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Determinantal Varieties

Definition

Let Matm,n be the affine space of m × n matrices over C.

Let
GL := GLm × GLn act on Matm,n by matrix multiplication:

(g , h) · A := gAhT .

The classical determinantal variety Xk ⊆ Matm,n consists of all
rank ≤ k matrices.

Fact

The irreducible varieties in Matm,n stable under the GL-action are
exactly the classical determinantal varieties Xk .
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Determinantal Varieties

Question

What does the GL-action reveal about Xk?

Definition

The irreducible representations of GLn are the Weyl modules
Vλ(n), indexed by partitions with at most n parts (i.e., ℓ(λ) ≤ n).

Theorem (Doubilet-Rota-Stein ’74)

Each coordinate ring C[Xk ] is a GL-representation with irreducible
decomposition

C[Xk ] ∼=GL

⊕
ℓ(λ)≤k

(Vλ(m)⊠ Vλ(n)).
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Subgroups of GLn (n = 4)


b11 0 0 0
b21 b22 0 0
b31 b32 b33 0
b41 b42 b43 b44


Borel group B4


l11 0 0 0
0 l22 l23 l24
0 l32 l33 l34
0 l42 l43 l44


Levi group LI (I = {0, 1, 4})

t11 0 0 0
0 t22 0 0
0 0 t33 0
0 0 0 t44


Torus T4

These give subgroups B := Bm × Bn, LI|J := LI × LJ, and
T := Tm × Tn in GL.
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Matrix Schubert varieties

Fact (Fulton ’92)

The irreducible B-stable varieties in Matm,n are the matrix
Schubert varieties Xw ⊆ Matm,n (w a partial permutation).

Fact

For each w , C[Xw ] is an LI|J-representation for some I and J.

Question

How does C[Xw ] decompose as a LI|J-representation?
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Decomposing representations: warm-up

Think about V := C[z1, . . . , zn], with GLn acting by matrix-vector
multiplication on the variables. How does V decompose as a GLn
representation?

1 Decompose V as a Tn ⊆ GLn representation.

2 Figure out how to assemble Tn representations into GLn
representations.
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Torus representations


t1 0 0 0
0 t2 0 0
0 0 t3 0
0 0 0 t4


Torus T4
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Torus representations

Fact

The irreducible polynomial representations of Tn are 1-dimensional,
indexed by tuples a = (a1, . . . , an) ∈ Nn. The Tn-action on Va is

t · v := ta11 ta22 . . . tann v .

Example

Take V = C[z1, . . . , zn] with the Tn-action

t · f (z1, . . . , zn) = f (t1z1, . . . , tnzn).

The monomials za are a basis for V with t · za = (tz)a = taza, so

V ∼=Tn

⊕
a∈Nn

Va.
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GLn-decompositions from Tn-decompositions

The Weyl module Vλ(n) has a basis of semistandard Young
tableaux (SSYT), diagrams of shape λ filled with elements of [n].

Example

The basis vectors for Vλ(3) with λ = (2, 1) are as follows:
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GLn-decompositions from Tn-decompositions

Example

The basis vectors for Vλ(3) with λ = (2, 1) are as follows:

Fact

If T is an SSYT with content a (meaning a1 1’s, a2 2’s, etc.), then
for any t ∈ Tn ⊆ GLn we have t · T = taT . Thus

Vλ(n) ∼=Tn

⊕
a

V
⊕cλa
a ,

where cλa is the number of SSYT of shape λ and content a.
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GLn-decompositions from Tn-representations

Fact

Given a GLn-representation V and decompositions

V ∼=GLn

⊕
λ

Vλ(n)
⊕cVλ ∼=Tn

⊕
a∈Nn

V
⊕cVa
a ,

the numbers cVa uniquely determine the cVλ .

To compute the cVλ for V , find a Tn-representation basis B to
compute the cVa , then define a “nice” map from B to SSYT.
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Completing the warm-up

To compute the cVλ for V , find a Tn-representation basis B to
compute the cVa , then define a “nice” map from B to SSYT.

Example

For V = C[z1, . . . , zn], B = {monomials} gives the
Tn-decomposition

V ∼=Tn

⊕
a∈Nn

Va.

Monomials za correspond bijectively to 1-row tableaux:

za := z21 z2z
2
3 ↔ 1 1 2 3 3 := Ta.

