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There is a natural poset which encodes the factorizations of a central element

&TAM/J CoMbW/NDRIC§ of a finite Coxeter group into products of squares of the dual generators with each

(squared) generator appearing exactly once.

Jon and Dan Margalit (back in the early 2000s) created the following wish list
of results:

(1) embeds into the Z™ cube, m = (;)

2) clean statement of which elements are involved.

3) clean statement of which permutations label max chains.
) rank vector.

) euler characteristic

) moebius function.
)
)
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7) recursive structure.
some other purely combinatorial model

transitivity on chains under natural 2,3 mods.
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REAL, CENTRAL HYPERPLANE ARRANGEMENTS

A hyperplane H is a linear codimension-1 subspace of R™.

A central hyperplane arrangement H is a finite collection of hyperplanes.

Central D Simplicial D Reflection
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Introduction Edelman's Regions
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EDELMAN'S POSET OF REGIONS

Write R for the set of connected components (the regions) of the complement R™ \ H.
Fix B a base region in R.
For C' € R, define invy, g(C) to be the hyperplanes in H separating B from C.
The map C' +— invy p(C) C H is injective.
Definition (Edelman)
The poset of regions Weak(#, B) has elements R and relations

C < D iff iIlV;.LB(C) C iIlV;.LB(D).
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EDELMAN'S POSET OF REGIONS
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Introduction Ecielrhan‘s Regions
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POSET OF REGIONS FOR #H SIMPLICIAL

Theorem (Bjorner, Edelman, Ziegler)
Weak(H, B) is a lattice for every B € R iff H is simplicial.
AV
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POP

The pop-stack sorting operator Pop : R — R is

Pop(C) := /\ D.
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POSET OF REGIONS FOR # REFLECTION

For H the reflection arrangement of a finite Coxeter group W, Weak(H, B) is the
oriented Cayley graph of W when generated using simple reflections. 432

For W = S, Weak(H, B) is the 1-skeleton of the permutahedron.
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SHARDS

Reading cut the hyperplanes in an arrangement H into pieces called shards.
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Write ITI(#, B) for the set of shards. Each cover relation C' % C’ in Weak(#, B) is
labeled by the unique shard X:(e) separating the region C from the region C".
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SHARDS FOR H SIMPLICIAL

Write invyy 5(C) to be the shards in H separating Pop(C) from C.
The map C + invyy 5(C) C I s injective.

Definition (Reading)

The shard intersection order Shard(#, B) has elements R and relations

C ‘_< D Iff iIlVH_LB(C) Q inVH_LB(D).
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Reading's Shards

SHARDS FOR H SIMPLICIAL
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SHARDS FOR ‘H REFLECTION

For H the reflection arrangement of a finite Coxeter group W, a sublattice of
Shard(#, B) recovers the W-noncrossing partition lattice.

Reading used this to give a uniform proof that the W-noncrossing partition lattice is
actually a lattice—and weaker than the corresponding Cambrian lattice.

4321

3214 2431 4231 2143 4213 1432

2314 2134 2413 1324 1243 1423
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Salvetti's Loops
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Introduction

THE SALVETTI COMPLEX

Definition

The Salvetti complex Sal(#) is defined by gluing together oriented dual zonotopes for
‘H along compatible faces—one zonotope for each choice of base region B, oriented
from Bto —B.

e O-cells: one for each regionin R
e 1-cells: two for each cover relation C' < €' in Weak(H, B), C = C'and C’ LaNYo
e 2-cells: one for each rank 2 intersection

18



Salvetti's Loops
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THE SALVETTI COMPLEX

Write C™ \ H for the complexified hyperplane complement of .
Theorem (Salvetti)

71'1(8&1(7‘[), B) = 71'1(@” \ H(c, .Z’B).

If ¢ 5 C’is acoverin Weak(H, B), define a loop £, € 71 (Sal(#), B) by
. :=gal(B, C) - ec* - gal(B, C)~' € m1(Sal(H), B).

m1(Sal(H), B) is generated by the loops Leqge, the set of all such £e.

One family of relations for each 2-cell.

