Concepts of Dimension for Convex Geometries

William T. Trotter
wtt.math@gmail.com

Georgia | math i
mati
Tech Colla‘gufScie?ces atics

MSU Combinatorics and Graph Theory Seminar

October 4, 2023



Kolja Knauer

Universitat de Barcelona

2/34



Separating Parameters - A Modern Research Theme

e Let f and g be monotonic parameters defined on a class of
structures, such as graphs, posets, lattices, etc.

3/34



Separating Parameters - A Modern Research Theme

e Let f and g be monotonic parameters defined on a class of
structures, such as graphs, posets, lattices, etc.

e When is f bounded in terms of g?

3/34



Separating Parameters - A Modern Research Theme

e Let f and g be monotonic parameters defined on a class of
structures, such as graphs, posets, lattices, etc.

e When is f bounded in terms of g?

e We say that f can be separated from ¢ when there is an
infinite sequence of structures on which g is bounded and f is
not.

3/34



Separating Parameters - A Modern Research Theme

e Let f and g be monotonic parameters defined on a class of

structures, such as graphs, posets, lattices, etc.
e When is f bounded in terms of g?

e We say that f can be separated from ¢ when there is an
infinite sequence of structures on which g is bounded and f is
not.

e Perhaps the single most widely studied example are classes of
graphs with f being chromatic number and ¢ being clique

number.
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Dushnik-Miller Dimension—Abreviated to Dimension

e Let 0 = (Ly,...,Ly,) be a sequence of linear orders on the
ground set of a poset P. For z,y € P, let ¢(x,y,0) be the
0-1 sequence with coordinate i set to 1 if and only if x <y in
L;.
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e Let 0 = (Ly,...,Ly,) be a sequence of linear orders on the
ground set of a poset P. For z,y € P, let ¢(x,y,0) be the
0-1 sequence with coordinate i set to 1 if and only if x <y in

L;.

e We say o is a Dushnik-Miller realizer of P if x <y in P if and
only if ¢(z,y, o) is the constant 0-1 sequence (1,...,1) of
length n.

e The dimension of P, denoted dim(P), is the least positive
integer n for which P has a Dushnik-Miller realizer
o= (Li,...,Ly) of length n.

4/34



Dimension and Standard Example Number
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Dimension and Standard Example Number

e For n > 2, the standard example S, is the height 2 poset with
minimal elements a1, ..., a,, maximal elements by, ..., b,,
and a; < bj in S, if and only ¢ # j.

e The dimension of .5, is n.

e The standard example number of a poset P, denoted se(P),
is 1 if P does not contain Sy; otherwise, se(P) is the largest
n > 2 such that P contains the standard example S,,.

e dim(P) > se(P) for all posets P.
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e Dushnik-Miller 1941 For every d > 3, there is a poset P with
se(P) = 3 and dim(P) > d.
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Separating Dimension and Standard Example Number

e Dushnik-Miller 1941 For every d > 3, there is a poset P with
se(P) =3 and dim(P) > d.

s Bogart, Rabinovitch and WTT 1975 For every d > 3, there is
a poset P with se(P) =1 and dim(P) > d.

e Firedi, Hajnal, Rodl and WTT 1991 If P is a poset with
se(P) =1 and dim(P) > d, then the height of P is
Q(loglogd).

e Felsner and WTT 2000 For every d > 3, there is a height 2
poset P with se(P) = 2 and dim(P) > d.

e Regardless, it is of interest to investigate classes of posets for
which dimension is bounded in terms of standard example

number.
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Dimension and Posets with Planar Cover Graphs |

o Baker, Fishburn and Roberts 1970 If P is a poset with a 0 and
a 1, and the order diagram of P is planar, then dim(P) < 2.
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Dimension and Posets with Planar Cover Graphs |

o Baker, Fishburn and Roberts 1970 If P is a poset with a 0 and
a 1, and the order diagram of P is planar, then dim(P) < 2.

WTT 1978 For every d > 1, there is a poset P with a 0 and
a 1 such that the cover graph of P is planar, and dim(P) > d.

Kelly 1981 For every d > 1, there is a poset P with a planar
order diagram such that dim(P) > d.

Conjecture In the class of posets with planar cover graphs,

dimension is bounded in terms of standard example number.

