# Representations from matrix varieties, and filtered RSK

Ada Stelzer UIUC

Joint work with Abigail Price and Alexander Yong MSU Combinatorics and Graph Theory Seminar 11 September 2024

Let  $Mat_{m,n}$  be the affine space of  $m \times n$  matrices over  $\mathbb{C}$ .

★ Ξ →

Let  $Mat_{m,n}$  be the affine space of  $m \times n$  matrices over  $\mathbb{C}$ . Let  $\mathbf{GL} := GL_m \times GL_n$  act on  $Mat_{m,n}$  by matrix multiplication:

$$(g,h)\cdot A:=gAh^T.$$

Let  $Mat_{m,n}$  be the affine space of  $m \times n$  matrices over  $\mathbb{C}$ . Let  $\mathbf{GL} := GL_m \times GL_n$  act on  $Mat_{m,n}$  by matrix multiplication:

$$(g,h)\cdot A:=gAh^T.$$

The classical determinantal variety  $\mathfrak{X}_k \subseteq Mat_{m,n}$  consists of all rank  $\leq k$  matrices.

Let  $Mat_{m,n}$  be the affine space of  $m \times n$  matrices over  $\mathbb{C}$ . Let  $\mathbf{GL} := GL_m \times GL_n$  act on  $Mat_{m,n}$  by matrix multiplication:

$$(g,h)\cdot A:=gAh^T.$$

The classical determinantal variety  $\mathfrak{X}_k \subseteq Mat_{m,n}$  consists of all rank  $\leq k$  matrices.

#### Fact

The irreducible varieties in  $Mat_{m,n}$  stable under the **GL**-action are exactly the classical determinantal varieties  $\mathfrak{X}_k$ .

- A IB N A IB

## Question

What does the **GL**-action reveal about  $\mathfrak{X}_k$ ?

э

• • = • • =

## Question

What does the **GL**-action reveal about  $\mathfrak{X}_k$ ?

# Definition

The irreducible representations of  $GL_n$  are the Weyl modules  $V_{\lambda}(n)$ , indexed by partitions with at most n parts (i.e.,  $\ell(\lambda) \leq n$ ).

★ ∃ → ★

## Question

What does the **GL**-action reveal about  $\mathfrak{X}_k$ ?

## Definition

The irreducible representations of  $GL_n$  are the Weyl modules  $V_{\lambda}(n)$ , indexed by partitions with at most n parts (i.e.,  $\ell(\lambda) \leq n$ ).

## Theorem (Doubilet-Rota-Stein '74)

Each coordinate ring  $\mathbb{C}[\mathfrak{X}_k]$  is a **GL**-representation with irreducible decomposition

$$\mathbb{C}[\mathfrak{X}_k] \cong_{\mathsf{GL}} \bigoplus_{\ell(\lambda) \leq k} (V_{\lambda}(m) \boxtimes V_{\lambda}(n)).$$

| $b_{11}$        | 0               | 0               | 0 ]  |
|-----------------|-----------------|-----------------|------|
| b <sub>21</sub> | b <sub>22</sub> | 0               | 0    |
| b <sub>31</sub> | b <sub>32</sub> | b <sub>33</sub> | 0    |
| $b_{41}$        | b <sub>42</sub> | b <sub>43</sub> | b44] |

Borel group  $B_4$ 

æ



э



э



These give subgroups  $\mathbf{B} := B_m \times B_n$ ,  $\mathbf{L}_{\mathbf{I}|\mathbf{J}} := L_{\mathbf{I}} \times L_{\mathbf{J}}$ , and  $\mathbf{T} := T_m \times T_n$  in **GL**.

# Fact (Fulton '92)

The irreducible **B**-stable varieties in  $Mat_{m,n}$  are the matrix Schubert varieties  $\mathfrak{X}_w \subseteq Mat_{m,n}$  (w a partial permutation).

• • = • • = •

э

# Fact (Fulton '92)

The irreducible **B**-stable varieties in  $Mat_{m,n}$  are the matrix Schubert varieties  $\mathfrak{X}_w \subseteq Mat_{m,n}$  (w a partial permutation).

## Fact

For each w,  $\mathbb{C}[\mathfrak{X}_w]$  is an  $L_{I|J}$ -representation for some I and J.

• • = • • = •

# Fact (Fulton '92)

The irreducible **B**-stable varieties in  $Mat_{m,n}$  are the matrix Schubert varieties  $\mathfrak{X}_w \subseteq Mat_{m,n}$  (w a partial permutation).

