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The chromatic symmetric function



Proper colorings of graphs

A proper coloring of a graph G is a map

κ : V (G ) → {1, 2, 3, . . . }

such that κ(u) ̸= κ(v) when {u, v} ∈ E (G ).
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The chromatic polynomial of G is

χG (k) = # proper colorings of G with colors 1, . . . , k .
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The chromatic symmetric function

In 1995, Stanley introduced a symmetric function generalization of χG ,
which enumerates proper colorings by the number of uses of each color.

Definition

The chromatic symmetric function (CSF) of G is defined by

XG =
∑
κ

∏
v∈V (G)

xκ(v)

where x1, x2, . . . are commuting indeterminates.
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x1x2x4XG = · · · +

1 3 1

+ x21 x3 + · · ·

= 6
∑

i<j<k

xixjxk +
∑
i ̸=j

x2i xj .
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Facts about the CSF

1. XG generalizes χG : indeed,

XG (1, . . . , 1︸ ︷︷ ︸
k

, 0, 0, . . . ) =
∑

κ : V (G)→[k]

1 = χG (k).

2. XG is a symmetric function: a formal power series in x1, x2, . . .
which is invariant under permutations of the xi .

3. XG has an expansion in the power sum basis {pλ} in terms of
connected partitions of G [Stanley ’95].

4. G 7→ XG is a homomorphism of combinatorial Hopf algebras
[Aguiar, Bergeron, Sottile ’06].

5. XG has a quasisymmetric variant, which is related to the
cohomology of Hessenberg varieties [Shareshian, Wachs ’16].
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Our motivating question

In the 1995 paper where he introduced the CSF, Stanley writes:

“We do not know whether XG distinguishes trees.”

Despite 30 years of work, this is still open!

Remark. By contrast, the chromatic polynomial tells us almost nothing
about a tree, since χT (k) = k(k − 1)n−1 where n = |T |.

Remark. XG does not distinguish graphs in general:

It also does not distinguish unicyclic graphs [Orellana, Scott ’14].
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Progress on answering Stanley’s question

(1) The CSF distinguishes among certain smaller classes of trees:

▶ Spiders [Martin, Morin, Wagner ’08].

▶ Proper caterpillars [Aliste-Prieto, Zamora ’14].

▶ Trees with ≤29 vertices [Heil, Ji ’19] (computational).

▶ Trees with diameter ≤5 [Gonzalez, Orellana, Tomba ’24].

(2) The CSF determines certain concrete tree data:

▶ Its degree sequence and path sequence [MMW’08].

▶ The sizes of its trunk and twigs [Crew ’22].

(3) The CSF determines other graph (tree) invariants:

▶ The subtree polynomial and connector polynomial [MMW’08].

▶ The generalized degree polynomial [Aliste-Prieto, Martin, Wagner,
Zamora ’24].
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The generalized degree polynomial

We study a related invariant, the generalized degree polynomial (GDP).
The GDP is determined by the CSF but does not distinguish trees.

Our results:

(1) Extract new kinds of tree data from the GDP such as the
double-degree sequence and the leaf adjacency sequence.

(2) Introduce a variant of the GDP for polarized trees. Use this to get:

▶ A recursive formula for the GDP.

▶ Constructions for sets of trees with the same GDP.
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Definition of the GDP

Let T be a tree. Given S ⊆ V (T ), an edge {u, v} ∈ E (T ) is called

▶ an internal edge of S if u ∈ S and v ∈ S ;

▶ a boundary edge of S if u ∈ S or v ∈ S , but not both.

Let e(S) and d(S) be the number of internal and boundary edges of S .

For example, if S = {v}, then d(S) = deg(v) and e(S) = 0.

Definition

The generalized degree polynomial (GDP) of T is defined by

GT (x , y , z) =
∑

S⊆V (T )

x |S|yd(S)ze(S).

