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CHROMATIC POLYNOMIAL: BIRKHOFF 1912

Given G with vertices V/(G) a proper colouring k of G in k colours
is
k:V(G)—{1,2,3,...,k}

so if u,v € V(G) are joined by an edge then
k(u) # k(v).
EXAMPLE

—0@®x 6—™©0v



CHROMATIC POLYNOMIAL: BIRKHOFF 1912

Given G the chromatic polynomial
x¢(k) is the number of proper
colourings with k colours.

VAN

has xg(k) = k(k — 1)(k — 2).



DELETION-CONTRACTION

Delete e: remove edge € to get G — ¢.
Contract e: shrink edge € + identify vertices to get G/e.

THEOREM (DELETION-CONTRACTION)

XG(k) - XG—e(k) + XG/e(k) =0



CHROMATIC SYMMETRIC FUNCTION: STANLEY 1995

Given G with vertices V/(G) a proper colouring k of G is
k:V(G)—{1,2,3,...}
so if u,v € V(G) are joined by an edge then
k(u) # K(v).
EXAMPLE

—0@®x O—™©0v



CHROMATIC SYMMETRIC FUNCTION: STANLEY 1995

Given a proper colouring k of vertices vq, v, ..., vy associate a
monomial in commuting variables xi, x2, X3, . . .

Xi(v1)Xk(v2) = Xe(vi)-

EXAMPLE

®—©e gives x1xp.
®—© gives XpX1 = X1X0.
gives x1X3.



CHROMATIC SYMMETRIC FUNCTION: STANLEY 1995

Given G with vertices vy, v, ..., vy the
chromatic symmetric function is

X6 = ZXH,(Vl)XH,(Vg) © X(vy)

where the sum over all proper colourings «.



CHROMATIC SYMMETRIC FUNCTION: STANLEY 1995

® has Xg(x1,%2,x3) = xZ + x3 + x32 + 2x1x0 + 2x0X3 + 2X1X3.



MULTI-DELETION

Deletion-contraction fails, as contraction gives degree change.
THEOREM (TRIPLE-DELETION: ORELLANA-SCOTT 2014)

Let G be such that €1, €z, €3 form a triangle. Then

X6 — Xe—{a} = X6—{e} T X6—{e1,0} = 0.

THEOREM (k-DELETION: DAHLBERG-VW 2018)

Let G be such that €1, €, ...,€, form a k-cycle for k > 3. Then

Z (_]‘)|5|XG*U,'€5{€,'} - 0
SClk—1]



SYMMETRIC FUNCTIONS

A symmetric function is a formal power series f in commuting
variables x1, xo, ... such that for all permutations 7

f(x1,x2,...) = F(Xr(a)s Xr(2)s - - -)-
Xg is a symmetric function.

e o0 ,_i, e oo

2 2

Let
N=EPAY CQllx, %2, .- ]

N>0

be the algebra of symmetric functions with A" spanned by ...



CLASSICAL BASIS: POWER SUM

A partition A=Ay > -+ > Ay > 0 of N is a list of positive integers
whose sum is N: 3221 I~ 8.

The i-th power sum symmetric function is
p,-:x{+x£+xg’;+---
and for A= A1+ Ny

PA = Px, - Pag-

EXAMPLE
p1=ppr=0F+XE+x5+-)oat+x+x3+--)



CLASSICAL BASIS: POWER SUM

Given S C E(G), A(S) is the partition determined by the
connected components of G restricted to S.

EXAMPLE

€1 €
G =0—0-—-0
€

1 €
G restricted to S = {62} isO O—CO and A(S) = 21.

THEOREM (STANLEY 1995)

X6 = Z (—1)‘5|P,\(5)

SCE(G)



CLASSICAL BASIS: POWER SUM

G restricted to
€1 €2

o S={e,e}is O—0O—C0and \(S) =3
€1 €
e S={a}isO—0O Oand A\(S) =21
€1 €2
e S={e}isO O—L0and \(S) =21
€1 €
e S5=0isO O Oand\(S)=111.