## Fact

For each w,  $\mathbb{C}[\mathfrak{X}_w]$  is an  $L_{I|J}$ -representation for some I and J.

#### Question

How does  $\mathbb{C}[\mathfrak{X}_w]$  decompose as a  $L_{I|J}$ -representation?

直 ト イヨ ト イヨト

Think about  $V := \mathbb{C}[z_1, \ldots, z_n]$ , with  $GL_n$  acting by matrix-vector multiplication on the variables. How does V decompose as a  $GL_n$  representation?

Think about  $V := \mathbb{C}[z_1, \ldots, z_n]$ , with  $GL_n$  acting by matrix-vector multiplication on the variables. How does V decompose as a  $GL_n$  representation?

**1** Decompose V as a  $T_n \subseteq GL_n$  representation.

Think about  $V := \mathbb{C}[z_1, \ldots, z_n]$ , with  $GL_n$  acting by matrix-vector multiplication on the variables. How does V decompose as a  $GL_n$  representation?

- **1** Decompose V as a  $T_n \subseteq GL_n$  representation.
- Figure out how to assemble  $T_n$  representations into  $GL_n$  representations.



Torus T<sub>4</sub>

æ

э

The irreducible polynomial representations of  $T_n$  are 1-dimensional, indexed by tuples  $\mathbf{a} = (a_1, \ldots, a_n) \in \mathbb{N}^n$ . The  $T_n$ -action on  $V_{\mathbf{a}}$  is

$$\mathbf{t}\cdot\mathbf{v}:=t_1^{a_1}t_2^{a_2}\ldots t_n^{a_n}\mathbf{v}.$$

The irreducible polynomial representations of  $T_n$  are 1-dimensional, indexed by tuples  $\mathbf{a} = (a_1, \ldots, a_n) \in \mathbb{N}^n$ . The  $T_n$ -action on  $V_{\mathbf{a}}$  is

$$\mathbf{t}\cdot\mathbf{v}:=t_1^{a_1}t_2^{a_2}\ldots t_n^{a_n}\mathbf{v}.$$

## Example

Take 
$$V = \mathbb{C}[z_1, \ldots, z_n]$$
 with the  $T_n$ -action

$$\mathbf{t} \cdot f(z_1,\ldots,z_n) = f(t_1z_1,\ldots,t_nz_n).$$

э

| 4 同 ト 4 ヨ ト 4 ヨ ト

The irreducible polynomial representations of  $T_n$  are 1-dimensional, indexed by tuples  $\mathbf{a} = (a_1, \ldots, a_n) \in \mathbb{N}^n$ . The  $T_n$ -action on  $V_{\mathbf{a}}$  is

$$\mathbf{t}\cdot\mathbf{v}:=t_1^{a_1}t_2^{a_2}\ldots t_n^{a_n}\mathbf{v}.$$

## Example

Take 
$$V = \mathbb{C}[z_1, \ldots, z_n]$$
 with the  $T_n$ -action

$$\mathbf{t} \cdot f(z_1,\ldots,z_n) = f(t_1z_1,\ldots,t_nz_n).$$

The monomials  $z^a$  are a basis for V with  $t \cdot z^a = (tz)^a = t^a z^a$ , so

$$V\cong_{\mathcal{T}_n} \bigoplus_{\mathbf{a}\in\mathbb{N}^n} V_{\mathbf{a}}.$$

イロト イポト イラト イラト

ъ

# $GL_n$ -decompositions from $T_n$ -decompositions

The Weyl module  $V_{\lambda}(n)$  has a basis of *semistandard Young tableaux* (SSYT), diagrams of shape  $\lambda$  filled with elements of [n].

The Weyl module  $V_{\lambda}(n)$  has a basis of *semistandard Young tableaux* (SSYT), diagrams of shape  $\lambda$  filled with elements of [n].



# $GL_n$ -decompositions from $T_n$ -decompositions

## Example

The basis vectors for  $V_{\lambda}(3)$  with  $\lambda = (2, 1)$  are as follows:



# $GL_n$ -decompositions from $T_n$ -decompositions

#### Example

The basis vectors for  $V_{\lambda}(3)$  with  $\lambda = (2, 1)$  are as follows:



#### Fact

If T is an SSYT with content a (meaning  $a_1$  1's,  $a_2$  2's, etc.), then for any  $t \in T_n \subseteq GL_n$  we have  $t \cdot T = t^a T$ . Thus

$$V_{\lambda}(n)\cong_{T_n}\bigoplus_{\mathbf{a}}V_{\mathbf{a}}^{\oplus c_{\mathbf{a}}^{\lambda}},$$

where  $c_{\mathbf{a}}^{\lambda}$  is the number of SSYT of shape  $\lambda$  and content  $\mathbf{a}$ .