Thus, [x1ydz0]GT (x , y , z) = # vertices of degree d .
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An example of the GDP

If T is the tree

then

GT (x , y , z) = x5z4 + x4y3z + x4y2z2 + 3x4yz3

+ x3y4 + 2x3y3z + x3y3 + 3x3y2z2 + 2x3y2z + x3yz2

+ x2y4 + x2y3z + 2x2y3 + 2x2y2z + 3x2y2 + x2yz

+ xy3 + xy2 + 3xy + 1.
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Facts about the GDP

▶ The GDP is determined linearly by the chromatic symmetric
function [Aliste-Prieto, Martin, Wagner, Zamora ’24; Liu, T. ’24].

▶ The GDP does not distinguish trees. The smallest trees with the
same GDP have 11 vertices:
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Tree data from the GDP

Theorem (Liu, T. ’24)

The GDP (and thus CSF) of a tree T determines the following:

▶ The double-degree sequence of T: for all a and b, the number of
edges of T with endpoints of degrees a and b.

▶ The leaf adjacency sequence of T: for all d and ℓ, the number of
vertices of T with degree d, adjacent to ℓ leaves.

▶ The induced subgraph containing all degree-2 vertices of T , up to
isomorphism.
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Proof strategy

Main idea: look at partial derivatives of GT (x , y , z) with respect to z .

Lemma

For k ≥ 1,

∂kGT

∂zk
(x , y , y2) =

k!

y2k
GT (x , y , y

2) · Γ(k)T (x , y),

where

Γ
(k)
T (x , y) =

∑
B∈(E(T )

k )

∏
v∈V (B)

xydeg(v)

1 + xydeg(v)
.

Thus, GT determines Γ
(k)
T (x , y) for all k.
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The double-degree sequence

Theorem (Liu, T. ’24)

For all a and b, GT determines the number Na,b(T ) of edges of T with
endpoints of degrees a and b.

We have

Γ
(1)
T (x , y) =

∑
{u,v}∈E(T )

xydeg(u)

1 + xydeg(u)

xydeg(v)

1 + xydeg(v)

=
∑
a≤b

xy a

1 + xy a

xyb

1 + xyb
Na,b(T ).

By expanding the rational functions xya

1+xya
xyb

1+xyb as power series, we show

they are linearly independent. Thus Γ
(1)
T (x , y) determines all Na,b(T ).
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The leaf adjacency sequence

Theorem (Liu, T. ’24)

For all d , ℓ, GT determines the number of vertices of T with degree d
which are adjacent to ℓ leaves.

To prove this, we essentially analyze the residues of Γ
(k)
T at certain poles.

Lemma

For all integers a ≥ 2 and k ≥ 1, we have

lim
y→e2πi/(a−1)

lim
x→−1/y

(1− y a−1)k(1 + xy)k · Γ(k)T (x−1, y−1)

= ek
{

ℓ(v)
deg(v)−1 : deg(v)>1

deg(v)≡1 (mod a−1)

}
where ek denotes the k th elementary symmetric sum and ℓ(v) is the
number of leaves adjacent to v.
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The takeaway

▶ Γ
(k)
T is not linear in GT (or XT ), since its formula involves division

▶ Thus, the tree data we recover does not come linearly from XT (or
in some cases even polynomially!)

▶ Question: What other kinds of tree data are determined by GT ?

▶ What can be said about “higher-order” GDPs G
(m)
T , where we

instead sum over m > 1 disjoint subsets of vertices of T?
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Polarized graphs and the generalized degree
polynomial



Polarized graphs

Definition

A polarized graph is a graph A with two distinguished vertices, called the
left pole L(A) and right pole R(A) (which can be the same).

L R L R



Concatenation of polarized graphs

Definition

Let A and B be polarized graphs. Their concatenation AB is obtained
from the disjoint union A ⊔ B by identifying R(A) and L(B), with
L(AB) = L(A) and R(AB) = R(B).