X6 = p3 —2p21 + p111



CLASSICAL BASIS: ELEMENTARY

The i-th elementary symmetric function is
ei - Z )<jl o )<J'/'
<<
and for A= A1+ Ny

EX =€)y " €Ny

EXAMPLE

&1 =ee = (xx+xix3+xx3+-- )1 +x+x3+ -

G:O_O_O X¢c =363+ e



CLASSICAL BASIS: ELEMENTARY
THEOREM (STANLEY 1995)

If
XG — Z C\EN
A

then

E ¢\ = number of acyclic orientations with k sinks.
A with k parts

EXAMPLE

G6=0—"0CO—->0O0 X =363+ en



CLASSICAL BASIS: ELEMENTARY
THEOREM (STANLEY 1995)

If
XG — Z C\EN
A

then

E ¢\ = number of acyclic orientations with k sinks.
A with k parts

EXAMPLE

G=o0o—o—>» Xe =363+ e



CLASSICAL BASIS: ELEMENTARY
THEOREM (STANLEY 1995)

If
XG — Z C\EN
A

then

E ¢\ = number of acyclic orientations with k sinks.
A with k parts

EXAMPLE

G=o—m=—o Xe =363+ e



CLASSICAL BASIS: ELEMENTARY
THEOREM (STANLEY 1995)

If
XG — Z C\EN
A

then

E ¢\ = number of acyclic orientations with k sinks.
A with k parts

EXAMPLE

G=e——o——o Xe =363+ e



CLASSICAL BASIS: ELEMENTARY
THEOREM (STANLEY 1995)

If
XG — Z C\EN
A

then

E ¢\ = number of acyclic orientations with k sinks.
A with k parts

EXAMPLE

G=6—o—>» X =363+ e



PARTITIONS AND DIAGRAMS
A partition A= X1 > --- > XAy > 0 of N is a list of positive integers
whose sum is N: 3221 + 8.

The diagram A = Ay > --- > Ay > 0 is the array of boxes with );
boxes in row i from the top.

3221



SEMI-STANDARD YOUNG TABLEAUX

A semi-standard Young tableau (SSYT) T of shape A is a filling

with 1,2,3,... so rows weakly increase and columns increase.
1]1]1]
2
415
6

Given an SSYT T we have

XT #1ls #2s #3s )

=X X X3

X]:_)’XQXL%X5X6



CLASSICAL BASIS: SCHUR

The Schur function is

S\ = E XT.

T SSYT of shape A

EXAMPLE

So1 = x12x2 + x1><22 + X12X3 + x1x32 + X22X3 + ><2x32 + 2x1x0x3 + - - -

11121 ]1][2]3][2]2][2]3][1]2]1]3]
2] (2] [3] [3] 3] [3] [3] |2

¢6=0—0C—7>~0 X6 = 51 + 4s111

(Wang-Wang 2020) Intricate formula for Xg.



ARE THESE CHROMATIC?

Question: Are classical symmetric functions ever examples of
chromatic symmetric functions of a connected graph?

Answer:
THEOREM (CHO-VW 2018)
Only the elementary symmetric functions, namely

1
en = mXKN.

AN

K ' K K, Ks Kq




NEW BASES
Pick favourite connected graph on 1 vertex:

Gy =0
Pick favourite connected graph on 2 vertices:
G, = 00
Pick favourite connected graph on 3 vertices:
G3 = 0—0—0
And soon ...

Let G, be the disjoint union G,, U---U G,,.
EXAMPLE

6Gu=0—0 O O



NEW BASES

THEOREM (CHO-VW 2016)

A =Q[X¢, Xc,,--.] A =spang{Xg, | A+ N}

where
Xe, =

A

EXAMPLE

G211 = O_O O O

Xem = X6 X6 X6
= 2e0e1€1 = 2e011



e-POSITIVITY AND SCHUR-POSITIVITY

G is e-positive if Xg is a positive linear combination of e).

G is Schur-positive if X¢ is a positive linear combination of sj.

O O O has Xe=en+3e3 vV
Xec=4s111+5:1 vV

has Xe = e11—2e» +be3; +4es X
Xe = 851111 + 5s211—500 + 531 X

K13 : Smallest graph that is not e-positive. Smallest graph that is
not Schur-positive.



e-POSITIVITY AND SCHUR-POSITIVITY

e\ = E K#)\Sut
W

where K, = # SSYTs of shape p filled with A; 1s, ..., A, /s, and

/' is the transpose of i along the downward diagonal.