Given a  $GL_n$ -representation V and decompositions

$$V \cong_{GL_n} \bigoplus_{\lambda} V_{\lambda}(n)^{\oplus c_{\lambda}^{V}} \cong_{\mathcal{T}_n} \bigoplus_{\mathbf{a} \in \mathbb{N}^n} V_{\mathbf{a}}^{\oplus c_{\mathbf{a}}^{V}},$$

the numbers  $c_{\mathbf{a}}^{V}$  uniquely determine the  $c_{\lambda}^{V}$ .

Given a GL<sub>n</sub>-representation V and decompositions

$$V \cong_{GL_n} \bigoplus_{\lambda} V_{\lambda}(n)^{\oplus c_{\lambda}^{V}} \cong_{\mathcal{T}_n} \bigoplus_{\mathbf{a} \in \mathbb{N}^n} V_{\mathbf{a}}^{\oplus c_{\mathbf{a}}^{V}},$$

the numbers  $c_{\mathbf{a}}^{V}$  uniquely determine the  $c_{\lambda}^{V}$ .

To compute the  $c_{\lambda}^{V}$  for V, find a  $T_{n}$ -representation basis  $\mathfrak{B}$  to compute the  $c_{\mathbf{a}}^{V}$ , then define a "nice" map from  $\mathfrak{B}$  to SSYT.

To compute the  $c_{\lambda}^{V}$  for V, find a  $T_{n}$ -representation basis  $\mathfrak{B}$  to compute the  $c_{\mathbf{a}}^{V}$ , then define a "nice" map from  $\mathfrak{B}$  to SSYT.

4 3 6 4 3 6

э

To compute the  $c_{\lambda}^{V}$  for V, find a  $T_{n}$ -representation basis  $\mathfrak{B}$  to compute the  $c_{\mathbf{a}}^{V}$ , then define a "nice" map from  $\mathfrak{B}$  to SSYT.

## Example

For  $V = \mathbb{C}[z_1, \ldots, z_n]$ ,  $\mathfrak{B} = \{\text{monomials}\}$  gives the  $T_n$ -decomposition

$$V\cong_{\mathcal{T}_n}igoplus_{\mathbf{a}\in\mathbb{N}^n}V_{\mathbf{a}}.$$

To compute the  $c_{\lambda}^{V}$  for V, find a  $T_{n}$ -representation basis  $\mathfrak{B}$  to compute the  $c_{\mathbf{a}}^{V}$ , then define a "nice" map from  $\mathfrak{B}$  to SSYT.

### Example

For  $V = \mathbb{C}[z_1, \ldots, z_n]$ ,  $\mathfrak{B} = \{\text{monomials}\}\$ gives the  $T_n$ -decomposition

$$V\cong_{\mathcal{T}_n} \bigoplus_{\mathbf{a}\in\mathbb{N}^n} V_{\mathbf{a}}.$$

Monomials  $z^a$  correspond bijectively to 1-row tableaux:

$$\mathbf{z}^{\mathbf{a}} := z_1^2 z_2 z_3^2 \leftrightarrow \boxed{1 \ 1 \ 2 \ 3 \ 3} := T_{\mathbf{a}}.$$

To compute the  $c_{\lambda}^{V}$  for V, find a  $T_{n}$ -representation basis  $\mathfrak{B}$  to compute the  $c_{\mathbf{a}}^{V}$ , then define a "nice" map from  $\mathfrak{B}$  to SSYT.

#### Example

For  $V = \mathbb{C}[z_1, \ldots, z_n]$ ,  $\mathfrak{B} = \{\text{monomials}\}$  gives the  $T_n$ -decomposition

$$V\cong_{\mathcal{T}_n}igoplus_{\mathbf{a}\in\mathbb{N}^n}V_{\mathbf{a}}.$$

Monomials  $z^a$  correspond bijectively to 1-row tableaux:

$$\mathbf{z}^{\mathbf{a}} := z_1^2 z_2 z_3^2 \leftrightarrow \boxed{1 \ 1 \ 2 \ 3 \ 3} := \mathcal{T}_{\mathbf{a}}.$$

Thus we obtain

$$\mathbb{C}[z_1,\ldots,z_n]\cong_{GL_n}V_{\emptyset}(n)\oplus V_{\Box}(n)\oplus V_{\Box}(n)\oplus\cdots=:\bigoplus_{d\in\mathbb{N}}V_{(d)}(n).$$

# Alternate interpretation: Hilbert series

$$\bigoplus_{\mathbf{a}\in\mathbb{N}^n} V_{\mathbf{a}}\cong_{\mathcal{T}_n} \mathbb{C}[z_1,\ldots,z_n]\cong_{GL_n} \bigoplus_{d\in\mathbb{N}} V_{(d)}(n).$$

Each  $V_{\mathbf{a}}$  is spanned by the unique monomial with multidegree  $\mathbf{a}$ , whereas  $V_{(d)}(n)$  is spanned by all monomials of total degree d.