L R

∗

L R

=

L R
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The GDP of a polarized graph

The GDP of a polarized graph is also a sum over vertex subsets S , but
we keep track of whether the left/right poles are in S .

Definition

Given a polarized graph A, define

G1
A =

∑
L(A)/∈S
R(A)/∈S

x |S|yd(S)ze(S), GR
A =

∑
L(A)/∈S
R(A)∈S

x |S|yd(S)ze(S),

GL
A =

∑
L(A)∈S
R(A)/∈S

x |S|yd(S)ze(S), GLR
A =

∑
L(A)∈S
R(A)∈S

x |S|yd(S)ze(S).

Then the generalized degree polynomial of A is the 2× 2 matrix

GA =

[
G1

A GR
A

GL
A GLR

A

]
∈ Mat2×2(k).
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The GDP of a polarized graph

Example

If A is the polarized graph

L R

then

G1
A = xy + 1, GR

A = xy(xz + y),

GL
A = xy(xy + 1), GLR

A = x2z(xz + y),

so

GA =

[
xy + 1 xy(xz + y)

xy(xy + 1) x2z(xz + y)

]
.
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Concatenation and the polarized GDP

Proposition

For polarized graphs A and B,

GAB = GA

[
1 0
0 1/x

]
GB .

(The factor of 1/x ensures that we don’t double-count R(A) and L(B).)

Algebraic interpretation: The map

A 7→ GA

[
1 0
0 1/x

]
defines a homomorphism R → Mat2×2(k), where R is the k-algebra
formally spanned by polarized trees with concatenation as multiplication.
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Concatenation and the polarized GDP

Proposition

For polarized graphs A and B,

GAB = GA

[
1 0
0 1/x

]
GB .

Example

L R

=

L R

∗
LR[

xy+1 xy(xz+y)

xy(xy+1) x2z(xz+y)

]
=

[
1 xy

xy x2z

][
1 0
0 1

x

][
xy+1 0
0 xz+y

]
.



The rooted GDP

We can also define the GDP of a rooted graph P, with root r(P):

GP =

[
G1

P

Gr
P

]
∈ k2

where G1
P =

∑
r(P)/∈S

x |S|yd(S)ze(S) and Gr
P =

∑
r(P)∈S

x |S|yd(S)ze(S).

This also behaves well with respect to concatenation (treating GP as a
row vector when on the left, and a column vector when on the right).

r

∗

L R

=

r
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A recurrence for the ordinary GDP

Unlike the ordinary GDP, the polarized GDP distinguishes polarized trees
[Liu, T. ’25+]. (The rooted GDP also distinguishes rooted trees.)

Instead, we look at when polarized GDPs are linearly dependent.

Example

The polarized GDPs of the three graphs

A =

L R

B =

LR

C =

L R

satisfy

GA = x(z−y2)
(xz+y)(xy+1) GB + y

(xz+y)(xy+1) GC .



A recurrence for the ordinary GDP

Unlike the ordinary GDP, the polarized GDP distinguishes polarized trees
[Liu, T. ’25+]. (The rooted GDP also distinguishes rooted trees.)

Instead, we look at when polarized GDPs are linearly dependent.

Example

The polarized GDPs of the three graphs

A =

L R

B =

LR

C =

L R

satisfy

GA = x(z−y2)
(xz+y)(xy+1) GB + y

(xz+y)(xy+1) GC .



A recurrence for the ordinary GDP

Unlike the ordinary GDP, the polarized GDP distinguishes polarized trees
[Liu, T. ’25+]. (The rooted GDP also distinguishes rooted trees.)

Instead, we look at when polarized GDPs are linearly dependent.

Example

The polarized GDPs of the three graphs

A =

L R

B =

LR

C =

L R

satisfy

GA = x(z−y2)
(xz+y)(xy+1) GB + y

(xz+y)(xy+1) GC .



