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Frieze patterns: an algebraic phenomenon

Survey: [Morier-Genoud, 2015]

Definition [Coxeter, 1971, Conway and Coxeter, 1973]
A frieze pattern is a bi-infinite array of numbers bordered by a row

of 0's then a row of 1's, such that for each 2 x 2 block a Z c, we
have ac — bd = 1.
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Frieze patterns: a combinatorial interpretation

Theorem [Coxeter, 1971, Conway and Coxeter, 1973]

Integral frieze patterns of width m = n — 3 are in bijection with
triangulations of a convex n-gon.
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Frieze patterns: towards geometry

Theorem [Ptolemy]

When a quadrilateral as labeled below is inscribed in a circle,
ac + bd = ef.
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ac + bd = ef.
~

d Very restrictive!







Distance geometry is the study of point configurations via

measurements of pairwise distances between the points.



Distance geometry: the setup

Definition
Distance geometry is the study of point configurations via
measurements of pairwise distances between the points.

Question

Let V> be 2D Euclidean space. What O(n) collection of
measurements uniquely determines a set of n points in V,
considered up to oriented isometry?
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Definition
Distance geometry is the study of point configurations via
measurements of pairwise distances between the points.

Question

Let V> be 2D Euclidean space. What O(n) collection of
measurements uniquely determines a set of n points in V,
considered up to oriented isometry?

Can we use data corresponding to a triangulation?
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How to supplement triangulation data?
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Distance geometry: two solution approaches

How to supplement triangulation data?

add bracing edges measure oriented areas of triangles



What algebraic relations hold for n points in V57?7
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Distance geometry: the Cayley-Menger determinant

What algebraic relations hold for n points in V57

Quadrilateral:
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Distance geometry: unique determination

Proposition [Fomin and Setiabrata, 2020]

For a triangle in V5, the measurements a, b, c, s satisfy

s> = —a® — b> — c® + 2ab + 2ac + 2bc = H(a, b, c).



Distance geometry: unique determination

Proposition [Fomin and Setiabrata, 2020]

For a triangle in V5, the measurements a, b, c, s satisfy
s> = —a® — b> — c® + 2ab + 2ac + 2bc = H(a, b, c).

Conversely, if a, b, c, s € C, nonzero, and satisfy s> = H(a, b, c),
then there exists a triangle in V> with measurements a, b, ¢, s.

Such a triangle is unique up to orientation preserving isometry.



Let V3 be three-dimensional Euclidean space. Let S be a sphere
with radius R centered at O (think: constant Gaussian curvature

K=2.)



Distance geometry: general K

Question

Let V3 be three-dimensional Euclidean space. Let S be a sphere

with radius R centered at O (think: constant Gaussian curvature
K=1)

What O(n) collection of measurements uniquely determines a set
of n points on S, considered up to oriented isometry?

Challenges:
A1 A

A3



Distance geometry: general K

Question

Let V3 be three-dimensional Euclidean space. Let S be a sphere

with radius R centered at O (think: constant Gaussian curvature
K=1)

What O(n) collection of measurements uniquely determines a set
of n points on S, considered up to oriented isometry?

Challenges:

A1 A2 Trig? Oh no!

A3



Distance geometry: general K

Question

Let V3 be three-dimensional Euclidean space. Let S be a sphere

with radius R centered at O (think: constant Gaussian curvature
K=1)

What O(n) collection of measurements uniquely determines a set
of n points on S, considered up to oriented isometry?

Challenges:
Trig? Oh no!
Oriented area? Oh nol

Ar Ao

A3



Distance geometry: general K

Question
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Distance geometry: unique determination on S

Proposition [W., 2024+]

For a triangle on S (K = %) the measurements a, b, ¢, s satisfy

(8K)2 = —a% — b2 — ? 4 2ab + 2ac + 2bc — Kabc = HX(a, b, ¢)
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Distance geometry: unique determination on S

Proposition [W., 2024+]

For a triangle on S (K = %) the measurements a, b, ¢, s satisfy
(§%)2 = —a® — b* — ¢® + 2ab + 2ac + 2bc — Kabc = H*(a, b, c)
0
1

1

= s, det |1
2R? 1
1
Conversely, if a, b, ¢, s € C, nonzero, and satisfy s> = HX(a, b, c),

then there exists a triangle in S with measurements a, b, c, s.

Such a triangle is unique up to orientation preserving isometry.



Distance geometry: algebraic formulas

Question

Given measurement data corresponding to a triangulation of an
n-gon (squared side distances and SK measurements), what are
the (algebraic) formulas for all the other data?
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Distance geometry: algebraic formulas (spherical case!)

p? = HX(b, c,e)
q?> = HX(a,d, e)
r> = HX(a, f, b)

s2 = HX(c,f,d

~—



Distance geometry: algebraic formulas (spherical case!)
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Distance geometry: algebraic formulas (spherical case!)

p? = HX(b, c,e)
q?> = HX(a,d, e)
r> = HX(a, f, b)
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Distance geometry: algebraic formulas (spherical case!)

2 = HKX(a,d, e)
r> = HX(a, f, b)
s2 = HX(c, f,d)

p+q:r+s—|—§(ap+bq—er)
e(r—s) = p(a—d)+a(b—c)
def = (p+q)>+(a—b+c—d)?— Ke(a— b)(c—d)
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Spherical Heronian friezes: an algebraic phenomenon

d
~ 7/ N\

Proposition [W., 2024+]

Let (a, b, c,d, e, p,q) be a 7-tuple satisfying (x).
Assuming e ¢ {0, +}, there exist unique f,r,s € C such that
(a,b,c,d,e, f,p,q,r,s) is a spherical Heronian diamond. Namely,
£ — (p+g)*+(a—btc—d)’—Ke(a—b)(c—d)
(i) ’
p(e+afdf%)+q(efc+bf%) p(efa+df%)+q(e+cfbf%)

r= 26(17%) and s = 2e(1—¥)



Spherical Heronian friezes: an algebraic phenomenon

140 140 70 70 74 74 98

A spherical Heronian frieze with K = 2.



Spherical Heronian friezes: an algebraic phenomenon

Proposition [W., 2024+] ( “entries are nice")

Let z, be the initial data associated with a traversing path 7 in a
spherical Heronian frieze z. Then each entry of z can be written as
a rational function of z, (with nice denominators).
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Spherical Heronian friezes: an algebraic phenomenon

Proposition [W., 2024+] ( “entries are nice")

Let z, be the initial data associated with a traversing path 7 in a
spherical Heronian frieze z. Then each entry of z can be written as
a rational function of z, (with nice denominators).

Proposition [W., 2024+] (“all come from polygons”)

If z is an order n spherical Heronian frieze of sufficient genericity,
there exists a unique n-gon P such that z arises from P.

Theorem [W., 2024-+] (“always get periodicity”)

Let z,; be a sufficiently generic collection of numbers associated to
a traversing path 7. Assume these numbers satisfy (). Propagate
outwards using the formulas to obtain a spherical Heronian frieze.
Then z is periodic (glide symmetry) and exhibits a version of the
Laurent phenomenon.
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What next?

Question

One application of spherical Heronian friezes is to measuring and
computing distances on a globe.

Minneapolis

2557 1809
4352
San Francisco Boston
4160 2025
Miami

What if we have a point (or points) on a different sphere, like a
satellite?