# Alternate interpretation: Hilbert series

$$\bigoplus_{\mathbf{a}\in\mathbb{N}^n} V_{\mathbf{a}}\cong_{\mathcal{T}_n} \mathbb{C}[z_1,\ldots,z_n]\cong_{GL_n} \bigoplus_{d\in\mathbb{N}} V_{(d)}(n).$$

Each  $V_{\mathbf{a}}$  is spanned by the unique monomial with multidegree  $\mathbf{a}$ , whereas  $V_{(d)}(n)$  is spanned by all monomials of total degree d.

If you prefer commutative algebra to representation theory, the LHS represents the *multigraded Hilbert series* of  $\mathbb{C}[z_1, \ldots, z_n]$ .

$$\bigoplus_{\mathbf{a}\in\mathbb{N}^n} V_{\mathbf{a}}\cong_{\mathcal{T}_n} \mathbb{C}[z_1,\ldots,z_n]\cong_{GL_n} \bigoplus_{d\in\mathbb{N}} V_{(d)}(n).$$

Each  $V_{\mathbf{a}}$  is spanned by the unique monomial with multidegree  $\mathbf{a}$ , whereas  $V_{(d)}(n)$  is spanned by all monomials of total degree d.

If you prefer commutative algebra to representation theory, the LHS represents the *multigraded Hilbert series* of  $\mathbb{C}[z_1, \ldots, z_n]$ .

The RHS represents the " $GL_n$ -equivariant Hilbert series", which in this case looks like the usual single-graded Hilbert series.
$$\bigoplus_{\mathbf{a}\in\mathbb{N}^n} V_{\mathbf{a}}\cong_{\mathcal{T}_n} \mathbb{C}[z_1,\ldots,z_n]\cong_{GL_n} \bigoplus_{d\in\mathbb{N}} V_{(d)}(n).$$

Each  $V_{\mathbf{a}}$  is spanned by the unique monomial with multidegree  $\mathbf{a}$ , whereas  $V_{(d)}(n)$  is spanned by all monomials of total degree d.

If you prefer commutative algebra to representation theory, the LHS represents the *multigraded Hilbert series* of  $\mathbb{C}[z_1, \ldots, z_n]$ .

The RHS represents the " $GL_n$ -equivariant Hilbert series", which in this case looks like the usual single-graded Hilbert series.

**Main takeaway**: we can compute the equivariant Hilbert series from the multigraded one combinatorially! This is important when computing via *degenerations* that don't preserve the *GL<sub>n</sub>*-action.

A set map  $\phi : \mathfrak{B} \to SSYT$  is "nice" if for each partition  $\lambda$ ,  $|\phi^{-1}(\mathcal{T})|$  is constant over tableaux  $\mathcal{T}$  of shape  $\lambda$ .

★ 3 → < 3</p>

э

A set map  $\phi : \mathfrak{B} \to SSYT$  is "nice" if for each partition  $\lambda$ ,  $|\phi^{-1}(T)|$  is constant over tableaux T of shape  $\lambda$ .

### Example

Consider the *GL*<sub>2</sub>-representation  $V = \mathbb{C}\begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix}$ . The basis  $\mathfrak{B}$  of monomials for *V* gives a *T*<sub>2</sub>-decomposition, as in the warm-up.

A set map  $\phi : \mathfrak{B} \to SSYT$  is "nice" if for each partition  $\lambda$ ,  $|\phi^{-1}(T)|$  is constant over tableaux T of shape  $\lambda$ .

### Example

Consider the *GL*<sub>2</sub>-representation  $V = \mathbb{C}\begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix}$ . The basis  $\mathfrak{B}$  of monomials for *V* gives a *T*<sub>2</sub>-decomposition, as in the warm-up.

The warm-up map  $\phi$  sends monomials to 1-row tableaux based on the column indices of their variables, e.g.

$$\phi(z_{11}z_{12}^2z_{21}) = \boxed{1|1|2|2}.$$

A set map  $\phi : \mathfrak{B} \to SSYT$  is "nice" if for each partition  $\lambda$ ,  $|\phi^{-1}(T)|$  is constant over tableaux T of shape  $\lambda$ .