A recurrence for the ordinary GDP

Example

L R

= x(z−y2)
(xz+y)(xy+1)

LR

+ y
(xz+y)(xy+1)

L R

For rooted trees P and Q, this implies that

P Q = x(z−y2)
(xz+y)(xy+1) P Q + y

(xz+y)(xy+1) P Q .

Thus, we get a recurrence relation for the ordinary GDP (which reduces
to a recurrence found by [Aliste-Prieto, Martin, Wagner, Zamora ’24]).
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Ordinary and polarized GDPs



The reversal phenomenon

Next, let’s look at two ways in which linear dependence of polarized
GDPs gives trees with the same (ordinary) GDP.

Definition

Let A, B be polarized trees and C be a singular polarized forest. We say
A, B, C satisfy the reversal phenomenon (R.P.) if GA, GB , GC , and G•
are linearly dependent.

▶ A polarized forest is singular if its poles are in different components.

▶ Here • is the only polarized graph with one vertex, so G• = [ 1 0
0 x ].

The smallest interesting example of this is

A =

L R

B =

L R

C =

L R
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The reversal phenomenon

Theorem (Liu, T. ’25+)

Suppose A, B, and C satisfy R.P. Then for any T1,T2, . . . ,Tk ∈ {A,B},

(T1T2 · · ·Tk)#C and (Tk · · ·T2T1)#C

have the same (ordinary) GDP.

▶ T#C is obtained by identifying L(C) with R(T ), and R(C) with L(T ).

In fact, a converse statement holds: if (AB)#C and (BA)#C have the
same GDP, then A, B, and C satisfy R.P.
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The composition phenomenon

If we require a stronger linear dependence between polarized GDPs, we
get extra equalities of ordinary GDPs.

Definition

Let A, B be polarized trees and C be a singular polarized forest. We say
A, B, C satisfy the composition phenomenon (C.P.) if GA, GB , and GC

are linearly dependent.

(Note that we do not include G•.)

Example

We saw that the graphs

A =

L R

B =

LR

C =

L R

from earlier have linearly dependent GDPs, so they satisfy C.P.
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The composition phenomenon

When A, B, C satisfy C.P., there is a more general way in which trees of
the form (T1 · · ·Tk)#C , Ti ∈ {A,B}, have the same GDP.

The construction is similar to the one for equal ribbon Schur functions
[Billera, Thomas, van Willigenburg ’06]. In particular, the composition
phenomenon produces arbitrarily large sets of trees with the same GDP.

The gory details:

▶ For integer compositions α = (α1, . . . , αk) and β = (β1, . . . , βℓ), the
concatenation αβ = (α1, . . . , αk , β1, . . . , βℓ), and the near-concatenation
α⊙ β = (α1, . . . , αk + β1, . . . , βℓ).

▶ Define α ◦ β = β⊙α1β⊙α2 · · ·β⊙αk . It turns out that ◦ is associative.

▶ Finally, define a tree Tα = (Aα1−1BAα2−1B · · ·BAαk−1)#C .

▶ Theorem: Suppose α = α(1) ◦ · · · ◦α(r) and β = β(1) ◦ · · · ◦ β(r), where β(i)

is either α(i) or its reverse for all i . Then GTα = GTβ .
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The composition phenomenon
Here is the smallest case of C.P. that does not also come from R.P.:

Example

If A, B, C satisfy C.P., then

(ABBABAAB)#C and (ABAABBAB)#C

have the same GDP.

When

A =

L R

B =

LR

C =

L R

these two trees are

and

which is the 11-vertex example we saw earlier!
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Numerology

n 11 12 13 14 15 16 17 18 19 20 21 22 23 Total

Pairs w/ same GDP 1 1 1 5 1 7 19 15 23 56 22 90 160 401

Composition 1 1 5 1 4 18 11 17 48 21 82 154 363

Reversal 1 3 1 2 6 8 1 7 3 32

Unexplained 2 1 3 6



Thank you!
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