20
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SHARDVETTI

When are two loops £, and ¢; homotopic?
Theorem (Defant, W.)

For a real central arrangement H,

L ~ Ly iff B(e) = X(f).

7 i -
- 1~ L4 1
%8 7 ¢0,2,2,82 & & = &G ¢G5, 64 4

v ercirs

So label Salvetti's loops by Reading’s shards L. ”
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THE PURE SHARD MONOID

The pure shard monoid Pt (H, B) Zad%### By is generated by L.

Pt (H, B) is ordered by p < p' if pis a prefix of p’.
The full twist A? lies in the center of 71 (Sal(H), B).

Claim: the interval [1, A2%]p+ is an analogue of Weak(#H, B) and Shard(#, B).
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POSET EMBEDDINGS



POSETS

poset description height | atoms

Weak(#, B) | tall and slender H | rank

Shard(H, B) | shortand wide | rank

[1,A?)p+ talland wide | }f P
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Poset Embeddings
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POW: AN ORDERED ANALOGUE OF invy 5(C) :ég 2 -
-
LN

Fix H central. For C € R and a positive minimal gallery
B=CG%a2 2o, % o=0,
define Pow : R — P*(H, B)

Pow(C) := lse)ls(er 1) Is(er)-

Theorem (Defant, W.)
Pow is a poset embedding of Weak(H, B) in [1, A?]p+

29
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POW: AN ORDERED ANALOGUE OF invy 5(C) @gﬁ

Fix H central

define Pow :

“Lost in the shuffle, however, was a fourth Rice Krispies elf named Pow! His short life
is a time-capsule of an era when everyone was dreaming big.”
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Poset Embeddings
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CRACKLE: AN ORDERED ANALOGUE OF invyyy ,(C) s }%"?

Fix H simplicial. For C' € R and a positive minimal gallery
Pop(C)=Ey 2 By 2 ... 25 B S B = C
define Crackle: R — m(Sal(#), B) by
Crackle(C) = lyep)ls(ep_1)  Is(er)-

Crackle generalizes Salvetti's loops ¢x, beyond 1-cells.

Crackle is a poset embedding of Shard(H, B) into the interval [1, A%]p+.
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SNAP = CRACKLE-POP
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Snap = Crackle Pop

Edelman's Region Reading hal > )
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BRAID GROUPS

Fix H a reflection arrangement of a finite Coxeter group W.
P(W) := m(C"™\ Hc, zp) is the pure braid group of W
B(W) :=m1((C"\ Hc)/ W, zp) is the braid group of W.

The Coxeter group W fits into an exact sequence with its braid and pure braid groups:

1-P(W)—-B(W)— W —1.

Write w for the usual lift of w € W to BT (W).

34
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SALVETTI'S LOOPS

Theorem (Defant, W.)

For a real central arrangement H,

U ~ Uy iff X(e) = 3(f).

We rephrase when H is the reflection arrangement of W.

Corollary

Suppose u, v € W and s, ¢t € S satisfy u < us and v < vt. Then

usu ! = vtv L iff B u < us) = (v < vt).

35



Snap = Crackle Pop
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SNAP: EMBEDDING SHARD IN WEAK f'i 2 éﬁ
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For w € W, write

e des(w) for the right descent set of w,

e w,(des(w)) for the longest element of the parabolic subgroup of W generated by
des(w), and

e w and w,(des(w)) for the usual lifts of w and w.(des(w)) to BT (W).

Define
Snap(w) := Pop(w) - (wo(des(w)))?.

Theorem (Defant, W.)
The map Snap is a poset embedding from Shard( W) into [1, A%]g-+.
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Snap = Crackle Po
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Snap = Crackle Pop
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Interpret everything in B( W) (since P+ (W) C B(W)):

e Pop(w) = w - wo(des(w)) ™!

e Crackle(w) = Pop(w) - (wo(des(w)))? - Pop(w) ™!
e Snap(w) := Pop(w) - (wo(des(w)))?

Corollary €& . -

2N K Snap(w) = Crackle(w) - Pop(w).
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