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A proper coloring of a graph G is a map
k: V(G) = {1,2,3,...}
such that k(u) # k(v) when {u, v} € E(G).
1 4 1 3 1

2
o ———0 o —o—0

The chromatic polynomial of G is

Xc(k) = # proper colorings of G with colors 1,...
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The chromatic symmetric function
In 1995, Stanley introduced a symmetric function generalization of x¢,
which enumerates proper colorings by the number of uses of each color.

Definition
The chromatic symmetric function (CSF) of G is defined by

Xe —Z H Xis(v)

rk veV(G)
where xq, xp,... are commuting indeterminates.
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Facts about the CSF

1. X¢ generalizes x¢: indeed,

Xe(1,...,1,0,0,...)= > 1=xg(k).
— K V(G)—[K]

2. X¢ is a symmetric function: a formal power series in xq, x2, . . .
which is invariant under permutations of the x;.

3. X¢ has an expansion in the power sum basis {py} in terms of
connected partitions of G [Stanley '95].

4. G +— Xg is a homomorphism of combinatorial Hopf algebras
[Aguiar, Bergeron, Sottile '06].

5. X¢ has a quasisymmetric variant, which is related to the
cohomology of Hessenberg varieties [Shareshian, Wachs '16].
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Our motivating question

In the 1995 paper where he introduced the CSF, Stanley writes:
“We do not know whether X distinguishes trees.”

Despite 30 years of work, this is still open!

Remark. By contrast, the chromatic polynomial tells us almost nothing
about a tree, since x7(k) = k(k — 1)"~! where n =|T|.

Remark. X does not distinguish graphs in general:

It also does not distinguish unicyclic graphs [Orellana, Scott '14].
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Progress on answering Stanley's question

(1) The CSF distinguishes among certain smaller classes of trees:
» Spiders [Martin, Morin, Wagner '08].
» Proper caterpillars [Aliste-Prieto, Zamora '14].
» Trees with <29 vertices [Heil, Ji '19] (computational).
> Trees with diameter <5 [Gonzalez, Orellana, Tomba '24].

(2) The CSF determines certain concrete tree data:
> |ts degree sequence and path sequence [MMW'08].
» The sizes of its trunk and twigs [Crew '22].

(3) The CSF determines other graph (tree) invariants:
» The subtree polynomial and connector polynomial [MMW'08].

> The generalized degree polynomial [Aliste-Prieto, Martin, Wagner,
Zamora '24].
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The generalized degree polynomial

We study a related invariant, the generalized degree polynomial (GDP).
The GDP is determined by the CSF but does not distinguish trees.

Our results:

(1) Extract new kinds of tree data from the GDP such as the
double-degree sequence and the leaf adjacency sequence.

(2) Introduce a variant of the GDP for polarized trees. Use this to get:
» A recursive formula for the GDP.

» Constructions for sets of trees with the same GDP.
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» a boundary edge of Sif u € S or v € S, but not both.
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Definition of the GDP

Let T be a tree. Given S C V(T), an edge {u,v} € E(T) is called
» an internal edge of Sifue Sand v € S;
» a boundary edge of Sif u € S or v € S, but not both.
Let e(S) and d(S) be the number of internal and boundary edges of S.

For example, if S = {v}, then d(S) = deg(v) and e(S) = 0.

Definition
The generalized degree polynomial (GDP) of T is defined by

Grixy )= 3 xISa909),
SCV(T)

Thus, [x'y?z% Gr(x,y,z) = # vertices of degree d.
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An example of the GDP

If T is the tree

(@)
&———e

then

Gr(x,y,2z) = x*z* + x*y3z + x*y?2% 4 3x*yZ3
F 34 + 2332 + 3 4 33222 + 2327 + X3y 22
+ X2y 4 X237 4+ 252y 4+ 252y 2 + 3x%y? + XPyz

+xy> 4+ xy? + 3xy + 1.
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Facts about the GDP

» The GDP is determined linearly by the chromatic symmetric
function [Aliste-Prieto, Martin, Wagner, Zamora '24; Liu, T. '24].

» The GDP does not distinguish trees. The smallest trees with the
same GDP have 11 vertices:

A A



Tree data from the GDP



Tree data from the GDP

Theorem (Liu, T. '24)
The GDP (and thus CSF) of a tree T determines the following:



Tree data from the GDP

Theorem (Liu, T. '24)

The GDP (and thus CSF) of a tree T determines the following:

» The double-degree sequence of T: for all a and b, the number of
edges of T with endpoints of degrees a and b.



Tree data from the GDP

Theorem (Liu, T. '24)

The GDP (and thus CSF) of a tree T determines the following:
» The double-degree sequence of T: for all a and b, the number of
edges of T with endpoints of degrees a and b.
» The leaf adjacency sequence of T: for all d and ¢, the number of
vertices of T with degree d, adjacent to { leaves.



Tree data from the GDP

Theorem (Liu, T. '24)

The GDP (and thus CSF) of a tree T determines the following:

» The double-degree sequence of T: for all a and b, the number of
edges of T with endpoints of degrees a and b.

