Ai
,

. . .

.
As }

,

V={ B
, .

. ; Bt}
,

we say that V is a coarsening of IT and write

V ≤ IT if each A
; is contained in some Bj .

{ { iii. I }
,

{ 3,5}} ≤ { { i.is
,

{a. I}
,

{B. { I}}

⑧ • • • @ •

• @ @

≤
• • •



The Partition Algebra

There is another basis { LT, } called the diagram basis

given by

[
*
= IT

✓ ≤ it
V

Revisiting the two diagrams from the earlier multiplication

example, we see the diagram basis multiplication looks

more like our nice multiplication
from earlier :

L
-•

q
L

•

•→µ
= n L •-••

,
• • •

•
£0

• •



The Partition Algebra
The formula :

i) put the first diagram on top of the second
,

identifying corresponding vertices in the middle

ii ) Restrict to the top and bottom
, preserving which

vertices are connected in the larger diagram
Iii ) Record a coefficient of no when c is the number

of components stranded in the middle of the larger

diagram .

• • • • • •

• • @

• • • → ↑•• 9 ; → h
& & ↓ ••• ⑨ •

⑨ • @

@ • • @ • •



The Partition Algebra
• • ⑨

• • ⑨

• • @
• • • : : :→ →
• • ⑨

• • ⑨

• • @

• • @

• • ⑨

• • ⑨

• • @

→

• ↑. •

→
•

! !• •• • N
• • ⑨

8

• • @
• • @

• • ⑨

• • ⑨

• • @

• • • → : : :→
• • ⑨ • • ⑨

• • @ • • @



The Partition Algebra
④r

GG Vn 2 A

G- A- typical Element
• • •

Glen ①Sr
B • •

On Brauer Algebra (Bron))
• • •

(matchings)
• • as

8D @ •

GCMP.nl Tanabe Algebra (Tmp,r(4)
. . • ( subtle,

but akin to

#top = #bottom cnn.am ) )

sn Partition Algebra
• • •

• • I

• • •

(components of site ≤2
,)Uqcglz) Motzkin Algebra • • •

non - Closing

Uq(sf) Temperley -Lieb Algebra
• • •

• • •
(non - crossing matchings)



Howe Duality

Vpn : The space of nxk Matrices over ①

Pr(Vn,u) : The space of homogeneous polynomial forms of

degree r on Vn,n

Think of the monomials like ✗
II
= ✗

i.j ,
_
' '

Xirj
,

with

1 ≤ i
, , .

. ..ir ≤ h and I ≤ j
, .

. . .

, jr ≤ K

where the indeterminate Xij pions our entry Ci;) in the matrix
.

✗ 12×13×22%55 ?]) = 2.1.3



Howe Duality

A matrix A- c- Glen (E) acts on FEPYVn.ie) by

(A. f) (x ) = f- (A- '

×)

In 1980s
,
Roger Howe determined the centralizer :

GLncelGPYVn.ie/0GLu(e)
where BEGIN (E) acts by

( B. f) (x)=f(✗ B)



Howe Duality

Glace )
A

1
'

lPTVnm )

Sn
↳

Glace)



The Multiset Partition Algebra

Orellana and Zablocki 12020) examined Endsncprlvn.nl)
,

describing an orbit basis for it and dubbing it

Mpr,nlh ), the multiset partition algebra

This basis is indexed by partition diagrams whose

vertices are colored from a set of K colors
,

with identically

colored vertices among the top or bottom indistinguishable :

• • ⑤ ☆ • • ☆ • • • ⑤ •

BB ② ⑨ Be •• • • go ••
•É&

Be



The Multiset Partition Algebra

Like before
,

these diagrams represent partitions, but this

time nepitition is allowed ( indicated by the double brunets) :

7 7 2 2

• • ⑤ ☆

→ {{ {{ 1. i. I}}
,

{{is}
,

{{2. a. I. I}}}}
80 DO ⑨

But
I I 2-

We'll write Ñr
,n
for these muitiset partitions with entries

from [n]vfñ] with r unbanned and r barred entries
.
We'll

write it or Ñ for a particular such multrset partition ,

I = AG

Note
,
I will consistently use these colors :

2 = BE



The Multiset Partition Algebra

Writing {% : it c- Irie } for the orbit basis

Obtained by Orellana and Zabroctti
,
an example of

its multiplication is :

①• • • • 0. • • • = (n -3) • • • •
+ (h -2)@• • • •

⑤ • • 8 • • p p g p p • 8 • • •

1-@• • • • + 20 • • • •

@ p p • 8 P p •



The Multiset Partition Algebra

Let Arch ] ≤ Pr (n)
,
and define a new algebra

Ñr
,
*
(n ) called the corresponding Painted algebra with basis

{Dj : it obtained by coloring the vertices of a diagram in Archi }

Bylh) Baath )
⑨ ⑤ • • • • • • • & • • • • @ ☆ @ •

@ • • ⑧ • @ @ ☆ • 8 • • • • • • • •

• • • ⑧ • @ • • • •
• • 8 8 00 • ⑧ •

• ⑨ • • • • • @ • •
@ • • • @ ⑥ @ •

@ ①
• • • • • •

• @ ⑨ ☆ ③ ⑨

① ⑤



The Multiset Partition Algebra
If the multiplicities of colors in the bottom of one diagram match

those in the top of the other, their Product is given by the

following averaging .
Otherwise it is Zero

.

