Spherical Heronian frieze patterns

Katie Waddle University of Michigan

Definition [\[Coxeter, 1971,](#page-61-1) [Conway and Coxeter, 1973\]](#page-61-2)

Definition [\[Coxeter, 1971,](#page-61-1) [Conway and Coxeter, 1973\]](#page-61-2)

Definition [\[Coxeter, 1971,](#page-61-1) [Conway and Coxeter, 1973\]](#page-61-2)

$$
\begin{array}{cccccccc}\n\cdots & 1 & 1 & 1 & 1 & 1 & 1 \\
& x_1 & \frac{x_2+1}{x_1} & & & & & \cdots \\
& \cdots & x_2 & \frac{x_1+x_2+1}{x_1x_2} & & & & & & \cdots \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & \cdots\n\end{array}
$$

Definition [\[Coxeter, 1971,](#page-61-1) [Conway and Coxeter, 1973\]](#page-61-2)

$$
\begin{array}{cccccccc}\cdots & & 1 & & 1 & & 1 & & 1 & & 1 & & 1\\ & & x_1 & & \frac{x_2+1}{x_1} & \frac{x_1+1}{x_2} & & & & & & \cdots\\ & & & x_2 & & \frac{x_1+x_2+1}{x_1x_2} & & & & & & & \cdots\\ & & & 1 & & 1 & & 1 & & 1 & & 1 & & \cdots\end{array}
$$

Definition [\[Coxeter, 1971,](#page-61-1) [Conway and Coxeter, 1973\]](#page-61-2)

$$
\begin{array}{cccccccc}\cdots & 1 & 1 & 1 & 1 & 1 & 1 & 1\\ & x_1 & \frac{x_2+1}{x_1} & \frac{x_1+1}{x_2} & & & & & \cdots\\ & \cdots & x_2 & \frac{x_1+x_2+1}{x_1x_2} & x_1 & & & & & & \cdots\\ & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \cdots\end{array}
$$

Definition [\[Coxeter, 1971,](#page-61-1) [Conway and Coxeter, 1973\]](#page-61-2)

$$
\cdots \qquad \begin{matrix} 1 & 1 & 1 & 1 & 1 & 1 \\ & x_1 & \frac{x_2+1}{x_1} & \frac{x_1+1}{x_2} & x_2 & & & \cdots \\ & & & x_2 & \frac{x_1+x_2+1}{x_1x_2} & x_1 & & & \\ & & & & 1 & 1 & 1 & 1 & 1 & \cdots \end{matrix}
$$

Definition [\[Coxeter, 1971,](#page-61-1) [Conway and Coxeter, 1973\]](#page-61-2)

Integral frieze patterns of width $m = n - 3$ are in bijection with triangulations of a convex n -gon.

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1

Integral frieze patterns of width $m = n - 3$ are in bijection with triangulations of a convex n -gon.

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 2 1

Integral frieze patterns of width $m = n - 3$ are in bijection with triangulations of a convex n -gon.

 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Integral frieze patterns of width $m = n - 3$ are in bijection with triangulations of a convex n -gon.

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 2 1

Integral frieze patterns of width $m = n - 3$ are in bijection with triangulations of a convex n -gon.

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 2 1

Integral frieze patterns of width $m = n - 3$ are in bijection with triangulations of a convex n -gon.

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 2 1

Integral frieze patterns of width $m = n - 3$ are in bijection with triangulations of a convex n -gon.

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 2 1

Theorem [Ptolemy]

When a quadrilateral as labeled below is inscribed in a circle, $ac + bd = ef$.

Theorem [Ptolemy]

When a quadrilateral as labeled below is inscribed in a circle, $ac + bd = ef$.

Frieze patterns: actual geometry

Theorem [Casey, 1866]

Definition

Distance geometry is the study of point configurations via measurements of pairwise distances between the points.

Definition

Distance geometry is the study of point configurations via measurements of pairwise distances between the points.

Question

Let V_2 be 2D Euclidean space. What $O(n)$ collection of measurements uniquely determines a set of *n* points in V_2 . considered up to oriented isometry?

