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I. Lattice paths and q-binomial coefficients

I How many lattice paths consisting of (1, 0) steps and (0, 1)
steps, starting at the origin and ending at (2, 2)?

6.
I How many paths from the origin to (2, 3)? 10.
I How many from the origin to (a, b)?(

a+ b

a

)
(“a+ b choose a”).

I This is the number of size-a subsets of a size-(a+ b) set.
I Also the number of binary strings with a 0’s and b 1’s.

I
(
a+ b

a

)
=

(a+ b)!
a!b!

.
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I. Lattice paths and q-binomial coefficients
I A lattice path can also be interpreted as the diagram of an

integer partition: a way of writing a positive integer as a
sum of positive integers.

I Lattice paths from (0, 0) to (a, b) correspond to partitions
whose diagrams fit inside an a× b rectangle.

I The area under the path is equal to the size of the partition
(the sum of the numbers in it).

I Let’s count the paths from (0, 0) to (2, 3) according to area.

1+ q+ 2q2 + 2q3 + 2q4 + q5 + q6 =

(
5

2

)
q

.

I
(
a+ b

a

)
q

denotes the polynomial in q where the

coefficient of qm gives the number of paths from (0, 0) to
(a, b) with aream. These polynomials are called
q-binomial coefficients or Gaussian coefficients.
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I. Lattice paths and q-binomial coefficients
The q-binomial coefficients have q-analogs of many properties
of the binomial coefficients. In each one, setting q = 1 recovers
the binomial coefficient property.
I Define the “q-integer” [k]q = 1+ q+ · · ·+ qk−1, and

define the “q-factorial” [n]q! = [1]q[2]q · · · [n]q. Then(
a+ b

a

)
q

=
[a+ b]q!
[a]q! [b]q!

.

I
(
n

k

)
q

=

(
n− 1

k

)
q

+ qn−k

(
n− 1

k− 1

)
q

.

I
n−1∏
i=0

(1+ qix) =

n∑
k=0

qk(k−1)/2

(
n

k

)
q

xk.

I If we set q to be the order of a finite field F, then
(
n

k

)
q

is

the number of k-dimensional subspaces of an
n-dimensional vector space over F.
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II. The Foulkes Conjecture for q-binomial coefficients
When does

(
c+ d

c

)
q

−

(
a+ b

a

)
q

have non-negative

coefficients?

I
(
a+ b

a

)
q

has degree ab, so it makes sense to compare(
a+ b

a

)
q

and
(
c+ d

c

)
q

if ab = cd.

Foulkes Conjecture for q–binomial coefficients (F. Bergeron

2016): If ab = cd and a 6 b, c, d, then
(
c+ d

c

)
q

−

(
a+ b

a

)
q

has non-negative coefficients.
I The combinatorial interpretation is that the number of

size-n partitions inside a given rectangle is at least the
number for a skinnier rectangle of the same area.

I Zanello 2018 proved it for a = 3 using Zeilberger’s KOH
theorem.
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I. The Foulkes Conjecture and prior generalizations
That is a specialization of a conjecture on symmetric functions:

Generalized Foulkes Conjecture (for symmetric functions)
(Rebecca Vessenes 2004): If ab = cd and a 6 b, c, d, then
hc ◦ hd − ha ◦ hb is Schur positive.
The symbol ◦ denotes plethysm of symmetric functions.

I The equivalent statements from representation theory are:
(1) 1↑Sab

SaoSb
is a subrepresentation of 1↑Scd

ScoSd

(2) The GL(V)-module Sa(Sb(V)) is a submodule of Sc(Sd(V))

I Specializes to q-binomial version since

ha ◦ hb ◦ (1+ q) =
(
a+ b

a

)
q

.

I François Bergeron has several conjectures that refine the
one by Vessenes.

I Original: if a < b then hb ◦ ha − ha ◦ hb is Schur positive,
conjectured by H. O. Foulkes 1950.
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I. The Foulkes Conjecture and prior generalizations

Foulkes Conjecture for q–binomial coefficients (F. Bergeron

2016): If ab = cd and a 6 b, c, d, then
(
c+ d

c

)
q

−

(
a+ b

a

)
q

has non-negative coefficients.