• • B. •

• • • •

@ • • •

• • • @

↓
• • • • • • • • • • • • • • • •

•• • • • • • • • • • • • • • •(• • • •
+

• • • •

+
• • • •

+
• • • :|

• • • • • • • • • • • • • • •

↓
B ⑨ ① @ ⑤ ⑨ ① @ ⑤ ⑧ ① @ B ⑨ ① @

Hln + + +
.
)

⑤ ☆ • ⑨ ⑤ @ • ⑨ ⑤ @ • ⑨ ⑤ ☆ •



The Multiset Partition Algebra

Theorem There is an isomorphism

& :MPnµ(n) → II.nlh)



The Multiset Partition Algebra

Idea of proof

we need to establish that @(0*9)=910*191%-1
.

After algebraic manipulation
,

this comes down to handling a sum

of the form

I -21
otsr 8

where 8 is a set Partition of [rJu[ Edo [ E) subject to

conditions depending on TT
,
Ñ
,

and 0
.

It turns out :

• The set of 0 for which there exists a 8 is a nice product of

subgroups

• The number of 8 is the same for any 0 and can be enumerated

via an orbit -stabilizer argument .



The Multiset Partition Algebra

The change -of - basis % → D=
,

is
given by :

D÷=E Oi
ñ≤ñ

where Cj
,
# is

,
for a fixed IT which can be painted to get

TT
,

the number of V Such that v≤ IT and V Can be

painted to obtain j
,

W (f) is a coefficient depending on j

This basis { D; } is the diagram - like basis .



Representations

A partition × of n is a weakly decreasing sequence

1h
,

. .

;
✗ e) of positive integers which sum to n . we

write Xtn for such a partition

The Young diagram of 7 is an array of left -justified

boxes with Xi boxes in the i # now from the bottom
.

E.g . :

( 3, 3,2, 1)



Representations

A multi set partition tableau of shape it is a

filling of X 's Young diagram like so :

only the first row 11 Entries are

has empty boxes
-
at

2 122 ←
Multisets

least as many as is

I 1

↳ 11 2

Write MSPT /X
,
R
,
K) for the set of these tableaux with

a total of r numbers from In]
.



Representations

Order multisets by the last - letter order

11 < 2 12<22 22<122

A semi standard Multiset partition tableau has rows wearily

increasing and columns strictly increasing :

22

2 12

1 1

11 2

Write ssmsptfx.r.ie) for these



Representations
22

⑧ • @ • •

I 1An example of the action :
. . . . . .

I

⑧ • @ • • ⑧ • @ • 8 ⑧ • @ • •

• • @ • • B • @ • D B • @ • •

8 • • • • 8 • • • as 8 • • • •

•
• •

22 22 22

•

1 1
• •

1 1
• •

1 1
•

/
• /

• /
•

✗ Two blocks 2 2

above the first 1 12 12 I

now get combined 2 2



Representations
straightening

2

⑧ • so • •

• • . . • .

↑ '

,

= tz ( I 12 1- 12 I a) 19190rithm2

2

= tz 4 1 12

,

1-
↑
2

a

-
↑ 12

, )
write AMP"" '" = { xtn : ssnsp-ilx.r.nl/--∅}

Mpr?n : = Span of ssmspylx.nu ) for + c- AMP""

Theorem The Mprp, for ✗ c- AMP""
"

form a complete

set of irreducible representations for Mpr
,n
In) for n ≥ 2r

.



Subalgebras

(PYvn.nl)±FTheorem Ehdgcm.my Think (n)

But recall that Endocm.p.us/Vn*r)~--Tr.m.pln)

conjecture If G is a reductive algebraic

subgroup of Glen
,

and Endo (Vn④r) ≈ Arch )
,

then Endo (PYVn.at/~=Ar.ulnt
.



Generators

pr MPr.nl#
•

:*↓ . .

. !
i " '

1 . . . ;{ =

$ ⑧ • • • @ •

7.HE =
• •

9
•→

; go
• • •

i it /

,

. . .

•

bi = ↑
.

_ . '

•
↓
-

↓
i

⑨ • @ • & Be

Pi = ! _ . _ ↑
.

•

! _ . . |
. .

Pi.jp
=

•• 8 @ • &



Thank
you
!



Generators

• ⑨ ⑤ @ Be

⑥ @ • • •

• • • • • Ci ) Factor out
=

i • • • • •
"

interesting
" bbcu

'
✗
• ⑨ ③ • Be

⑥ @ @ ••

• • • • • (i ;) write diagram
• • • • • with single interesting
• • • • • block in terms

-

Of generators⑥ @ • • •

• ⑨ ⑤ • Be

•② • • •



Representations

Tabloid diagram

12
• 0 ☆ ☆ @ @

1-= I 11 IT] =
2

③ ⑤ Be • • Be

poly tabloid element

Vy = [ syncs) [on. -1]
•c-CCT)

Npr?n is the span of J
,

in the quotient by elements with

fewer than Azt . . - the propagating bloom
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