### Example

Consider the *GL*<sub>2</sub>-representation  $V = \mathbb{C}\begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix}$ . The basis  $\mathfrak{B}$  of monomials for *V* gives a *T*<sub>2</sub>-decomposition, as in the warm-up.

The warm-up map  $\phi$  sends monomials to 1-row tableaux based on the column indices of their variables, e.g.

$$\phi(z_{11}z_{12}^2z_{21}) = \boxed{1\ |\ 1\ |\ 2\ |\ 2}.$$

This time  $\phi$  is not nice. For example,

$$\begin{split} & \phi^{-1}\left(\fbox{111}\right) = \{z_{11}^2, z_{11}z_{21}, z_{21}^2\}, \\ & \phi^{-1}\left(\fbox{112}\right) = \{z_{11}z_{12}, z_{11}z_{22}, z_{21}z_{12}, z_{21}z_{22}\}. \end{split}$$

## Crystal bases

### How do we find nice maps $\varphi:\mathfrak{B}\to \textit{SSYT}$ combinatorially?

• • = • • = •

э

# Crystal bases

How do we find nice maps  $\varphi:\mathfrak{B}\to \textit{SSYT}$  combinatorially?

We use the *crystal graph* structure on SSYT.

# Crystal bases

How do we find nice maps  $\phi : \mathfrak{B} \to SSYT$  combinatorially?

We use the *crystal graph* structure on SSYT.

### Example

Take  $GL_3$  and  $\lambda = (2, 1)$ . Each  $f_i$  changes an i to an (i + 1).





æ

## Defining crystal operators



э

### Defining crystal operators



э



This defines crystal operators on all words, not just tableaux.

Strategy for decomposing a  $GL_n$ -representation

$$V \cong \bigoplus_{\lambda} V_{\lambda}(n)^{\oplus c_{\lambda}^{V}}:$$

★ E ► < E ►</p>

Strategy for decomposing a  $GL_n$ -representation

$$V \cong igoplus_{\lambda} V_{\lambda}(n)^{\oplus c_{\lambda}^{V}}:$$

• Construct a  $T_n$ -representation basis  $\mathfrak{B}$  for V.

Strategy for decomposing a  $GL_n$ -representation

$$V\cong igoplus_{\lambda} V_{\lambda}(n)^{\oplus c_{\lambda}^{V}}:$$

• Construct a  $T_n$ -representation basis  $\mathfrak{B}$  for V.

2 Make  $\mathfrak{B}$  a *crystal graph* via local moves between basis vectors.

Strategy for decomposing a  $GL_n$ -representation

$$V\cong \bigoplus_{\lambda} V_{\lambda}(n)^{\oplus c_{\lambda}^{V}}:$$

- Construct a  $T_n$ -representation basis  $\mathfrak{B}$  for V.
- 2 Make  $\mathfrak{B}$  a *crystal graph* via local moves between basis vectors.
- **③** Define a *local isomorphism*  $\phi$  from  $\mathfrak{B}$  to the tableau graphs.

Strategy for decomposing a  $GL_n$ -representation

$$V\cong \bigoplus_{\lambda} V_{\lambda}(n)^{\oplus c_{\lambda}^{V}}:$$

- Construct a  $T_n$ -representation basis  $\mathfrak{B}$  for V.
- 2 Make  $\mathfrak{B}$  a *crystal graph* via local moves between basis vectors.
- **③** Define a *local isomorphism*  $\phi$  from  $\mathfrak{B}$  to the tableau graphs.

#### Fact

A combinatorial description of  $\phi$  gives a rule for computing  $c_{\lambda}^{V}$ .

The rule for  $c_{\lambda}^{V}$  is of the form "the number of  $\beta \in \mathfrak{B}$  such that  $\phi(\beta)$  is a specific SSYT  $T_{\lambda}$ ".

Strategy for decomposing a  $GL_n$ -representation

$$V\cong \bigoplus_{\lambda} V_{\lambda}(n)^{\oplus c_{\lambda}^{V}}:$$

• Construct a  $T_n$ -representation basis  $\mathfrak{B}$  for V.

2 Make  $\mathfrak{B}$  a *crystal graph* via local moves between basis vectors.

**③** Define a *local isomorphism*  $\phi$  from  $\mathfrak{B}$  to the tableau graphs.

#### Fact

A combinatorial description of  $\phi$  gives a rule for computing  $c_{\lambda}^{V}$ .