Definition

Distance geometry is the study of point configurations via measurements of pairwise distances between the points.

Question

Let V_2 be 2D Euclidean space. What $O(n)$ collection of measurements uniquely determines a set of *n* points in V_2 . considered up to oriented isometry?

Can we use data corresponding to a triangulation?

Distance geometry: two solution approaches

How to supplement triangulation data?

Distance geometry: two solution approaches

Distance geometry: two solution approaches

What algebraic relations hold for *n* points in V_2 ?

What algebraic relations hold for *n* points in V_2 ?

Quadrilateral:

What algebraic relations hold for *n* points in V_2 ?

Quadrilateral:

$$
\det \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & b & e & a \\ 1 & b & 0 & c & f \\ 1 & e & c & 0 & d \\ 1 & a & f & d & 0 \end{bmatrix} = 0
$$

What algebraic relations hold for *n* points in V_2 ?

Quadrilateral:

quadratic in each measurement

$$
\det \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & b & e & a \\ 1 & b & 0 & c & f \\ 1 & e & c & 0 & d \\ 1 & a & f & d & 0 \end{bmatrix} = 0
$$

What algebraic relations hold for *n* points in V_2 ?

Quadrilateral:

det $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ 0 1 1 1 1 1 0 b e a 1 b 0 c f 1 e c 0 d 1 a f d 0 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ $= 0$ quadratic in each measurement

Triangle [Heron, 60]:

$$
\underbrace{(4 \cdot \text{area of } A_1 A_2 A_3)}_{S} = -\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & b & e \\ 1 & b & 0 & c \\ 1 & e & c & 0 \end{bmatrix}
$$

Distance geometry: unique determination

Proposition [\[Fomin and Setiabrata, 2020\]](#page-61-3)

For a triangle in V_2 , the measurements a, b, c, s satisfy

$$
s^2 = -a^2 - b^2 - c^2 + 2ab + 2ac + 2bc = H(a, b, c).
$$

Distance geometry: unique determination

Proposition [\[Fomin and Setiabrata, 2020\]](#page-61-3)

For a triangle in V_2 , the measurements a, b, c, s satisfy

$$
s^2 = -a^2 - b^2 - c^2 + 2ab + 2ac + 2bc = H(a, b, c).
$$

Conversely, if a, b, c, $s \in \mathbb{C}$, nonzero, and satisfy $s^2 = H(a, b, c)$, then there exists a triangle in \mathbf{V}_2 with measurements a, b, c, s. Such a triangle is unique up to orientation preserving isometry.

Let V_3 be three-dimensional Euclidean space. Let S be a sphere with radius R centered at O (think: constant Gaussian curvature $K=\frac{1}{R^2}$.)

Let V_3 be three-dimensional Euclidean space. Let S be a sphere with radius R centered at O (think: constant Gaussian curvature $K=\frac{1}{R^2}$.)

What $O(n)$ collection of measurements uniquely determines a set of n points on S , considered up to oriented isometry?

Let V_3 be three-dimensional Euclidean space. Let S be a sphere with radius R centered at O (think: constant Gaussian curvature $K=\frac{1}{R^2}$.)

What $O(n)$ collection of measurements uniquely determines a set of n points on S , considered up to oriented isometry?

Let V_3 be three-dimensional Euclidean space. Let S be a sphere with radius R centered at O (think: constant Gaussian curvature $K=\frac{1}{R^2}$.)

What $O(n)$ collection of measurements uniquely determines a set of n points on S , considered up to oriented isometry?

Challenges: Trig? Oh no! Oriented area? Oh no!

Let V_3 be three-dimensional Euclidean space. Let S be a sphere with radius R centered at O (think: constant Gaussian curvature $K=\frac{1}{R^2}$.)

What $O(n)$ collection of measurements uniquely determines a set of n points on S , considered up to oriented isometry?

Challenges: Trig? Oh no! Oriented area? Oh no!