7/34



Resolution of the Conjecture

e Theorem (Blake, Hodor, Micek, Seweryn and WTT, 2023+) If
P is a poset with a planar cover graph, then
dim(P) = O((se(P)®).
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Convex Geometries

e Let X be a finite set. A family P of subsets of X is called a
convex geometry with ground set X if

1. 0,X € P;
2. AN B € P whenever A, B € P; and
3. A€ P and A # X, there is an element o« € X — A such that
AU{a} € P.
e A convex geometry is a lattice, with AA B = AN B, and
AvB=n{CeP:AUBCC}.
e Note that P is closed under intersections, but may not be
closed under unions.

e Convex geometries have also been called anti-matroids.
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12345
1234

123

e On the left, we show a linear geometry.
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Two Important Special Cases of a Convex Geometry

12345
1234

123

e On the left, we show a linear geometry.

e On the right, we show a Boolean algebra. These are also
called subset lattices.

10/34



Distributive Lattices |

e Distributive lattices are the convex geometries that are closed
under unions.
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butive Lattices |

e Distributive lattices are the convex geometries that are closed
under unions.

e Equivalently, distributive lattices are the convex geometries
that result when X is a finite poset, and P consists of all
down sets of X.

e Linear geometries and Boolean algebras are distributive
lattices.
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e On the left, we show a poset X with ground set {1,2,3,4}.
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Distributive Lattices |

1234
123
4
12 13
2 3
1 1 3
%}

e On the left, we show a poset X with ground set {1,2,3,4}.
e On the right, we show the family of all down sets of X,

ordered by inclusion.

e This distributive lattice is neither a linear geometry nor a
Boolean algebra.
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An Example of a Convex Geometry |

e The ground set X is {1,2,3,4,5}.
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An Example of a Convex Geometry |

e The ground set X is {1,2,3,4,5}.

e The sets {1,3} and {5} show that P is not a distributive
lattice, i.e., P is not closed under unions.

o Note that the maximum up-degree is 5, and the maximum
down-degree is 2.
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The Wedge Operation on Convex Geometries

e If n>1 and P; is a convex geometry with ground set X for
each i € [n], then the family of all sets of the form
ApN---NA,, where A; € P; for each i € [n], is a convex
geometry with ground set X.
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The Wedge Operation on Convex Geometries

e If n>1 and P; is a convex geometry with ground set X for
each i € [n], then the family of all sets of the form
ApN---NA,, where A; € P; for each i € [n], is a convex
geometry with ground set X.

o We denote this geometry as Py A --- A P,

e Note that P; A--- A P, is the smallest convex geometry with
ground set X containing all sets in P, U---U P,.
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Convex Dimension |

e When P is a convex geometry with ground set X, the convex
dimension of P, denoted cdim(P), is the least integer n such
that there are linear geometries Py, ..., P,, with ground set
X,suchthat P=P A---AP,.
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e When P is a convex geometry with ground set X, the convex
dimension of P, denoted cdim(P), is the least integer n such
that there are linear geometries Py, ..., P,, with ground set
X,suchthat P=P A---AP,.

e Edelman and Jamison 1985 The convex dimension of P is the
width of the subposet of P consisting of the elements that
have up-degree 1.

e Elements that have up-degree 1 are also called
meet-irreducible elements.
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e The width of the subposet of meet-irreducible elements is 4.

e The convex dimension is 4.
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Dimension and Convex Dimension

e Dilworth 1950 The dimension of a distributive lattice is the
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Dimension and Convex Dimension

e Dilworth 1950 The dimension of a distributive lattice is the
same as its convex dimension, i.e., the width of the subposet
of meet-irreducible elements.

e Edelman and Jamison 1985 If P is a convex geometry, then
dim(P) < cdim(P).
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V C-Dimension

e When F is a family of subsets of a finite set X, the
V' C-dimension of F is the largest integer n for which there are
n-elements ay, ..., a, of X such that for each subset S C [n],
there is a set A = Ag in F with a; € A if and only if i € S.
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V C-Dimension

e When F is a family of subsets of a finite set X, the
V' C-dimension of F is the largest integer n for which there are
n-elements ay, ..., a, of X such that for each subset S C [n],
there is a set A = Ag in F with a; € A if and only if i € S.