For A= A1)y

Hence K, > 0 and

e-positivity implies Schur-positivity.

EXAMPLE

€1 = Sp1 + S111 1 1H1|1|2‘




e-POSITIVITY AND SCHUR-POSITIVITY

CONJECTURE (STANLEY-STEMBRIDGE 1993)

If G is an incomparability graph of a (3 + 1)-free poset then X is

e-positive.

THEOREM (GASHAROV 1996)

If G is an incomparability graph of a (3 + 1)-free poset then Xg is
Schur-positive.



(]

(]

(]

(]
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KNOWN e-POSITIVE GRAPHS

B

o000
Lollipop graphs L, , (Gebhard-Sagan 2001).

W

Triangular ladders (Dahlberg 2018).

pavavy

Complement of G is bipartite (Stanley-Stembridge 1993).

Complete graphs K,,.

Paths P, (Stanley 1995).



e-POSITIVITY OF TREES: DAHLBERG, SHE, VW 2020

7 8 9 10 11 12 13

1 2 3 4 5 6
trees |1 1 1 2 3 6 11 23 47 106 235 551 1301
111121 3 1 2 2 5 1 4

e-pos




e-POSITIVITY OF TREES

THEOREM (DAHLBERG-SHE-VW 2020)

Any tree with N vertices and a vertex of degree
d>logy, N+1

is not e-positive.

EXAMPLE

.}._._.

is not e-positive.



e-POSITIVITY OF TREES

CONJECTURE (DAHLBERG-SHE-VW 2020)

Any tree with N vertices and a vertex of degree
d>4

is not e-positive.
(Zheng 2020) True for d > 6.

EXAMPLE

is not e-positive.



e-POSITIVITY TEST OF WOLFGANG III 1997
A graph has a connected partition of type
A= A1+ Ag if we can find disjoint subsets of
vertices Vi,...,Vy € V(G) so
o ViU---UV,=V(G)
@ restricting edges to each V; gives connected
components with \; vertices.

EXAMPLE

I

has connected partitions of type 4,31,211 and 1111

e vle oo eoo

but is missing a connected partition of type 22.



e-POSITIVITY TEST OF WOLFGANG [II 1997

THEOREM (WOLFGANG III 1997)

If a connected graph G with N vertices is e-positive, then G has a
connected partition of type X\ for every partition A\ = N.

Test: If G does not have a connected partition of some type
then G is not e-positive.

EXAMPLE

P

does not have a connected partition of type 22. Hence it is not
e-positive.




SCHUR-POSITIVITY OF TREES

THEOREM (DAHLBERG-SHE-VW 2020)

Any tree with N vertices and a vertex of degree

N
d =
> |2
is not Schur-positive.

EXAMPLE

.>_._.

is not Schur-positive.



(]
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WHY e-POSITIVITY?

Stanley-Stembridge conjecture.
e-positivity implies Schur-positivity.

If Schur-positive, then it arises as the Frobenius image of
some representation of a symmetric group.

If Schur-positive, then it arises as the character of a
polynomial representation of a general linear group.



INFINITELY MANY POSITIVE BASES

The lollipop graph L, , is complete graph K, connected to degree

1 vertex in path P,,.
ls3 = %—o—o—@

Different lollipop graphs have different chromatic functions.

THEOREM (DAHLBERG-VW 2018)

Every distinct set {L1, L, ...} where Li = L, n.,, mj+nj =i
gives distinct set of generators {Xr,, Xr,, ...} such that

A =Q[Xz,, Xy, - - ]



(QUESTIONS

@ Which chromatic bases are e-positive? Since a chromatic
basis is e-positive iff each generator is e-positive ...

@ When is Xg e-positive?

@ ... or not. Stanley 1995:

We don’t know of a graph which is not contractible to Ki3
(even regarding multiple edges of a contraction as a single
edge) which is not e-positive.

We do.