Thus we obtain

C[z1, . . . , zn] ∼=GLn V∅(n)⊕ V (n)⊕ V (n)⊕ · · · =:
⊕
d∈N

V(d)(n).
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Alternate interpretation: Hilbert series

⊕
a∈Nn

Va
∼=Tn C[z1, . . . , zn] ∼=GLn

⊕
d∈N

V(d)(n).

Each Va is spanned by the unique monomial with multidegree a,
whereas V(d)(n) is spanned by all monomials of total degree d .

If you prefer commutative algebra to representation theory, the
LHS represents the multigraded Hilbert series of C[z1, . . . , zn].

The RHS represents the “GLn-equivariant Hilbert series”, which in
this case looks like the usual single-graded Hilbert series.

Main takeaway: we can compute the equivariant Hilbert series
from the multigraded one combinatorially! This is important when
computing via degenerations that don’t preserve the GLn-action.
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The challenge

A set map ϕ : B → SSYT is “nice” if for each partition λ,
|ϕ−1(T )| is constant over tableaux T of shape λ.

Example

Consider the GL2-representation V = C[ z11 z12
z21 z22 ]. The basis B of

monomials for V gives a T2-decomposition, as in the warm-up.

The warm-up map ϕ sends monomials to 1-row tableaux based on
the column indices of their variables, e.g.

ϕ(z11z
2
12z21) = 1 1 2 2 .

This time ϕ is not nice. For example,

ϕ−1
(
1 1

)
= {z211, z11z21, z

2
21},

ϕ−1
(
1 2

)
= {z11z12, z11z22, z21z12, z21z22}.
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Crystal bases

How do we find nice maps ϕ : B → SSYT combinatorially?

We use the crystal graph structure on SSYT.

Example

Take GL3 and λ = (2, 1). Each fi changes an i to an (i + 1).
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Defining crystal operators

1 2
2

1 1
2

f1

211

212

f1

())

()(

This defines crystal operators on all words, not just tableaux.
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Recap: GLn-decompositions

Strategy for decomposing a GLn-representation

V ∼=
⊕
λ

Vλ(n)
⊕cVλ :

1 Construct a Tn-representation basis B for V .

2 Make B a crystal graph via local moves between basis vectors.

3 Define a local isomorphism ϕ from B to the tableau graphs.

Fact

A combinatorial description of ϕ gives a rule for computing cVλ .

The rule for cVλ is of the form “the number of β ∈ B such that
ϕ(β) is a specific SSYT Tλ”.

We will repeatedly apply this strategy, building up to a map
filterRSKI|J decomposing C[Xw ] as a LI|J-representation.
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Monomials and matrices

We will consider the polynomial ring C[Z ] := C[Matm,n] as a
G -representation for G = GLn, LJ, GL, and LI|J.

In all cases, take the basis B of monomials for C[Z ]. Identify them
with Matm,n(Z≥0) := m × n nonnegative integer matrices.

To give B a GLn crystal graph structure, we define a map from
monomials to words using the column indices of the variables.

Definition

The column word of M ∈ Matm,n(Z≥0):

z11z12z
2
21z

3
22 ↔ [

1 1
2 3

]
col−→ 1211222.
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Crystal operators on Matm,n(Z≥0)

[
1 1
1 0

]

[
0 2
1 0

]f col1

121

221

f1

col

col

)()

(()
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C[Z ] as a GLn-representation

There is a canonical map tab from words w to tableaux
(realized via row insertion or jeu-de-taquin).

Theorem

The maps M 7→ col(M) and w 7→ tab(w) are local isomorphisms.

Corollary

The composition ϕ = tab ◦ col is a local isomorphism computing
the decomposition of C[Z ] as a GLn-representation.
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C[Z ] as an LJ-representation

Now view C[Z ] as an LJ-representation. Irreducible
LJ-representations are (tensor) products of Vλ’s, one per block.

We must construct a map ϕ from monomials to tuples of tableaux.

Definition

The J-filtered column word of M ∈ Matm,n(Z≥0): 1 0 1
1 2 1
0 1 0

 colJ−−→ (11, 32232) (J = {0, 1, 3}).

This defines a new, restricted crystal structure on B.

Remark

If LJ = Tn, ϕ = tab ◦ colJ is the warm-up map!
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C[Z ] as an LJ-representation

Now view C[Z ] as an LJ-representation. Irreducible
LJ-representations are (tensor) products of Vλ’s, one per block.

We must construct a map ϕ from monomials to tuples of tableaux.

Definition

The J-filtered column word of M ∈ Matm,n(Z≥0): 1 0 1
1 2 1
0 1 0

 colJ−−→ (11, 32232) (J = {0, 1, 3}).