Definition

 $S^{K}(A_1, A_2, A_3) = \frac{12}{R}V(OA_1A_2A_3)$

Distance geometry: unique determination on S

Proposition [W., 2024+]

For a triangle on $\textsf{\textbf{S}}\;(K=\frac{1}{R^2})$ the measurements a,b,c,s satisfy

$$
(S^{K})^{2} = -a^{2} - b^{2} - c^{2} + 2ab + 2ac + 2bc - Kabc = H^{K}(a, b, c)
$$

= $\frac{1}{2R^{2}}$ det $\begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & a & c & R^{2} \\ 1 & c & b & 0 & R^{2} \\ 1 & c & b & 0 & R^{2} \\ 1 & R^{2} & R^{2} & R^{2} & 0 \end{bmatrix}$.

Distance geometry: unique determination on S

Proposition [W., 2024+]

For a triangle on $\textsf{\textbf{S}}\;(K=\frac{1}{R^2})$ the measurements a,b,c,s satisfy

$$
(S^{K})^{2} = -a^{2} - b^{2} - c^{2} + 2ab + 2ac + 2bc - Kabc = H^{K}(a, b, c)
$$

= $\frac{1}{2R^{2}}$ det $\begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & a & c & R^{2} \\ 1 & c & b & 0 & R^{2} \\ 1 & c & b & 0 & R^{2} \\ 1 & R^{2} & R^{2} & R^{2} & 0 \end{bmatrix}$.

Conversely, if a, b, c, $s \in \mathbb{C}$, nonzero, and satisfy $s^2 = H^K(a, b, c)$, then there exists a triangle in S with measurements a, b, c, s .

Such a triangle is unique up to orientation preserving isometry.

Given measurement data corresponding to a triangulation of an *n*-gon (squared side distances and S^K measurements), what are the (algebraic) formulas for all the other data?

$$
p2 = H(b, c, e)
$$

\n
$$
q2 = H(a, d, e)
$$

\n
$$
r2 = H(a, f, b)
$$

\n
$$
s2 = H(c, f, d)
$$

$$
p2 = H(b, c, e)
$$

\n
$$
q2 = H(a, d, e)
$$

\n
$$
r2 = H(a, f, b)
$$

\n
$$
s2 = H(c, f, d)
$$

\n
$$
r + s = p + q
$$

$$
p2 = H(b, c, e)
$$

\n
$$
q2 = H(a, d, e)
$$

\n
$$
r2 = H(a, f, b)
$$

\n
$$
s2 = H(c, f, d)
$$

\n
$$
r + s = p + q
$$

\n
$$
e(r - s) = p(a - d) + q(b - c)
$$

$$
p2 = H(b, c, e)\nq2 = H(a, d, e)\nr2 = H(a, f, b)\ns2 = H(c, f, d)\nr + s = p + q\ne(r - s) = p(a - d) + q(b - c)\n4ef = (p + q)2 + (a - b + c - d)2
$$