DAHLBERG-FOLEY-VW 2020 (JEMS)




ARCH-NEMESIS: THE CLAW AKA Ki3

Contracts to the claw: shrinking edges + identifying vertices +
removing multiple edges = claw.

G



A PICTURE SPEAKS 1000 WORDS
Stanley 1995:
We don't know of a graph which is not contractible to Ki3 (even
regarding multiple edges of a contraction as a single edge) which is
not e-positive.

claw-contractible e-positive

Khn

%
e



CLAW-CONTRACTIBLE-FREE: BROUWER-VELDMAN
1987

G is claw-contractible-free if and only if deleting all sets of 3
non-adjacent vertices gives disconnection.

EXAMPLE

Q0 0 2P




CLAW-CONTRACTIBLE-FREE: BROUWER-VELDMAN
1987

G is claw-contractible-free if and only if deleting all sets of 3
non-adjacent vertices gives disconnection.

EXAMPLE

W0 ) 0




...WITH CHROMATIC SYMMETRIC FUNCTION

Q0 P 0 &

2e300 — 6933 + 26e4 + 28651 + 10266
2e31 — be3 + 24ep + 40e51 4+ 12064
26222 — 12633 + 30642 + 24651 -+ 18666
2e3391 — 06e33  + 20e4 + 32e51 + 228eg

Smallest counterexamples to Stanley’s statement.



INFINITE FAMILY: SALTIRE GRAPHS

The saltire graph SA, , for n > 3 is given by

Vo V1 Vo V1
// \\
/ \
v3 Ve left n-path right n-path
\ /
\ /
va > Va+1 Va+2

with 5Az 3 on the left.



INFINITE FAMILY: SALTIRE GRAPHS

THEOREM (DAHLBERG-FOLEY-VW 2020)

SAn n for n > 3 is claw-contractible-free and

lenn] Xs4,, = —n(n —1)(n — 2).

CCF:



FOR ANY n: AUGMENTED SALTIRE GRAPHS

The augmented saltire graphs AS, ,, AS; nt1 for n > 3.

v Vi v Vi v Vi
V7 I/ \\
v3 Ve V3 left n-path I t n(++1)-path
AN
va 5 va 5 Vatl  Vat2

THEOREM (DAHLBERG-FOLEY-VW 2020)

ASp n and ASp, n41 for n > 3 are claw-contractible-free and

[enn]Xas,., = [e(n+1)n]Xas, s = —n(n = 1)(n = 2).



CLAW-FREE: BEINEKE 1970

Claw-free: does not contain the claw as an induced subgraph of
the graph.




CLAW-FREE: BEINEKE 1970

Claw-free: does not contain the claw as an induced subgraph of
the graph.

4 X




CLAW-FREE: BEINEKE 1970

G is claw-free if there exists an edge partition giving complete
graphs, every vertex in at most two.

"%




AND CLAW-FREE: TRIANGULAR TOWER GRAPHS

The triangular tower graph 77T, ,, for n > 3 is given by

with TT333 on the left.




AND CLAW-FREE: TRIANGULAR TOWER GRAPHS

THEOREM (DAHLBERG-FOLEY-VW 2020)

TThnn for n > 3 is claw-contractible-free, claw-free and

[ennn]XTTn,n,n = _n(n - 1)2(n - 2)

CCF+CF:

4

——_—_—O----

B
-0O----

{



CONJECTURES

© Bloated K3 3:

with 3n vertices has

—(3 % 2")esn.

@ No G exists that is connected, claw-contractible-free,
claw-free and not e-positive with 10, 11 vertices.



SCARCITY

N = 6: 4 of 112 connected graphs ccf and not e-positive.

N = 7: 7 of 853 connected graphs ccf and not e-positive.

N = 8: 27 of 11117 connected graphs ccf and not e-positive.
Of 293 terms in TT777 only —ve at e777.

Of 564 terms in TTggg only —ves at eggg and —1944e444444.

Of 1042 terms in TT979’9 only —ves at eggg, —768€333333333-



A PICTURE SPEAKS 1000 WORDS

claw-contractible e-positive

SAmn
induced claw




In general, e-positivity has nothing to do with the claw.

Thank you very much!