The rule for  $c_{\lambda}^{V}$  is of the form "the number of  $\beta \in \mathfrak{B}$  such that  $\phi(\beta)$  is a specific SSYT  $T_{\lambda}$ ".

We will repeatedly apply this strategy, building up to a map filterRSK<sub>I|J</sub> decomposing  $\mathbb{C}[\mathfrak{X}_w]$  as a  $\mathbf{L}_{I|J}$ -representation.

In all cases, take the basis  $\mathfrak{B}$  of monomials for  $\mathbb{C}[Z]$ . Identify them with  $\operatorname{Mat}_{m,n}(\mathbb{Z}_{\geq 0}) := m \times n$  nonnegative integer matrices.

In all cases, take the basis  $\mathfrak{B}$  of monomials for  $\mathbb{C}[Z]$ . Identify them with  $\operatorname{Mat}_{m,n}(\mathbb{Z}_{\geq 0}) := m \times n$  nonnegative integer matrices.

To give  $\mathfrak{B}$  a  $GL_n$  crystal graph structure, we define a map from monomials to *words* using the column indices of the variables.

In all cases, take the basis  $\mathfrak{B}$  of monomials for  $\mathbb{C}[Z]$ . Identify them with  $\operatorname{Mat}_{m,n}(\mathbb{Z}_{\geq 0}) := m \times n$  nonnegative integer matrices.

To give  $\mathfrak{B}$  a  $GL_n$  crystal graph structure, we define a map from monomials to *words* using the column indices of the variables.

### Definition

The column word of  $M \in Mat_{m,n}(\mathbb{Z}_{\geq 0})$ :

$$z_{11}z_{12}z_{21}^2z_{22}^3 \leftrightarrow \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \xrightarrow{\operatorname{col}} 1211222.$$

 $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$   $f_1^{col}$   $\begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$ 

э

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \xrightarrow{\text{col}} 121$$

$$\downarrow f_1^{\text{col}} \qquad \downarrow f_1$$

$$\begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \xrightarrow{\text{col}} 221$$

æ

伺 ト イヨト イヨト



There is a canonical map tab from words *w* to tableaux (realized via *row insertion* or *jeu-de-taquin*).

There is a canonical map tab from words *w* to tableaux (realized via *row insertion* or *jeu-de-taquin*).

Theorem

The maps  $M \mapsto col(M)$  and  $w \mapsto tab(w)$  are local isomorphisms.

There is a canonical map tab from words *w* to tableaux (realized via *row insertion* or *jeu-de-taquin*).

#### Theorem

The maps  $M \mapsto col(M)$  and  $w \mapsto tab(w)$  are local isomorphisms.

### Corollary

The composition  $\phi = tab \circ col$  is a local isomorphism computing the decomposition of  $\mathbb{C}[Z]$  as a  $GL_n$ -representation.

Now view  $\mathbb{C}[Z]$  as an  $L_J$ -representation. Irreducible  $L_J$ -representations are (tensor) products of  $V_\lambda$ 's, one per block.

Now view  $\mathbb{C}[Z]$  as an  $L_J$ -representation. Irreducible  $L_J$ -representations are (tensor) products of  $V_\lambda$ 's, one per block.

We must construct a map  $\phi$  from monomials to *tuples* of tableaux.

Now view  $\mathbb{C}[Z]$  as an  $L_J$ -representation. Irreducible  $L_J$ -representations are (tensor) products of  $V_{\lambda}$ 's, one per block.

We must construct a map  $\phi$  from monomials to *tuples* of tableaux.

#### Definition

The **J**-filtered column word of  $M \in Mat_{m,n}(\mathbb{Z}_{\geq 0})$ :

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{\operatorname{col}_{\mathbf{J}}} (11, 32232) \quad (\mathbf{J} = \{0, 1, 3\})$$

This defines a new, restricted crystal structure on  $\mathfrak{B}$ .

Now view  $\mathbb{C}[Z]$  as an  $L_J$ -representation. Irreducible  $L_J$ -representations are (tensor) products of  $V_{\lambda}$ 's, one per block.

We must construct a map  $\phi$  from monomials to *tuples* of tableaux.

### Definition

The **J**-filtered column word of  $M \in Mat_{m,n}(\mathbb{Z}_{\geq 0})$ :

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{\operatorname{col}_{\mathbf{J}}} (11, 32232) \quad (\mathbf{J} = \{0, 1, 3\})$$

This defines a new, restricted crystal structure on  $\mathfrak{B}$ .