e If X =[85], and F has VC-dimension 9, as evidenced by the
set {7,9,14,21,33,36,42,52,85}, then 27 sets are required.
We illustrate one of them.
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An Example of a Convex Geometry ||

e The elements 2 and 4 together with the sets 0, {1, 2},
{1,3,4} and {1,2,3,4} show that the V' C-dimension of P is
at least 2.
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An Example of a Convex Geometry ||

e The elements 2 and 4 together with the sets 0, {1, 2},
{1,3,4} and {1,2,3,4} show that the V' C-dimension of P is
at least 2.

e By inspection, the VC-dimension of P is 2.
e Challenge Show that the dimension of P is 3.
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V C-Dimension and Down-Degree

e Edelman and Jamison 1985 When P is a convex-geomettry,

the V C-dimension of P is the maximum down-degree in P.
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V C-Dimension and Down-Degree

e Edelman and Jamison 1985 When P is a convex-geomettry,
the V C-dimension of P is the maximum down-degree in P.

e Edelman and Jamison 1985 When L is a finite lattice, there is
a convex geometry P such that L is isomorphic to P (as a
poset) if and only if for every element y of L with y distinct
from the zero of L, the interval of L between y and the meet

of all elements covered by y is a Boolean algebra.
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Recognizing Convex Geometries
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Recognizing Convex Geometries

In the figure, we show two lattices.

Both lattices have planar order diagrams, and both have
dimension 2.

Only the lattice on the right is a convex geometry.

It has convex dimension 2.
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Separating Parameters for Convex Geometries |

e There are three parameters for convex geometries that are
(essentially) the same.
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Separating Parameters for Convex Geometries |

e There are three parameters for convex geometries that are
(essentially) the same.

e If P is a convex geometry, then V' C-dimension is maximum
down degree.

o Bandelt, Chepoi, Dress and Koolen 2006 If P is a convex
geometry, then the V' C-dimension of P equals se(P) unless
the VC-dimension is 2. In this case, se(P) is either 1 or 2.
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Knauer’s Construction

e For n > 3, the poset P, is a convex geometry.
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Knauer’'s Construction

For n > 3, the poset P, is a convex geometry.
It is easy to see that the dimension of P, is 3.
The convex dimension of P, is n + 1.

So in the class of convex geometries, convex dimension can be

separated from dimension and V' C'-dimension.
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Two Natural Questions for Convex Geometries

e Can convex dimension be separated from dimension if
dimension is at most 27
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e Can convex dimension be separated from dimension if

dimension is at most 27

e Can convex dimension be separated from maximum down

degree when maximum down degree is 27
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One Question has an Immediate Negative Answer
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P has dimension at most 2 if and only if the order diagram of
P is planar.
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One Question has an Immediate Negative Answer

e Baker, Fishburn and Roberts 1970 If P is a finite lattice, then
P has dimension at most 2 if and only if the order diagram of

P is planar.

e Knauer and WTT 2023 If P is a convex geometry, and the
order diagram of P is planar, then all interior faces are
diamonds, and all meet-irreducible elements are on the exterior
face. It follows that the convex dimension is at most 2.
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Answering the Second Question |

e When m is an integer, let [m] = {1,...,m} when m > 1, and
let [m] = () when m < 0.
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let [m] = () when m < 0.

Let k£ and n be integers with 1 < k <n — 2. Then let P(k,n)
denote the family of all sets A C [n] such that if

|Al =k +i—1, then [{ — 1] C A.

Note that A € P(k,n) whenever A C [n] and |A| < k.
{1,2,3,6,11} and {1,2,6,10,11} belong to P(3,12), while
{1,3,6,10,11} does not.
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Answering the Second Question |

e When m is an integer, let [m] = {1,...,m} when m > 1, and
let [m] = () when m < 0.

Let k£ and n be integers with 1 < k <n — 2. Then let P(k,n)
denote the family of all sets A C [n] such that if

|Al =k +i—1, then [{ — 1] C A.

Note that A € P(k,n) whenever A C [n] and |A| < k.
{1,2,3,6,11} and {1,2,6,10,11} belong to P(3,12), while
{1,3,6,10,11} does not.

