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Separating Parameters - A Modern Research Theme

� Let f and g be monotonic parameters defined on a class of

structures, such as graphs, posets, lattices, etc.

� When is f bounded in terms of g?

� We say that f can be separated from g when there is an

infinite sequence of structures on which g is bounded and f is

not.

� Perhaps the single most widely studied example are classes of

graphs with f being chromatic number and g being clique

number.
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Dushnik-Miller Dimension—Abreviated to Dimension

� Let σ = (L1, . . . , Ln) be a sequence of linear orders on the

ground set of a poset P . For x, y ∈ P , let q(x, y, σ) be the

0–1 sequence with coordinate i set to 1 if and only if x ≤ y in

Li.

� We say σ is a Dushnik-Miller realizer of P if x ≤ y in P if and

only if q(x, y, σ) is the constant 0–1 sequence (1, . . . , 1) of

length n.

� The dimension of P , denoted dim(P ), is the least positive

integer n for which P has a Dushnik-Miller realizer

σ = (L1, . . . , Ln) of length n.

4/34



Dushnik-Miller Dimension—Abreviated to Dimension

� Let σ = (L1, . . . , Ln) be a sequence of linear orders on the

ground set of a poset P . For x, y ∈ P , let q(x, y, σ) be the

0–1 sequence with coordinate i set to 1 if and only if x ≤ y in

Li.

� We say σ is a Dushnik-Miller realizer of P if x ≤ y in P if and

only if q(x, y, σ) is the constant 0–1 sequence (1, . . . , 1) of

length n.

� The dimension of P , denoted dim(P ), is the least positive

integer n for which P has a Dushnik-Miller realizer

σ = (L1, . . . , Ln) of length n.

4/34



Dushnik-Miller Dimension—Abreviated to Dimension

� Let σ = (L1, . . . , Ln) be a sequence of linear orders on the

ground set of a poset P . For x, y ∈ P , let q(x, y, σ) be the

0–1 sequence with coordinate i set to 1 if and only if x ≤ y in

Li.

� We say σ is a Dushnik-Miller realizer of P if x ≤ y in P if and

only if q(x, y, σ) is the constant 0–1 sequence (1, . . . , 1) of

length n.

� The dimension of P , denoted dim(P ), is the least positive

integer n for which P has a Dushnik-Miller realizer

σ = (L1, . . . , Ln) of length n.

4/34



Dimension and Standard Example Number

b2b1

a2a1 a3

b3 b4 b5

a4 a5

� For n ≥ 2, the standard example Sn is the height 2 poset with

minimal elements a1, . . . , an, maximal elements b1, . . . , bn,

and ai < bj in Sn if and only i ̸= j.

� The dimension of Sn is n.

� The standard example number of a poset P , denoted se(P ),

is 1 if P does not contain S2; otherwise, se(P ) is the largest

n ≥ 2 such that P contains the standard example Sn.

� dim(P ) ≥ se(P ) for all posets P .
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Separating Dimension and Standard Example Number

� Dushnik-Miller 1941 For every d ≥ 3, there is a poset P with

se(P ) = 3 and dim(P ) > d.

� Bogart, Rabinovitch and WTT 1975 For every d ≥ 3, there is

a poset P with se(P ) = 1 and dim(P ) > d.

� Füredi, Hajnal, Rödl and WTT 1991 If P is a poset with

se(P ) = 1 and dim(P ) > d, then the height of P is

Ω(log log d).

� Felsner and WTT 2000 For every d ≥ 3, there is a height 2

poset P with se(P ) = 2 and dim(P ) > d.

� Regardless, it is of interest to investigate classes of posets for

which dimension is bounded in terms of standard example

number.
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� Füredi, Hajnal, Rödl and WTT 1991 If P is a poset with

se(P ) = 1 and dim(P ) > d, then the height of P is

Ω(log log d).

� Felsner and WTT 2000 For every d ≥ 3, there is a height 2

poset P with se(P ) = 2 and dim(P ) > d.

� Regardless, it is of interest to investigate classes of posets for

which dimension is bounded in terms of standard example

number.

6/34



Dimension and Posets with Planar Cover Graphs I

� Baker, Fishburn and Roberts 1970 If P is a poset with a 0 and

a 1, and the order diagram of P is planar, then dim(P ) ≤ 2.

� WTT 1978 For every d ≥ 1, there is a poset P with a 0 and

a 1 such that the cover graph of P is planar, and dim(P ) > d.

� Kelly 1981 For every d ≥ 1, there is a poset P with a planar

order diagram such that dim(P ) > d.