A related result is the q-unimodality of
(
n

k

)
q

for fixed n and

varying k:

Theorem (Lynne Butler 1987): If k 6 n/2, then(
n

k

)
q

−

(
n

k− 1

)
q

has non-negative coefficients.
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III. New generalizations: Inequalities and asymptotics

For what values of a, b, c, d does
(
c+ d

c

)
q

−

(
a+ b

a

)
q

have

non-negative coefficients?
Without loss of generality, a 6 b and c 6 d.

I Easy necessary conditions: ab 6 cd and a 6 b, c, d.
I Easy sufficient condition: a 6 c and b 6 d (the a× b

rectangle is inside the c× d rectangle).
I Hard sufficient condition: a+ b = c+ d = n and

a 6 b, c, d. This is because the sequence
(
n

k

)
q

is

q-unimodal in k (Lynne Butler 1987).
Conjecture (T. 2024+): The “easy necessary conditions” are also
sufficient: if ab 6 cd and a 6 b, c, d, then(
c+ d

c

)
q

−

(
a+ b

a

)
q

has non-negative coefficients.
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III. New generalizations: Inequalities and asymptotics

Conjecture (T. 2024+): If ab 6 cd and a 6 b, c, d, then(
c+ d

c

)
q

−

(
a+ b

a

)
q

has non-negative coefficients.

I The ab 6 cd version implies the ab = cd version. Does the
ab = cd version imply the ab 6 cd version?

I Fake proof of the ab 6 cd version assuming the ab = cd
version: setting b ′ = cd/a, we get b 6 b ′ and so(

a+ b

a

)
q

6q

(
a+ b ′

a

)
q

6q

(
c+ d

c

)
q

.

I The flaw: b ′ is not always an integer! Indeed, sometimes
there are not integers a ′, b ′ such that a 6 a ′ and b 6 b ′ and
a ′b ′ = cd.
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III. New generalizations: Inequalities and asymptotics

Some parameters covered by my conjecture that are easy
consequences of the ab = cd version and Butler’s
q-unimodality:

a b c d ab cd

2 4 3 3 8 9

3 5 4 4 15 16

3 6 4 5 18 20

3 8 5 5 24 25

Some parameters covered by my conjecture that are not easy
consequences of those things:

a b c d ab cd

2 7 3 5 14 15

3 9 4 7 27 28

4 11 5 9 44 45



II. New generalizations: Inequalities and asymptotics

What about hc ◦ hd − ha ◦ hb when ab 6 cd?
I hc ◦ hd and ha ◦ hb are homogeneous with different

degrees when ab , cd, so it does not make sense to
compare them directly.

I However, we can “dehomogenize” them by setting x1 = 1.
Conjecture (T. 2024+): If ab 6 cd and a 6 b, c, d, then
hc ◦ hd ◦ (1+ h1) − ha ◦ hb ◦ (1+ h1) is Schur positive.



III. New generalizations: Inequalities and asymptotics

What if our paths were made of length-(1/t) steps instead of
the usual length-1 steps? This would fix the fake proof by no
longer requiring the parameters to be integers.
I Equivalently: instead of looking at area-n paths to (a, b),

we can look at area-t2n paths to (ta, tb).

Let N(a, b, n) be the coefficient of qn in
(
a+ b

a

)
q

, i.e. the

number of area-n lattice paths from (0, 0) to (a, b).

Conjecture (almost theorem) (T. 2024+): If ab 6 cd and
a < b, c, d, then N(ta, tb, t2n) = o(N(tc, td, t2n)) as t→∞.
I The proof uses asymptotic formulas for N(a, b, n) from

Melczer, Panova, & Pemantle 2020 — their results are
under the conditions a/b→ A and n/a2 → B for constants
A and B.
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III. New generalizations: Inequalities and asymptotics

Related known results:
I Lajos Takács 1986: Let θ(a, b) be the size of a partition

chosen uniformly at random from those inside the a× b
rectangle. Then, as a, b→∞, the distribution of θ(a, b) is
asymptotic to a normal distribution with mean ab

2 and
variance ab(a+b+1)

12 .
I A local limit theorem is also proved when∣∣n− 1

2
ab
∣∣ = O(√ab(a+ b)

)
.

I Pak & Panova 2017: Let N(a, b, n) be the number of size-n
partitions inside an a× b rectangle. If n 6 ab/2, then

N(a, b, n) −N(a, b, n− 1) > A · s−9/42
√
s,

where s = min{2n, a2}.
I This is a stronger version of the fact (Sylvester 1878) that
N(a, b, n) −N(a, b, n− 1) > 0.