This defines a new, restricted crystal structure on B.

Theorem

The map M 7→ colJ(M) is a local isomorphism. Thus
ϕ = tab ◦ colJ is a local isomorphism computing the decomposition
of C[Z ] as an LJ-representation.
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C[Z ] as a GL-representation

Recall that GL := GLm × GLn.

Definition

The row word of M ∈ Matm,n(Z≥0) is row(M) := col(Mt).

The maps tab ◦ row and tab ◦ rowI compute the decompositions of
C[Z ] as a GLm- or LI-representation respectively.

Theorem (Danilov-Koshevoi ’05, van Leeuwen ’06)

The product map M 7→ (tab(row(M))|tab(col(M))) is a local
isomorphism computing the GL-decomposition of C[Z ].

This product map is the Robinson-Schensted-Knuth map RSK.
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C[Z ] as a GL-representation

Proving the theorem reduces to showing that row crystal moves on
M do not alter tab(col(M)).

For example, tab(col(M)) = 1 1
2

in each matrix below:
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C[Z ] as a GL-representation

More abstractly, the proof shows the following cube commutes:
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C[Z ] as a LI|J-representation

Recall that LI|J := LI × LJ ⊆ GL.

Definition

For M ∈ Matm,n(Z≥0), let

filterRSKI|J(M) := (tab(rowI(M))|tab(colJ(M))).

Theorem (Price-S.-Yong ’24)

filterRSKI|J is a local isomorphism computing the decomposition of
C[Z ] as a LI|J-representation.

Ada Stelzer UIUC Representations from matrix varieties,and filtered RSK



C[Z ] as a LI|J-representation

Recall that LI|J := LI × LJ ⊆ GL.

Definition

For M ∈ Matm,n(Z≥0), let

filterRSKI|J(M) := (tab(rowI(M))|tab(colJ(M))).

Theorem (Price-S.-Yong ’24)

filterRSKI|J is a local isomorphism computing the decomposition of
C[Z ] as a LI|J-representation.

Ada Stelzer UIUC Representations from matrix varieties,and filtered RSK



C[Z ] as a LI|J-representation

Recall that LI|J := LI × LJ ⊆ GL.

Definition

For M ∈ Matm,n(Z≥0), let

filterRSKI|J(M) := (tab(rowI(M))|tab(colJ(M))).

Theorem (Price-S.-Yong ’24)

filterRSKI|J is a local isomorphism computing the decomposition of
C[Z ] as a LI|J-representation.

Ada Stelzer UIUC Representations from matrix varieties,and filtered RSK



Gröbner degeneration

Any variety X ⊆ Matm,n has a basis BX ⊆ Matm,n(Z≥0) of
standard monomials for C[X], computed via Gröbner degeneration.

Example

y − x = 0 y = 0

With X = {(x , y)|y − x = 0}, BX = {1, x , x2, . . . }.
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Gröbner degeneration

Any variety X ⊆ Matm,n has a basis BX ⊆ Matm,n(Z≥0) of
standard monomials for C[X], computed via Gröbner degeneration.
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Standard monomials and determinantal varieties

Any variety X ⊆ Matm,n has a basis BX ⊆ Matm,n(Z≥0) of
standard monomials for C[X], computed via Gröbner degeneration.

Theorem (Price-S.-Yong ’24)

If X is LI|J-stable and BX is closed under the crystal operators,
then filterRSKI|J is a local isomorphism computing the
decomposition of C[X] as a LI|J-representation.

We call a variety X satisfying the hypotheses of the theorem
LI|J-bicrystalline.
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The main theorem

The bases BX are known for the GL-stable varieties Xk

(Sturmfels ’90) and B-stable varieties Xw (Knutson-Miller ’05).

Recall that every B-stable X ⊆ Matm,n is LI|J-stable for some I, J.

Theorem (Price-S.-Yong ’24)

If a B-stable variety X is LI|J-stable, then it is LI|J-bicrystalline.

In particular, filterRSKI|J decomposes the coordinate ring of any
matrix Schubert variety Xw .
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Further directions

Determine whether all LI|J-stable varieties are bicrystalline.

Decompose C[Xw ] as a B-representation.

Describe a “standard monomial theory” for C[Xw ].

Express the K -polynomial of C[Xw ] as a signed sum of
LI|J-characters.

Give an LI|J-equivariant minimal free resolution of C[Xw ].
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The End

Thank you!
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