� Conjecture In the class of posets with planar cover graphs,

dimension is bounded in terms of standard example number.
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Resolution of the Conjecture

� Theorem (Blake, Hodor, Micek, Seweryn and WTT, 2023+) If

P is a poset with a planar cover graph, then

dim(P ) = O((se(P )6).

� Theorem (Blake, Hodor, Micek, Seweryn and WTT, 2023+) If

P is a poset with a planar order diagram, then

dim(P ) = O(se(P )).
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Convex Geometries

� Let X be a finite set. A family P of subsets of X is called a
convex geometry with ground set X if

1. ∅, X ∈ P ;

2. A ∩B ∈ P whenever A,B ∈ P ; and

3. A ∈ P and A ̸= X, there is an element α ∈ X −A such that

A ∪ {α} ∈ P .

� A convex geometry is a lattice, with A ∧B = A ∩B, and

A ∨B = ∩{C ∈ P : A ∪B ⊆ C}.
� Note that P is closed under intersections, but may not be

closed under unions.

� Convex geometries have also been called anti-matroids.
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Two Important Special Cases of a Convex Geometry

123

124 134 2341231234

1234
12345

1
1 2 3 4

12

13 23
12

14 24 34

Ø
Ø

� On the left, we show a linear geometry.

� On the right, we show a Boolean algebra. These are also

called subset lattices.

10/34



Two Important Special Cases of a Convex Geometry

123

124 134 2341231234

1234
12345

1
1 2 3 4

12

13 23
12

14 24 34

Ø
Ø

� On the left, we show a linear geometry.

� On the right, we show a Boolean algebra. These are also

called subset lattices.

10/34



Distributive Lattices I

� Distributive lattices are the convex geometries that are closed

under unions.

� Equivalently, distributive lattices are the convex geometries

that result when X is a finite poset, and P consists of all

down sets of X.

� Linear geometries and Boolean algebras are distributive

lattices.
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Distributive Lattices II

3

123
4

1234

1 1 3

2
1312

Ø

� On the left, we show a poset X with ground set {1, 2, 3, 4}.

� On the right, we show the family of all down sets of X,

ordered by inclusion.

� This distributive lattice is neither a linear geometry nor a

Boolean algebra.
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An Example of a Convex Geometry I

123 124 125

1234
1235

12345

1 2 3 4 5

12 13 14 15

Ø

� The ground set X is {1, 2, 3, 4, 5}.

� The sets {1, 3} and {5} show that P is not a distributive

lattice, i.e., P is not closed under unions.

� Note that the maximum up-degree is 5, and the maximum

down-degree is 2.
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The Wedge Operation on Convex Geometries

� If n ≥ 1 and Pi is a convex geometry with ground set X for

each i ∈ [n], then the family of all sets of the form

A1 ∩ · · · ∩An, where Ai ∈ Pi for each i ∈ [n], is a convex

geometry with ground set X.

� We denote this geometry as P1 ∧ · · · ∧ Pn.

� Note that P1 ∧ · · · ∧ Pn is the smallest convex geometry with

ground set X containing all sets in P1 ∪ · · · ∪ Pn.
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Convex Dimension I

� When P is a convex geometry with ground set X, the convex

dimension of P , denoted cdim(P ), is the least integer n such

that there are linear geometries P1, . . . , Pn, with ground set

X, such that P = P1 ∧ · · · ∧ Pn.

� Edelman and Jamison 1985 The convex dimension of P is the

width of the subposet of P consisting of the elements that

have up-degree 1.

� Elements that have up-degree 1 are also called

meet-irreducible elements.
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An Example of a Convex Geometry II

123 124 125

1234
1235

12345

1 2 3 4 5

12 13 14 15

Ø

� The width of the subposet of meet-irreducible elements is 4.

� The convex dimension is 4.
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An Example of a Convex Geometry II

123 124 125

1234
1235

12345

1 2 3 4 5

12 13 14 15

Ø

� The width of the subposet of meet-irreducible elements is 4.

� The convex dimension is 4.
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Dimension and Convex Dimension

� Dilworth 1950 The dimension of a distributive lattice is the

same as its convex dimension, i.e., the width of the subposet

of meet-irreducible elements.

� Edelman and Jamison 1985 If P is a convex geometry, then

dim(P ) ≤ cdim(P ).
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V C-Dimension

9 42
14

85

21 7

33

3652

A

� When F is a family of subsets of a finite set X, the

V C-dimension of F is the largest integer n for which there are

n-elements a1, . . . , an of X such that for each subset S ⊆ [n],

there is a set A = AS in F with ai ∈ A if and only if i ∈ S.

