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Frieze patterns: an algebraic phenomenon

Survey: [Morier-Genoud, 2015]

Definition [Coxeter, 1971, Conway and Coxeter, 1973]

A frieze pattern is a bi-infinite array of numbers bordered by a row

of 0’s then a row of 1’s, such that for each 2× 2 block
b

a c
d

, we

have ac − bd = 1.
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Frieze patterns: a combinatorial interpretation

Theorem [Coxeter, 1971, Conway and Coxeter, 1973]

Integral frieze patterns of width m = n − 3 are in bijection with
triangulations of a convex n-gon.
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Frieze patterns: towards geometry

Theorem [Ptolemy]

When a quadrilateral as labeled below is inscribed in a circle,
ac + bd = ef .
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Frieze patterns: actual geometry

Theorem [Casey, 1866]

p

q

r

s

u
v

uv = pr + qs



Distance geometry: the setup

Definition

Distance geometry is the study of point configurations via
measurements of pairwise distances between the points.

Question

Let V2 be 2D Euclidean space. What O(n) collection of
measurements uniquely determines a set of n points in V2,
considered up to oriented isometry?

Can we use data corresponding to a triangulation?

A4
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A2

A3

option 1 for f

A4
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A2

A3

option 2 for f
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Distance geometry: two solution approaches

How to supplement triangulation data?

add bracing edges measure oriented areas of triangles
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Distance geometry: the Cayley-Menger determinant

What algebraic relations hold for n points in V2?

Quadrilateral:

b

a
d

e

c

f
det


0 1 1 1 1
1 0 b e a
1 b 0 c f
1 e c 0 d
1 a f d 0

 = 0

quadratic in each measurement

Triangle [Heron, 60]:

(4 · area of A1A2A3︸ ︷︷ ︸
S

)2 = −
[
0 1 1 1
1 0 b e
1 b 0 c
1 e c 0

]
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Distance geometry: unique determination

a
c

b

s

Proposition [Fomin and Setiabrata, 2020]

For a triangle in V2, the measurements a, b, c , s satisfy

s2 = −a2 − b2 − c2 + 2ab + 2ac + 2bc = H(a, b, c).

Conversely, if a, b, c , s ∈ C, nonzero, and satisfy s2 = H(a, b, c),
then there exists a triangle in V2 with measurements a, b, c , s.

Such a triangle is unique up to orientation preserving isometry.
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Distance geometry: general K

Question

Let V3 be three-dimensional Euclidean space. Let S be a sphere
with radius R centered at O (think: constant Gaussian curvature
K = 1

R2 .)

What O(n) collection of measurements uniquely determines a set
of n points on S, considered up to oriented isometry?

O

A3

A1 A2

Challenges:

Trig? Oh no!

Oriented area? Oh no!

Definition

SK (A1,A2,A3) =
12
R V (OA1A2A3)
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Distance geometry: unique determination on S

O
A3

A1
A2

a

bcR R

R

Proposition [W., 2024+]

For a triangle on S (K = 1
R2 ) the measurements a, b, c , s satisfy

(SK )2 = −a2 − b2 − c2 + 2ab + 2ac + 2bc − Kabc = HK (a, b, c)

= 1
2R2 det

 0 1 1 1 1
1 0 a c R2

1 a 0 b R2

1 c b 0 R2

1 R2 R2 R2 0

 .

Conversely, if a, b, c , s ∈ C, nonzero, and satisfy s2 = HK (a, b, c),
then there exists a triangle in S with measurements a, b, c , s.

Such a triangle is unique up to orientation preserving isometry.
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then there exists a triangle in S with measurements a, b, c , s.

Such a triangle is unique up to orientation preserving isometry.



Distance geometry: algebraic formulas

Question

Given measurement data corresponding to a triangulation of an
n-gon (squared side distances and SK measurements), what are
the (algebraic) formulas for all the other data?
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Distance geometry: algebraic formulas (Euclidean case!)
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4ef = (p+q)2+(a−b+c−d)2
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Distance geometry: algebraic formulas (spherical case!)
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4ef = (p + q)2 + (a− b + c − d)2 − Ke(a− b)(c − d)
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Spherical Heronian friezes: an algebraic phenomenon
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Proposition [W., 2024+]

Let (a, b, c , d , e, p, q) be a 7-tuple satisfying (∗).
Assuming e ̸∈

{
0, 4

K

}
, there exist unique f , r , s ∈ C such that

(a, b, c , d , e, f , p, q, r , s) is a spherical Heronian diamond. Namely,

f = (p+q)2+(a−b+c−d)2−Ke(a−b)(c−d)

4e(1−Ke
4 )

,

r =
p(e+a−d−Kae

2 )+q(e−c+b−Kbe
2 )

2e(1−Ke
4 )

and s =
p(e−a+d−Kde

2 )+q(e+c−b−Kce
2 )

2e(1−Ke
4 )

.
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Spherical Heronian friezes: an algebraic phenomenon
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72
.



Spherical Heronian friezes: an algebraic phenomenon

Proposition [W., 2024+] (“entries are nice”)

Let zπ be the initial data associated with a traversing path π in a
spherical Heronian frieze z. Then each entry of z can be written as
a rational function of zπ (with nice denominators).

Proposition [W., 2024+] (“all come from polygons”)

If z is an order n spherical Heronian frieze of sufficient genericity,
there exists a unique n-gon P such that z arises from P.

Theorem [W., 2024+] (“always get periodicity”)

Let zπ be a sufficiently generic collection of numbers associated to
a traversing path π. Assume these numbers satisfy (∗). Propagate
outwards using the formulas to obtain a spherical Heronian frieze.
Then z is periodic (glide symmetry) and exhibits a version of the
Laurent phenomenon.
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What next?

Question

One application of spherical Heronian friezes is to measuring and
computing distances on a globe.

San Francisco
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Boston

Minneapolis

4352

2557 1809

20254160

What if we have a point (or points) on a different sphere, like a
satellite?


