THE *e*-positivity of CHROMATIC SYMMETRIC FUNCTIONS

Steph van Willigenburg University of British Columbia

Michigan State University March 17 2021

CHROMATIC POLYNOMIAL: BIRKHOFF 1912

Given G with vertices $V(G)$ a proper colouring κ of G in k colours is

 $\kappa : V(G) \to \{1, 2, 3, ..., k\}$

so if $u, v \in V(G)$ are joined by an edge then

 $\kappa(u) \neq \kappa(v).$

EXAMPLE ^u ^v ✘ ^u ^v ✔

CHROMATIC POLYNOMIAL: BIRKHOFF 1912

Given G the chromatic polynomial $\chi_G(k)$ is the number of proper colourings with k colours.

DELETION-CONTRACTION

Delete ϵ : remove edge ϵ to get $G - \epsilon$.

Contract ϵ : shrink edge ϵ + identify vertices to get G/ϵ .

THEOREM (DELETION-CONTRACTION)

$$
\chi_G(k)-\chi_{G-\epsilon}(k)+\chi_{G/\epsilon}(k)=0
$$

Given G with vertices $V(G)$ a proper colouring κ of G is

 $\kappa : V(G) \rightarrow \{1, 2, 3, \ldots\}$

so if $u, v \in V(G)$ are joined by an edge then

 $\kappa(u) \neq \kappa(v).$

EXAMPLE \bullet \bullet \bullet \bullet \bullet \bullet

Given a proper colouring κ of vertices v_1, v_2, \ldots, v_N associate a monomial in commuting variables x_1, x_2, x_3, \ldots

 $X_{\kappa(v_1)}X_{\kappa(v_2)}\cdots X_{\kappa(v_N)}$

Given G with vertices v_1, v_2, \ldots, v_N the chromatic symmetric function is

$$
X_G = \sum_{\kappa} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_N)}
$$

where the sum over all proper colourings κ .

 \circ has $X_G(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_2x_3 + 2x_1x_3$. A B A B A B **A** B A B A B A B A B A B

MULTI-DELETION

Deletion-contraction fails, as contraction gives degree change.

THEOREM (TRIPLE-DELETION: ORELLANA-SCOTT 2014)

Let G be such that $\epsilon_1, \epsilon_2, \epsilon_3$ form a triangle. Then

$$
X_G-X_{G-\{\epsilon_1\}}-X_{G-\{\epsilon_2\}}+X_{G-\{\epsilon_1,\epsilon_2\}}=0.
$$

THEOREM (*k*-DELETION: DAHLBERG-VW 2018)

Let G be such that $\epsilon_1, \epsilon_2, \ldots, \epsilon_k$ form a k-cycle for $k \geq 3$. Then

$$
\sum_{S\subseteq [k-1]} (-1)^{|S|} \raisebox{2pt}{\rm{χ}}_{G-\cup_{i\in S}\{\epsilon_i\}} = 0.
$$

SYMMETRIC FUNCTIONS

A symmetric function is a formal power series f in commuting variables x_1, x_2, \ldots such that for all permutations π

$$
f(x_1, x_2,...) = f(x_{\pi(1)}, x_{\pi(2)},...).
$$

 X_G is a symmetric function.

Let

$$
\Lambda=\bigoplus_{N\geq 0}\Lambda^N\subset\mathbb{Q}[[x_1,x_2,\ldots]]
$$

be the algebra of symmetric functions with Λ^N spanned by ...

Classical basis: power sum

A partition $\lambda = \lambda_1 \geq \cdots \geq \lambda_\ell > 0$ of N is a list of positive integers whose sum is $N: 3221 \vdash 8$.

The i-th power sum symmetric function is

$$
p_i = x_1^i + x_2^i + x_3^i + \cdots
$$

and for $\lambda = \lambda_1 \cdots \lambda_\ell$

$$
p_\lambda=p_{\lambda_1}\cdots p_{\lambda_\ell}.
$$

EXAMPLE

$$
p_{21} = p_2 p_1 = (x_1^2 + x_2^2 + x_3^2 + \cdots)(x_1 + x_2 + x_3 + \cdots)
$$

Classical basis: power sum

Given $S \subseteq E(G)$, $\lambda(S)$ is the partition determined by the connected components of G restricted to S.

EXAMPLE $G =$ ϵ_1 ϵ_2 G restricted to $\mathcal{S} = \{\epsilon_2\}$ is ϵ_1 ϵ_2 and $\lambda(S)=21$.