� If X = [85], and F has V C-dimension 9, as evidenced by the

set {7, 9, 14, 21, 33, 36, 42, 52, 85}, then 29 sets are required.

We illustrate one of them.
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An Example of a Convex Geometry II

123 124 125

1234
1235

12345

1 2 3 4 5

12 13 14 15

Ø

� The elements 2 and 4 together with the sets ∅, {1, 2},
{1, 3, 4} and {1, 2, 3, 4} show that the V C-dimension of P is

at least 2.

� By inspection, the V C-dimension of P is 2.

� Challenge Show that the dimension of P is 3.
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V C-Dimension and Down-Degree

� Edelman and Jamison 1985 When P is a convex-geometry,

the V C-dimension of P is the maximum down-degree in P .

� Edelman and Jamison 1985 When L is a finite lattice, there is

a convex geometry P such that L is isomorphic to P (as a

poset) if and only if for every element y of L with y distinct

from the zero of L, the interval of L between y and the meet

of all elements covered by y is a Boolean algebra.
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Recognizing Convex Geometries

� In the figure, we show two lattices.

� Both lattices have planar order diagrams, and both have

dimension 2.

� Only the lattice on the right is a convex geometry.

� It has convex dimension 2.

21/34



Recognizing Convex Geometries

� In the figure, we show two lattices.

� Both lattices have planar order diagrams, and both have

dimension 2.

� Only the lattice on the right is a convex geometry.

� It has convex dimension 2.

21/34



Recognizing Convex Geometries

� In the figure, we show two lattices.

� Both lattices have planar order diagrams, and both have

dimension 2.

� Only the lattice on the right is a convex geometry.

� It has convex dimension 2.

21/34



Recognizing Convex Geometries

� In the figure, we show two lattices.

� Both lattices have planar order diagrams, and both have

dimension 2.

� Only the lattice on the right is a convex geometry.

� It has convex dimension 2.

21/34



Separating Parameters for Convex Geometries I

� There are three parameters for convex geometries that are

(essentially) the same.

� If P is a convex geometry, then V C-dimension is maximum

down degree.

� Bandelt, Chepoi, Dress and Koolen 2006 If P is a convex

geometry, then the V C-dimension of P equals se(P ) unless

the V C-dimension is 2. In this case, se(P ) is either 1 or 2.
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Knauer’s Construction

1
2

3

...
n

� For n ≥ 3, the poset Pn is a convex geometry.

� It is easy to see that the dimension of Pn is 3.

� The convex dimension of Pn is n+ 1.

� So in the class of convex geometries, convex dimension can be

separated from dimension and V C-dimension.
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Two Natural Questions for Convex Geometries

� Can convex dimension be separated from dimension if

dimension is at most 2?

� Can convex dimension be separated from maximum down

degree when maximum down degree is 2?
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One Question has an Immediate Negative Answer

� Baker, Fishburn and Roberts 1970 If P is a finite lattice, then

P has dimension at most 2 if and only if the order diagram of

P is planar.

� Knauer and WTT 2023 If P is a convex geometry, and the

order diagram of P is planar, then all interior faces are

diamonds, and all meet-irreducible elements are on the exterior

face. It follows that the convex dimension is at most 2.
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Answering the Second Question I

� When m is an integer, let [m] = {1, . . . ,m} when m ≥ 1, and

let [m] = ∅ when m ≤ 0.

� Let k and n be integers with 1 ≤ k ≤ n− 2. Then let P (k, n)

denote the family of all sets A ⊆ [n] such that if

|A| = k + i− 1, then [i− 1] ⊆ A.

� Note that A ∈ P (k, n) whenever A ⊂ [n] and |A| ≤ k.

� {1, 2, 3, 6, 11} and {1, 2, 6, 10, 11} belong to P (3, 12), while

{1, 3, 6, 10, 11} does not.

� Exercise If 1 ≤ k ≤ n− 2, then P (k, n) is a convex geometry.
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An Example of a Convex Geometry III

123 124 125

1234
1235

12345

1 2 3 4 5

12 13 14 15

Ø

� This is the convex geometry P (1, 5).
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Answering the Second Question II

� If k and n are integers with 1 ≤ k ≤ n− 2, then the following
statements hold:

1. If 1 ≤ k < k′ ≤ n− 2, then P (k, n) is a subposet of P (k′, n).

2. cdim(P (k, n)) =
(
n−1
k

)
.

3. maxdd(P (k, n)) = se(P (k, n)) = k + 1.

4. dim(P (1, n)) = 1 + ⌊lg n⌋,
5. dim(P (k, n)) ≤ (k + 1)2k+2 log n.