### Remark

If 
$$L_J = T_n$$
,  $\phi = tab \circ col_J$  is the warm-up map!

Now view  $\mathbb{C}[Z]$  as an  $L_J$ -representation. Irreducible

 $L_{J}$ -representations are (tensor) products of  $V_{\lambda}$ 's, one per block.

We must construct a map  $\phi$  from monomials to *tuples* of tableaux.

### Definition

The **J**-filtered column word of  $M \in Mat_{m,n}(\mathbb{Z}_{\geq 0})$ :

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{\text{col}_{J}} (11, 32232) \quad (J = \{0, 1, 3\}).$$

This defines a new, restricted crystal structure on  $\mathfrak{B}$ .

#### Theorem

The map  $M \mapsto \operatorname{col}_{\mathbf{J}}(M)$  is a local isomorphism. Thus  $\phi = \operatorname{tab} \circ \operatorname{col}_{\mathbf{J}}$  is a local isomorphism computing the decomposition of  $\mathbb{C}[Z]$  as an L<sub>J</sub>-representation.

200

Recall that  $\mathbf{GL} := GL_m \times GL_n$ .

★ Ξ →

Recall that 
$$\mathbf{GL} := GL_m \times GL_n$$
.

### Definition

The row word of  $M \in Mat_{m,n}(\mathbb{Z}_{\geq 0})$  is  $row(M) := col(M^t)$ .

直 ト イヨ ト イヨト

э

Recall that  $\mathbf{GL} := GL_m \times GL_n$ .

#### Definition

The row word of  $M \in Mat_{m,n}(\mathbb{Z}_{\geq 0})$  is  $row(M) := col(M^t)$ .

The maps tab  $\circ$  row and tab  $\circ$  row<sub>I</sub> compute the decompositions of  $\mathbb{C}[Z]$  as a  $GL_{m}$ - or  $L_{I}$ -representation respectively.
# $\mathbb{C}[Z]$ as a **GL**-representation

Recall that  $\mathbf{GL} := GL_m \times GL_n$ .

#### Definition

The row word of  $M \in Mat_{m,n}(\mathbb{Z}_{\geq 0})$  is  $row(M) := col(M^t)$ .

The maps tab  $\circ$  row and tab  $\circ$  row<sub>I</sub> compute the decompositions of  $\mathbb{C}[Z]$  as a  $GL_{m^-}$  or  $L_{I}$ -representation respectively.

#### Theorem (Danilov-Koshevoi '05, van Leeuwen '06)

The product map  $M \mapsto (tab(row(M))|tab(col(M)))$  is a local isomorphism computing the **GL**-decomposition of  $\mathbb{C}[Z]$ .

This product map is the *Robinson-Schensted-Knuth map* RSK.

# $\mathbb{C}[Z]$ as a **GL**-representation

Proving the theorem reduces to showing that row crystal moves on M do not alter tab(col(M)).

# $\mathbb{C}[Z]$ as a **GL**-representation

Proving the theorem reduces to showing that row crystal moves on M do not alter tab(col(M)).

For example,  $tab(col(M)) = \frac{1}{2}$  in each matrix below:



More abstractly, the proof shows the following cube commutes:



э

Recall that  $\mathbf{L}_{\mathbf{I}|\mathbf{J}} := L_{\mathbf{I}} \times L_{\mathbf{J}} \subseteq \mathbf{GL}$ .

• • = • • = •

э

Recall that  $\mathbf{L}_{\mathbf{I}|\mathbf{J}} := L_{\mathbf{I}} \times L_{\mathbf{J}} \subseteq \mathbf{GL}$ .

### Definition

For  $M \in Mat_{m,n}(\mathbb{Z}_{\geq 0})$ , let

 $\mathsf{filterRSK}_{\mathsf{I}|\mathsf{J}}(M) := (\mathsf{tab}(\mathsf{row}_{\mathsf{I}}(M))|\mathsf{tab}(\mathsf{col}_{\mathsf{J}}(M))).$ 

直 ト イヨ ト イヨト

3

Recall that  $\mathbf{L}_{\mathbf{I}|\mathbf{J}} := L_{\mathbf{I}} \times L_{\mathbf{J}} \subseteq \mathbf{GL}$ .

### Definition

For  $M \in Mat_{m,n}(\mathbb{Z}_{\geq 0})$ , let

 $\mathsf{filterRSK}_{\mathsf{I}|\mathsf{J}}(M) := (\mathsf{tab}(\mathsf{row}_{\mathsf{I}}(M))|\mathsf{tab}(\mathsf{col}_{\mathsf{J}}(M))).$ 

#### Theorem (Price-S.-Yong '24)

filterRSK<sub>I|J</sub> is a local isomorphism computing the decomposition of  $\mathbb{C}[Z]$  as a  $L_{I|J}$ -representation.