THEOREM (STANLEY 1995)

$$
X_G=\sum_{S\subseteq E(G)} (-1)^{|S|} p_{\lambda(S)}
$$

Classical basis: power sum

$$
\mathsf{G}=\bigcirc^{\varepsilon_1}\hspace{-1mm}\mathsf{O}^{\varepsilon_2}\hspace{-1mm}\mathsf{O}
$$

G restricted to

\n- \n
$$
S = \{\epsilon_1, \epsilon_2\}
$$
 is\n \bigcirc \n \bigcirc \n

 $X_G = p_3 - 2p_{21} + p_{111}$

The *i*-th elementary symmetric function is

$$
e_i = \sum_{j_1 < \cdots < j_i} x_{j_1} \cdots x_{j_i}
$$

and for $\lambda = \lambda_1 \cdots \lambda_\ell$

$$
e_\lambda=e_{\lambda_1}\cdots e_{\lambda_\ell}.
$$

EXAMPLE

$$
e_{21} = e_2 e_1 = (x_1 x_2 + x_1 x_3 + x_2 x_3 + \cdots)(x_1 + x_2 + x_3 + \cdots)
$$

 $G = O \qquad \qquad O \qquad \qquad X_G = 3e_3 + e_{21}$

then

 \sum λ with k parts $c_{\lambda} =$ number of acyclic orientations with k sinks.

EXAMPLE $G = \bigcirc \hspace{-0.7mm} \longrightarrow \hspace{-0.7mm} \bigcirc \hspace{-0.7mm} \longrightarrow \hspace{-0.7mm} \bigcirc \hspace{0.7mm} X_G = 3e_3 + e_{21}$

then

 \sum λ with k parts $c_{\lambda} =$ number of acyclic orientations with k sinks.

then

$$
\sum_{\lambda \text{ with } k \text{ parts}} c_{\lambda} = \text{ number of acyclic orientations with } k \text{ sinks.}
$$

EXAMPLE $G = 0$ $\longrightarrow 0$ $X_G = 3e_3 + e_{21}$

then

$$
\sum_{\lambda \text{ with } k \text{ parts}} c_{\lambda} = \text{ number of acyclic orientations with } k \text{ sinks.}
$$

EXAMPLE $G =$ \leftarrow \leftarrow \leftarrow $X_G = 3e_3 + e_{21}$

then

$$
\sum_{\lambda \text{ with } k \text{ parts}} c_{\lambda} = \text{ number of acyclic orientations with } k \text{ sinks.}
$$

PARTITIONS AND DIAGRAMS

A partition $\lambda = \lambda_1 \geq \cdots \geq \lambda_\ell > 0$ of N is a list of positive integers whose sum is $N: 3221 \vdash 8$.

The diagram $\lambda = \lambda_1 \geq \cdots \geq \lambda_\ell > 0$ is the array of boxes with λ_i boxes in row i from the top.

Semi-standard Young tableaux

A semi-standard Young tableau (SSYT) T of shape λ is a filling with $1, 2, 3, \ldots$ so rows weakly increase and columns increase.

Given an SSYT T we have

$$
x^{\mathcal{T}} = x_1^{\#1s} x_2^{\#2s} x_3^{\#3s} \cdots.
$$

$$
x_1^3 x_2 x_4^2 x_5 x_6
$$

Classical basis: Schur

The Schur function is

$$
s_{\lambda} = \sum_{T \text{ SSYT of shape } \lambda} x^{T}.
$$

(Wang-Wang 2020) Intricate formula for X_G .

ARE THESE CHROMATIC?

Question: Are classical symmetric functions ever examples of chromatic symmetric functions of a connected graph?

Answer:

THEOREM (CHO-VW 2018)

Only the elementary symmetric functions, namely

$$
e_N=\frac{1}{N!}X_{K_N}.
$$

New bases

Pick favourite connected graph on 1 vertex:

 $G_1 = 0$

Pick favourite connected graph on 2 vertices:

$$
G_2=\circ \hspace{-0.5mm} \multimap
$$

Pick favourite connected graph on 3 vertices:

$$
\mathit{G}_3 = \circ\!\!-\!\!\circ\!\!-\!\!\circ
$$

And so on ...

Let G_λ be the disjoint union $\mathsf{G}_{\lambda_1}\cup\cdots\cup\mathsf{G}_{\lambda_\ell}.$

EXAMPLE

$$
G_{211} = O \hspace{-0.8mm} \longrightarrow \hspace{-0.8mm} O \hspace{0.5mm} O \hspace{0.5mm} O
$$

New bases

THEOREM (CHO-VW 2016)

$$
\Lambda = \mathbb{Q}[X_{G_1}, X_{G_2}, \dots] \qquad \Lambda^N = \mathrm{span}_{\mathbb{Q}}\{X_{G_{\lambda}} \mid \lambda \vdash N\}
$$

where

$$
X_{G_{\lambda}}=X_{G_{\lambda_1}}\cdots X_{G_{\lambda_{\ell}}}.
$$

Example

$$
G_{211} = O \quad O \quad O
$$

$$
X_{G_{211}} = X_{G_2} X_{G_1} X_{G_1}
$$

= 2e₂e₁e₁ = 2e₂₁₁

e-positivity and Schur-positivity

G is e-positive if X_G is a positive linear combination of e_{λ} .