� The family {P (1, n) : n ≥ 3} shows that dimension and

convex dimension can be separated from V C-dimension, even

when V C-dimension is 2.
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Boolean Dimension

� Let σ = (L1, . . . , Ln) be a sequence of linear orders on the

ground set of a poset P . We say σ is a Boolean realizer of P

if there is a set τ of 0–1 strings of length n such that x < y in

P if and only if q(x, y, σ) ∈ τ .

� The Boolean dimension of P , denoted bdim(P ), is the least n

such that P has a Boolean realizer of length n.

� A Dushnik-Miller realizer is a Boolean realizer, as evidenced

by the set τ = {(1, 1, . . . , 1)}.
� bdim(P ) ≤ dim(P ) for all posets P .

� dim(P ) = bdim(P ) when dim(P ) ≤ 3.

� bdim(Sn) = 4 for all n ≥ 4.
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Fractional Dimension

� Let E(P ) be the set of all linear extensions of a poset P , and

let f be a function assigning to each L ∈ E(P ) a non-negative

real number f(L).

� We say f is a fractional realizer of P if for all x, y ∈ P with

x ̸< y in P ,
∑

{f(L) : L ∈ E(P ), x ≥ y in L} ≥ 1.

� The fractional dimension of P is the least real number t for

which there is a fractional realizer f with
∑

L∈E(P ) f(L) ≤ t.

� If (L1, . . . , Ln) is a Dushnik-Miller realizer of P , then setting

f(L) = 1 if L = Li for some i ∈ [n]; otherwise f(L) = 0,

shows that fdim(P ) ≤ dim(P ).

� Fact fdim(Sn) = n for all n ≥ 2.

� Brightwell and Scheinerman If se(P ) = 1, then fdim(P ) < 4.
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Local Dimension

� Let σ = (M1, . . . ,Mt) be a sequence of linear extensions of

subposets of a poset P . We say that σ is a local realizer of P

if there is some i ∈ [t] with x ≥ y in Mi whenever x ̸< y in P .

� The local dimension of P , denoted ldim(P ), is the least n

such that P has a local realizer σ such that all elements of P

appear in at most n different extensions of σ.

� A Dushnik-Miller realizer is a local realizer. Therefore,

ldim(P ) ≤ dim(P ) for all posets P .

� If dim(P ) ≤ 3, then ldim(P ) = dim(P ).

� ldim(Sn) = n for all n ≥ 3.
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such that P has a local realizer σ such that all elements of P

appear in at most n different extensions of σ.

� A Dushnik-Miller realizer is a local realizer. Therefore,

ldim(P ) ≤ dim(P ) for all posets P .

� If dim(P ) ≤ 3, then ldim(P ) = dim(P ).

� ldim(Sn) = n for all n ≥ 3.
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Concepts of Dimension for Convex Geometries

� For fixed k, both the Boolean dimension and the local

dimension of P (k, n) tends to infinity.

� For fixed k, the fractional dimension of P (k, n) is less than 2k.

� In the class of convex geometries, both Boolean dimension and

local dimension can be separated from fractional dimension

and V C-dimension, even when the V C-dimension is 2.
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Separating Dimension Paramters for Posets

� Fact Dimension and fractional dimension are separated from

Boolean dimension, and local dimension by the family of

standard examples.

� Barrera-Cruz, Prag, Smith, Taylor, WTT and Wang

Dimension, Boolean dimension and local dimension are

separated from fractional dimension by the family of posets

with standard example number 1.

� WTT and Walczak Each of Boolean dimension and local

dimension can be separated from the other.

33/34



Separating Dimension Paramters for Posets

� Fact Dimension and fractional dimension are separated from

Boolean dimension, and local dimension by the family of

standard examples.

� Barrera-Cruz, Prag, Smith, Taylor, WTT and Wang

Dimension, Boolean dimension and local dimension are

separated from fractional dimension by the family of posets

with standard example number 1.

� WTT and Walczak Each of Boolean dimension and local

dimension can be separated from the other.

33/34



Separating Dimension Paramters for Posets

� Fact Dimension and fractional dimension are separated from

Boolean dimension, and local dimension by the family of

standard examples.

� Barrera-Cruz, Prag, Smith, Taylor, WTT and Wang

Dimension, Boolean dimension and local dimension are

separated from fractional dimension by the family of posets

with standard example number 1.

� WTT and Walczak Each of Boolean dimension and local

dimension can be separated from the other.

33/34



Open Questions for Convex Geometries

� In the class of convex geometries, we have been unable to

separate dimension from either of Boolean dimension and

local dimension.

� Also, we are unable to separate Boolean dimension and local

dimension in either direction.
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