» The leaf adjacency sequence of T: for all d and ¢, the number of
vertices of T with degree d, adjacent to { leaves.

» The induced subgraph containing all degree-2 vertices of T, up to
isomorphism.
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Proof strategy

Main idea: look at partial derivatives of G7(x,y, z) with respect to z.

Lemma
For k > 1,
kGt k!
r
57 (x,y,¥°) = ykG(ny) (%, y),
where

xydee(v)

k)(X y Z H 1+Xydeg(v)

Be(ED) veV(B)

Thus, Gt determines F(;f)(x,y) for all k.
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Theorem (Liu, T. '24)

For all a and b, Gt determines the number N, ,(T) of edges of T with
endpoints of degrees a and b.

We have

deg(u) deg(v)

e y X ad

r (X )/) 1+ Xydeg(u) 1+ Xydeg(v)
{u,v}eE(T)

b
_Zl—FXy l—|—xy
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The double-degree sequence

Theorem (Liu, T. '24)

For all a and b, Gt determines the number N, ,(T) of edges of T with
endpoints of degrees a and b.

We have
deg(u) deg(v)
1 Xy Xy
r( )(X y) Z 1+ Xydeg(u) 1+ Xydeg(v)
{u7v}€E(T)
yb
= N, p(T).

Z 1—|—xy l—|—xy 26(T)

By expanding the rational functions 1+Xy ﬁyxyb as power series, we show

they are linearly independent. Thus F(T)(x,y) determines all N, ,(T).
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The leaf adjacency sequence

Theorem (Liu, T. '24)

For all d, ¢, G determines the number of vertices of T with degree d
which are adjacent to { leaves.

To prove this, we essentially analyze the residues of I'(Tk) at certain poles.

Lemma
For all integers a > 2 and k > 1, we have
. . _a—1\k k (K)e,—1 -1
y;)elerrlr}(a—l) x—l)liq/y(l y ) (1 + Xy) rT (X 7y )
(v ) deg(v)>1
= €k {deg((v))—l : deg(v)E%( (Znod a—l)}

where ey denotes the k' elementary symmetric sum and ((v) is the
number of leaves adjacent to v.
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The takeaway

> F(Tk) is not linear in Gt (or X7), since its formula involves division

» Thus, the tree data we recover does not come linearly from X+ (or
in some cases even polynomially!)

» Question: What other kinds of tree data are determined by G7?

» What can be said about “higher-order” GDPs G(Tm), where we
instead sum over m > 1 disjoint subsets of vertices of T7



Polarized graphs and the generalized degree
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Polarized graphs

Definition

A polarized graph is a graph A with two distinguished vertices, called the
left pole L(A) and right pole R(A) (which can be the same).
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Definition

Let A and B be polarized graphs. Their concatenation AB is obtained
from the disjoint union AU B by identifying R(A) and L(B), with
L(AB) = L(A) and R(AB) = R(B).
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The GDP of a polarized graph

The GDP of a polarized graph is also a sum over vertex subsets S, but
we keep track of whether the left/right poles are in S.

Definition
Given a polarized graph A, define
GL = Z X151 d(S) e(5) GE = Z XI51,d(5) 7e(5),
L(AYES L(A)ES
R(A)ES R(A)ES
L = Z x151yd(5) 7e(8) GLR = Z X151y d(9) z(5)
L(A)ES L(A)ES
R(A)ZS R(A)ES

Then the generalized degree polynomial of A is the 2 X 2 matrix

Ga GA

€= ok ar

€ Mat2><2(k).
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If Ais the polarized graph
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The GDP of a polarized graph

Example

If Ais the polarized graph

then

Gh=xy+1,

Gy = xy(xy + 1),

o

L

R

Gi = xy(xz +y),

GRR
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The GDP of a polarized graph

Example

If Ais the polarized graph

ol

L R
then
G,14 =xy+1, G%:xy(xz—i—y),
Gi = xy(xy +1), G4t = x*z(xz +y),

S0
xy +1 xy(xz +y)

CA= Loty +1) Xzlxz+y)]
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Concatenation and the polarized GDP

Proposition

For polarized graphs A and B,
0

1
Gag = Gy |:0 1/X:| Gg.
(The factor of 1/x ensures that we don't double-count R(A) and L(B).)

Algebraic interpretation: The map

1 0
Al—>GA |:0 1/X:|

defines a homomorphism R — Mat,x2(k), where R is the k-algebra
formally spanned by polarized trees with concatenation as multiplication.



Concatenation and the polarized GDP

Proposition

For polarized graphs A and B,

1 0
Gag = Ga {O 1/x] Gs.

Example

o]
*—0
L R L R LR

xy+1 xy(xz+y) | _ [ 1 xy 1 (1) xy+1 0
xy(xy4+1) xz(xz+y) xy Xz ||0 % 0 xz+y |*
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The rooted GDP

We can also define the GDP of a rooted graph P, with root r(P):

Gl]
Gp= | Pl ck®
: |:GP

where G = Z xI51yd(9) 2¢(5) and Gp = Z xI91yd(5) 2¢(S),
r(P)¢S r(P)es

This also behaves well with respect to concatenation (treating Gp as a
row vector when on the left, and a column vector when on the right).