伺 ト イヨ ト イヨト







Any variety  $\mathfrak{X} \subseteq \operatorname{Mat}_{m,n}$  has a basis  $\mathfrak{B}_{\mathfrak{X}} \subseteq \operatorname{Mat}_{m,n}(\mathbb{Z}_{\geq 0})$  of standard monomials for  $\mathbb{C}[\mathfrak{X}]$ , computed via Gröbner degeneration.

### Theorem (Price-S.-Yong '24)

If  $\mathfrak{X}$  is  $L_{I|J}$ -stable and  $\mathfrak{B}_{\mathfrak{X}}$  is closed under the crystal operators, then filterRSK<sub>I|J</sub> is a local isomorphism computing the decomposition of  $\mathbb{C}[\mathfrak{X}]$  as a  $L_{I|J}$ -representation.

We call a variety  $\mathfrak X$  satisfying the hypotheses of the theorem  ${\sf L}_{I|J}\mbox{-}bicrystalline.$ 

The bases  $\mathfrak{B}_{\mathfrak{X}}$  are known for the **GL**-stable varieties  $\mathfrak{X}_k$  (Sturmfels '90) and **B**-stable varieties  $\mathfrak{X}_w$  (Knutson-Miller '05).

The bases  $\mathfrak{B}_{\mathfrak{X}}$  are known for the **GL**-stable varieties  $\mathfrak{X}_k$  (Sturmfels '90) and **B**-stable varieties  $\mathfrak{X}_w$  (Knutson-Miller '05).

Recall that every **B**-stable  $\mathfrak{X} \subseteq Mat_{m,n}$  is  $L_{I|J}$ -stable for some I, J.

The bases  $\mathfrak{B}_{\mathfrak{X}}$  are known for the **GL**-stable varieties  $\mathfrak{X}_k$  (Sturmfels '90) and **B**-stable varieties  $\mathfrak{X}_w$  (Knutson-Miller '05).

Recall that every **B**-stable  $\mathfrak{X} \subseteq Mat_{m,n}$  is  $L_{I|J}$ -stable for some I, J.

Theorem (Price-S.-Yong '24)

If a B-stable variety  $\mathfrak{X}$  is  $L_{I|J}$ -stable, then it is  $L_{I|J}$ -bicrystalline.

In particular, filterRSK<sub>IJ</sub> decomposes the coordinate ring of any matrix Schubert variety  $\mathfrak{X}_w$ .

Ada Stelzer UIUC Representations from matrix varieties, and filtered RSK

æ

御 と く き と く き と

 $\bullet\,$  Determine whether all  $L_{I|J}\mbox{-stable}$  varieties are bicrystalline.

★ 3 → < 3</p>

- $\bullet\,$  Determine whether all  $L_{I|J}\mbox{-stable}$  varieties are bicrystalline.
- Decompose  $\mathbb{C}[\mathfrak{X}_w]$  as a **B**-representation.

- Determine whether all L<sub>IJ</sub>-stable varieties are bicrystalline.
- Decompose  $\mathbb{C}[\mathfrak{X}_w]$  as a **B**-representation.
- Describe a "standard monomial theory" for  $\mathbb{C}[\mathfrak{X}_w]$ .

- Determine whether all L<sub>IJ</sub>-stable varieties are bicrystalline.
- Decompose  $\mathbb{C}[\mathfrak{X}_w]$  as a **B**-representation.
- Describe a "standard monomial theory" for  $\mathbb{C}[\mathfrak{X}_w]$ .
- Express the K-polynomial of C[𝔅<sub>w</sub>] as a signed sum of L<sub>I|J</sub>-characters.

- Determine whether all L<sub>IJ</sub>-stable varieties are bicrystalline.
- Decompose  $\mathbb{C}[\mathfrak{X}_w]$  as a **B**-representation.
- Describe a "standard monomial theory" for  $\mathbb{C}[\mathfrak{X}_w]$ .
- Express the K-polynomial of C[𝔅<sub>w</sub>] as a signed sum of L<sub>I|J</sub>-characters.
- Give an  $L_{I|J}$ -equivariant minimal free resolution of  $\mathbb{C}[\mathfrak{X}_w]$ .

### Thank you!

Ada Stelzer UIUC Representations from matrix varieties, and filtered RSK

< ロ > < 回 > < 回 > < 回 > < 回 >

æ