$$
p2 = HK(b, c, e)
$$

\n
$$
q2 = HK(a, d, e)
$$

\n
$$
r2 = HK(a, f, b)
$$

\n
$$
s2 = HK(c, f, d)
$$

$$
p^{2} = H^{K}(b, c, e)
$$

\n
$$
q^{2} = H^{K}(a, d, e)
$$

\n
$$
r^{2} = H^{K}(a, f, b)
$$

\n
$$
s^{2} = H^{K}(c, f, d)
$$

\n
$$
p + q = r + s + \frac{K}{2}(ap + bq - er)
$$

\n
$$
p + q = r + s + \frac{K}{2}(fp - cr - bs)
$$

\n
$$
p + q = r + s + \frac{K}{2}(dp + cq - es)
$$

\n
$$
p + q = r + s + \frac{K}{2}(fq - dr - as)
$$

$$
p2 = HK(b, c, e)
$$

\n
$$
q2 = HK(a, d, e)
$$

\n
$$
r2 = HK(a, f, b)
$$

\n
$$
s2 = HK(c, f, d)
$$

\n
$$
p + q = r + s + \frac{k}{2}(ap + bq - er)
$$

\n
$$
e(r - s) = p(a - d) + q(b - c)
$$

$$
\begin{array}{ccc}\n & A_2 \\
 & b & \sqrt{c} \\
\hline\n & 4_1 & e \\
 & 4_2 & 4_3 \\
\hline\n & 4_3 & 4_4 \\
\hline\n & 4_4 & 4_5 \\
\hline\n & 4_4 & 4_6 \\
\hline\n & 4_4 & 4_7 \\
\hline\n & 4_3 & 4_8 \\
\hline\n & 4_4 & 4_7 \\
\hline\n & 4_3 & 4_8 \\
\hline\n & 4_7 & 4_8 \\
\hline\n & 4_8 & 4_8 \\
\hline\n & 4_9 & 4_9 \\
\hline\n & 4_9 &
$$

Spherical Heronian friezes: an algebraic phenomenon

Spherical Heronian friezes: an algebraic phenomenon

Proposition [W., 2024+]

Let (a, b, c, d, e, p, q) be a 7-tuple satisfying $(*).$ Assuming $e \notin \{0, \frac{4}{K}\}$ $\frac{4}{K}$ }, there exist unique $f, r, s \in \mathbb{C}$ such that $(a, b, c, d, e, f, p, q, r, s)$ is a spherical Heronian diamond. Namely,

$$
f = \frac{(p+q)^2 + (a-b+c-d)^2 - Ke(a-b)(c-d)}{4e(1-\frac{Ke}{4})},
$$

$$
r = \frac{p(e+a-d-\frac{Ke}{2}) + q(e-c+b-\frac{Kbe}{2})}{2e(1-\frac{Ke}{4})} \text{ and } s = \frac{p(e-a+d-\frac{Kde}{2}) + q(e+c-b-\frac{Kce}{2})}{2e(1-\frac{Ke}{4})}.
$$

Spherical Heronian friezes: an algebraic phenomenon

Proposition $[W, 2024+]$ ("entries are nice")

Let z_{π} be the initial data associated with a traversing path π in a spherical Heronian frieze z. Then each entry of z can be written as a rational function of z_π (with nice denominators).

Proposition $[W, 2024+]$ ("entries are nice")

Let z_{π} be the initial data associated with a traversing path π in a spherical Heronian frieze z. Then each entry of z can be written as a rational function of z_π (with nice denominators).

Proposition $[W_1, 2024+]$ ("all come from polygons")

If z is an order *n* spherical Heronian frieze of sufficient genericity, there exists a unique n -gon P such that z arises from P.

Proposition $[W, 2024+]$ ("entries are nice")

Let z_{π} be the initial data associated with a traversing path π in a spherical Heronian frieze z. Then each entry of z can be written as a rational function of z_π (with nice denominators).

Proposition $[W_1, 2024+]$ ("all come from polygons")

If z is an order *n* spherical Heronian frieze of sufficient genericity, there exists a unique n -gon P such that z arises from P.

Theorem $[W, 2024+]$ ("always get periodicity")

Let z_{π} be a sufficiently generic collection of numbers associated to a traversing path π . Assume these numbers satisfy $(*)$. Propagate outwards using the formulas to obtain a spherical Heronian frieze. Then z is periodic (glide symmetry) and exhibits a version of the Laurent phenomenon.

References

Conway, J. and Coxeter, H. (1973). 靠 Triangulated polygons and frieze patterns. The Mathematical Gazette, 57(401):175–183.

Frieze patterns.

Acta Arithmetica, 18(1):297–310.

螶

Fomin, S. and Setiabrata, L. (2020). Heronian friezes. arXiv:1909.01308.

Morier-Genoud, S. (2015).

Coxeter's frieze patterns at the crossroads of algebra, geometry and combinatorics.

Bulletin of the London Mathematical Society, 47(6):895–938.

What next?

Question

One application of spherical Heronian friezes is to measuring and computing distances on a globe.

What if we have a point (or points) on a different sphere, like a satellite?