U S

r L R
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A recurrence for the ordinary GDP

Unlike the ordinary GDP, the polarized GDP distinguishes polarized trees
[Liu, T. "25+]. (The rooted GDP also distinguishes rooted trees.)

Instead, we look at when polarized GDPs are linearly dependent.

Example

The polarized GDPs of the three graphs

L R LR R
satisfy
x(z—y?)
G (xz+y Xy+1 GB + xz+y)y(xy+1) GC'



A recurrence for the ordinary GDP

Example

_ x(z=y) I y
oo = (a0 T Gem o)
L R LR
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A recurrence for the ordinary GDP

Example

_ xz=) I Ly
*—o (xz+y)(xy+1) (xz+y)(xy+1)
R LR

r e—e
X e—e

—

For rooted trees P and @, this implies that

Thus, we get a recurrence relation for the ordinary GDP (which reduces
to a recurrence found by [Aliste-Prieto, Martin, Wagner, Zamora '24]).
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The reversal phenomenon

Next, let's look at two ways in which linear dependence of polarized
GDPs gives trees with the same (ordinary) GDP.

Definition

Let A, B be polarized trees and C be a singular polarized forest. We say

A, B, C satisfy the reversal phenomenon (R.P.) if Ga, Gg, G¢, and G,
are linearly dependent.

» A polarized forest is singular if its poles are in different components.
> Here o is the only polarized graph with one vertex, so Ge = [§ 2].

The smallest interesting example of this is

Lo, el eV
R L R

L R L



The reversal phenomenon

Theorem (Liu, T. '25+)
Suppose A, B, and C satisfy R.P. Then for any Ty, Ty, ..., Tx € {A, B},

(T1T2Tk)#C and (TkT2T1)#C
have the same (ordinary) GDP.

» T+#C is obtained by identifying L(C) with R(T), and R(C) with L(T).



The reversal phenomenon

Theorem (Liu, T. '25+)
Suppose A, B, and C satisfy R.P. Then for any Ty, Ty, ..., Tx € {A, B},

(T1T2Tk)#C and (TkT2T]_)#C
have the same (ordinary) GDP.

» T+#C is obtained by identifying L(C) with R(T), and R(C) with L(T).

In fact, a converse statement holds: if (AB)#C and (BA)#C have the
same GDP, then A, B, and C satisfy R.P.
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An example of the reversal phenomenon

Example
Since
1o, el eV
L R L R L R
satisfy R.P.,

(ABBAAAB)#C:{ ff{ } { ff’
(BAAABBA)#C = f{ { { ff{ v

have the same GDP.
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The composition phenomenon

If we require a stronger linear dependence between polarized GDPs, we
get extra equalities of ordinary GDPs.

Definition

Let A, B be polarized trees and C be a singular polarized forest. We say
A, B, C satisfy the composition phenomenon (C.P.) if Ga, Gg, and G¢
are linearly dependent.

(Note that we do not include G,.)

Example

We saw that the graphs

*—=o
L R LR L R

from earlier have linearly dependent GDPs, so they satisfy C.P.
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The composition phenomenon

When A, B, C satisfy C.P., there is a more general way in which trees of
the form (Ty--- Tx)#C, T; € {A, B}, have the same GDP.

The construction is similar to the one for equal ribbon Schur functions
[Billera, Thomas, van Willigenburg '06]. In particular, the composition
phenomenon produces arbitrarily large sets of trees with the same GDP.

The gory details:

>

v

For integer compositions a = (au,...,ax) and 8 = (B1,...,Be), the
concatenation a3 = (au, ..., ak, B1,...,Be), and the near-concatenation
a@/;’:(al,...,ozk—i—,é’l,...,ﬂg).

Define a0 8 = 1392 ... 9% |t turns out that o is associative.
Finally, define a tree T, = (A“1"'BA®2~1B ... BA* 1)4#C.

Theorem: Suppose a = aBo.oaf? and B= Mo 08", where g1
is either o) or its reverse for all i. Then Gr, = GT@'



The composition phenomenon

Here is the smallest case of C.P. that does not also come from R.P.:
Example
If A, B, C satisfy C.P., then
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have the same GDP.



The composition phenomenon
Here is the smallest case of C.P. that does not also come from R.P.:

Example
If A, B, C satisfy C.P., then

(ABBABAAB)#C  and  (ABAABBAB)#C

have the same GDP.
When

these two trees are

which is the 11-vertex example we saw earlier!



Numerology

n|11|{12|13|14|15|16(17|18|19|20|21|22| 23 | Total
Pairs w/ same GDP| 1| 1| 1|5 |1|7|19]/15/23]|56/22|90|160] 401
Composition| 1 1/5(1|4|18]11|17|48|21|82|154| 363

Reversal 1 31112681 |7] 3 32

Unexplained 2 1|3 6



Thank you!
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