G is Schur-positive if X_G is a positive linear combination of s_λ .

$$
\begin{array}{ccc}\n\bigcirc & \bigcirc & \bigcirc & \bigcirc & \text{has} & X_G = e_{21} + 3e_3 \text{ } \checkmark \\
& X_G = 4s_{111} + s_{21} \text{ } \checkmark \\
& \text{has} & X_G = e_{211} - 2e_{22} + 5e_{31} + 4e_4 \text{ } \checkmark \\
& X_G = 8s_{1111} + 5s_{211} - s_{22} + s_{31} \text{ } \checkmark\n\end{array}
$$

 K_{13} : Smallest graph that is not e-positive. Smallest graph that is not Schur-positive.

e-positivity and Schur-positivity

For
$$
\lambda = \lambda_1 \cdots \lambda_\ell
$$

$$
e_{\lambda} = \sum_{\mu} K_{\mu\lambda} s_{\mu^t}
$$

where $K_{\mu\lambda} = \#$ SSYTs of shape μ filled with λ_1 1s, ..., λ_ℓ ℓ s, and μ^t is the transpose of μ along the downward diagonal.

Hence $K_{\mu\lambda} \geq 0$ and

e-positivity implies Schur-positivity.

e-positivity and Schur-positivity

CONJECTURE (STANLEY-STEMBRIDGE 1993)

If G is an incomparability graph of a $(3 + 1)$ -free poset then X_G is e-positive.

Theorem (Gasharov 1996)

If G is an incomparability graph of a $(3 + 1)$ -free poset then X_G is Schur-positive.

Known e-positive graphs

• Complete graphs K_m .

• Paths P_n (Stanley 1995).

• Lollipop graphs $L_{m,n}$ (Gebhard-Sagan 2001).

Triangular ladders (Dahlberg 2018).

• Complement of G is bipartite (Stanley-Stembridge 1993).

e-positivity of trees: Dahlberg, She, vW 2020

e-positivity of trees

Theorem (Dahlberg-She-vW 2020)

Any tree with N vertices and a vertex of degree

 $d > log_2 N + 1$

is not e-positive.

EXAMPLE

is not e-positive.

e-positivity of trees

CONJECTURE (DAHLBERG-SHE-VW 2020)

Any tree with N vertices and a vertex of degree

 $d > 4$

is not e-positive.

(Zheng 2020) True for $d \geq 6$.

e-positivity test of Wolfgang III 1997

A graph has a connected partition of type $\lambda = \lambda_1 \cdots \lambda_\ell$ if we can find disjoint subsets of vertices $V_1, \ldots, V_\ell \in V(G)$ so

- $\bullet \; V_1 \cup \cdots \cup V_{\ell} = V(G)$
- restricting edges to each V_i gives connected components with λ_i vertices.

e-positivity test of Wolfgang III 1997

Theorem (Wolfgang III 1997)

If a connected graph G with N vertices is e-positive, then G has a connected partition of type λ for every partition $\lambda \vdash N$.

Test: If G does not have a connected partition of some type then G is not e-positive.

EXAMPLE

does not have a connected partition of type 22. Hence it is not e-positive.

SCHUR-POSITIVITY OF TREES

Theorem (Dahlberg-She-vW 2020)

Any tree with N vertices and a vertex of degree

$$
d > \left\lceil \frac{N}{2} \right\rceil
$$

is not Schur-positive.

EXAMPLE

is not Schur-positive.

WHY e-POSITIVITY?

- Stanley-Stembridge conjecture.
- e-positivity implies Schur-positivity.
- If Schur-positive, then it arises as the Frobenius image of some representation of a symmetric group.
- **If Schur-positive, then it arises as the character of a** polynomial representation of a general linear group.

Infinitely many positive bases

The lollipop graph $L_{m,n}$ is complete graph K_m connected to degree 1 vertex in path P_n .

$$
L_{5,3}=\bigotimes\hspace{-3.8mm}\bigotimes\hspace{-3.8mm}-\hspace{-1.8mm}\circ\hspace{-1.8mm}-\hspace{-1.8mm}\circ\hspace{-1.8mm}-\hspace{-1.8mm}\circ
$$

Different lollipop graphs have different chromatic functions.