Exercise If 1 < k <mn — 2, then P(k,n) is a convex geometry.
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An Example of a Convex Geometry IlI

e This is the convex geometry P(1,5).
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Answering the Second Question Il

e If k and n are integers with 1 < k < mn — 2, then the following
statements hold:
1. f1 <k <k <n-—2,then P(k,n) is a subposet of P(k’,n).
cdim(P(k,n)) = (".1).
maxdd(P(k,n)) =se(P(k,n)) =k + 1.
dim(P(1,n)) =1+ [lgn],
dim(P(k,n)) < (k + 1)2¥*2logn.

A
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Answering the Second Question Il

e If k and n are integers with 1 < k < mn — 2, then the following
statements hold:
1. f1 <k <k <n-—2,then P(k,n) is a subposet of P(k’,n).
2. cdim(P(k,n)) = (".1).
3. maxdd(P(k,n)) =se(P(k,n)) =k + 1.
4. dim(P(1,n)) =1+ [lgn|,
5. dim(P(k,n)) < (k+ 1)2¥*2logn.
e The family {P(1,n) : n > 3} shows that dimension and
convex dimension can be separated from V C-dimension, even

A

when V C-dimension is 2.
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Boolean Dimension

e Let 0 = (Ly,...,Ly,) be a sequence of linear orders on the
ground set of a poset P. We say o is a Boolean realizer of P
if there is a set 7 of 0—1 strings of length n such that x < y in
P if and only if ¢(x,y,0) € T.
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such that P has a Boolean realizer of length n.

e A Dushnik-Miller realizer is a Boolean realizer, as evidenced
by the set 7 = {(1,1,...,1)}.

e bdim(P) < dim(P) for all posets P.

e dim(P) = bdim(P) when dim(P) < 3.

e bdim(S,) =4 for all n > 4.
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Fractional Dimension

e Let £(P) be the set of all linear extensions of a poset P, and
let f be a function assigning to each L € £(P) a non-negative
real number f(L).
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e Let £(P) be the set of all linear extensions of a poset P, and
let f be a function assigning to each L € £(P) a non-negative
real number f(L).

e We say f is a fractional realizer of P if for all z,y € P with
x£yinP,Y {f(L): L€ &P),z>yin L} > 1.

e The fractional dimension of P is the least real number ¢ for
which there is a fractional realizer f with > ¢ (p) f(L) < t.

e If (Lq,...,Ly,) is a Dushnik-Miller realizer of P, then setting
f(L)=1if L =L, for some i € [n]; otherwise f(L) =0,
shows that fdim(P) < dim(P).

e Fact fdim(S,) = n for all n > 2.

e Brightwell and Scheinerman If se(P) = 1, then fdim(P) < 4.
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Local Dimension

e Let o = (My,..., M,;) be a sequence of linear extensions of
subposets of a poset P. We say that o is a local realizer of P
if there is some i € [t] with © > y in M; whenever z £ y in P.
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e A Dushnik-Miller realizer is a local realizer. Therefore,
ldim(P) < dim(P) for all posets P.

e If dim(P) < 3, then ldim(P) = dim(P).
e 1dim(S,) =n for all n > 3.
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Concepts of Dimension for Convex Geometries

e For fixed k, both the Boolean dimension and the local
dimension of P(k,n) tends to infinity.
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Concepts of Dimension for Convex Geometries

e For fixed k, both the Boolean dimension and the local
dimension of P(k,n) tends to infinity.

e For fixed k, the fractional dimension of P(k,n) is less than 2.

e In the class of convex geometries, both Boolean dimension and
local dimension can be separated from fractional dimension

and V C-dimension, even when the V C-dimension is 2.
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standard examples.
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e Fact Dimension and fractional dimension are separated from
Boolean dimension, and local dimension by the family of
standard examples.

e Barrera-Cruz, Prag, Smith, Taylor, WTT and Wang
Dimension, Boolean dimension and local dimension are
separated from fractional dimension by the family of posets
with standard example number 1.

o WTT and Walczak Each of Boolean dimension and local

dimension can be separated from the other.
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Open Questions for Convex Geometries

e In the class of convex geometries, we have been unable to
separate dimension from either of Boolean dimension and
local dimension.
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e In the class of convex geometries, we have been unable to
separate dimension from either of Boolean dimension and
local dimension.

e Also, we are unable to separate Boolean dimension and local
dimension in either direction.
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