THEOREM (DAHLBERG-VW 2018)

Every distinct set $\{\mathcal{L}_1, \mathcal{L}_2, ...\}$ where $\mathcal{L}_i = L_{m_i,n_i}$, $m_i + n_i = i$ gives distinct set of generators $\{ \mathsf{X}_{\mathcal{L}_1}, \mathsf{X}_{\mathcal{L}_2}, \ldots \}$ such that

 $\Lambda = \mathbb{Q}[X_{\mathcal{L}_1}, X_{\mathcal{L}_2}, \ldots].$

- Which chromatic bases are e-positive? Since a chromatic basis is e-positive iff each generator is e-positive . . .
- When is X_G e-positive?
- \bullet ... or not. Stanley 1995:

We don't know of a graph which is not contractible to K_{13} (even regarding multiple edges of a contraction as a single edge) which is not e-positive.

We do.

Dahlberg-Foley-vW 2020 (JEMS)

ARCH-NEMESIS: THE CLAW AKA K_{13}

Contracts to the claw: shrinking edges $+$ identifying vertices $+$ removing multiple edges $=$ claw.

A PICTURE SPEAKS 1000 WORDS

Stanley 1995:

We don't know of a graph which is not contractible to K_{13} (even regarding multiple edges of a contraction as a single edge) which is not e-positive.

Claw-contractible-free: Brouwer-Veldman 1987

G is claw-contractible-free if and only if deleting all sets of 3 non-adjacent vertices gives disconnection.

Claw-contractible-free: Brouwer-Veldman 1987

G is claw-contractible-free if and only if deleting all sets of 3 non-adjacent vertices gives disconnection.

...with chromatic symmetric function

 $2e_{222} - 6e_{33} + 26e_{42} + 28e_{51} + 102e_{6}$ $2e_{321} - 6e_{33} + 24e_{42} + 40e_{51} + 120e_6$ $2e_{222} - 12e_{33} + 30e_{42} + 24e_{51} + 186e_{6}$ $2e_{321} - 6e_{33} + 20e_{42} + 32e_{51} + 228e_{6}$

Smallest counterexamples to Stanley's statement.

Infinite family: saltire graphs

The saltire graph $SA_{n,n}$ for $n \geq 3$ is given by

with $SA_{3,3}$ on the left.

Infinite family: saltire graphs

Theorem (Dahlberg-Foley-vW 2020)

 $SA_{n,n}$ for $n \geq 3$ is claw-contractible-free and

$$
[e_{nn}]X_{SA_{n,n}}=-n(n-1)(n-2).
$$

CCF:

FOR ANY *n*: AUGMENTED SALTIRE GRAPHS

The augmented saltire graphs $AS_{n,n}$, $AS_{n,n+1}$ for $n \geq 3$.

Theorem (Dahlberg-Foley-vW 2020)

 $AS_{n,n}$ and $AS_{n,n+1}$ for $n \geq 3$ are claw-contractible-free and

$$
[e_{nn}]X_{AS_{n,n}}=[e_{(n+1)n}]X_{AS_{n,n+1}}=-n(n-1)(n-2).
$$

Claw-free: Beineke 1970

Claw-free: does not contain the claw as an induced subgraph of the graph.

Claw-free: Beineke 1970

Claw-free: does not contain the claw as an induced subgraph of the graph.

Claw-free: Beineke 1970

G is claw-free if there exists an edge partition giving complete graphs, every vertex in at most two.

And claw-free: triangular tower graphs

The triangular tower graph $TT_{n,n,n}$ for $n \geq 3$ is given by

with $TT_{3,3,3}$ on the left.

And claw-free: triangular tower graphs

THEOREM (DAHLBERG-FOLEY-VW 2020)

 $TT_{n,n,n}$ for $n \geq 3$ is claw-contractible-free, claw-free and

$$
[e_{nnn}]X_{TT_{n,n,n}}=-n(n-1)^2(n-2).
$$

CCF+CF:

CONJECTURES

 \bullet Bloated $K_{3,3}$:

with 3n vertices has

 $-(3 \times 2^n) e_{3^n}.$

² No G exists that is connected, claw-contractible-free, claw-free and not e-positive with 10, 11 vertices.

SCARCITY

- $N = 6: 4$ of 112 connected graphs ccf and not e-positive.
- $N = 7: 7$ of 853 connected graphs ccf and not e-positive.
- $N = 8: 27$ of 11117 connected graphs ccf and not e-positive.
- Of 293 terms in $TT_{7,7,7}$ only −ve at e_{777} .
- Of 564 terms in $TT_{8,8,8}$ only −ves at e_{888} and −1944 $e_{4444444}$.
- \bullet Of 1042 terms in $TT_{9,9,9}$ only −ves at e₉₉₉, −768e333333333333333.

A picture speaks 1000 words

In general, e-positivity has nothing to do with the claw.

Thank you very much!