
Permutations, moments, measures

Einar Steingŕımsson
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A Motzkin path is a sequence of up, down and level steps,
starting at (0, 0), ending at (n, 0), never going below the x-axis:

A Dyck path is a Motzkin path with no level steps:
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A Motzkin path is a sequence of (1,1), (1,0) and (1,-1) steps,
starting at (0, 0), ending at (n, 0), never going below the x-axis:

A Dyck path is a Motzkin path with no level steps:
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A Motzkin path is a sequence of up, down and level steps,
starting at (0, 0), ending at (n, 0), never going below the x-axis:

1− x −
√

1− 2x − 3x2

2x2

A Dyck path is a Motzkin path with no level steps:

1−
√

1− 4x2

2x2
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The Catalan numbers count Dyck paths, whose generating
function is

C (x) =
1−
√

1− 4x2

2x2
=
∑
n≥0

1

n + 1

(
2n

n

)
x2n

which satisfies C = 1 + x2C 2,

from which it follows that C (x) =
1

1−
x2

1−
x2

. . .
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Dyck path

1

1−
x2

1−
x2

. . .

Motzkin path

1

1−z −
z2

1−z −
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[2] [2] [3]
Weighted Motzkin path

1

1− z −
z2

1− 3z −
22z2

. . .

1− (2n + 1)z −
n2z2

. . .

=
∑
n≥0

n! · zn

where αn(·) has αn(1) = 2n + 1 and βn(·) has βn(1) = n2Special case of the general correspondence by Flajolet.
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[2] [2] [3]
Weighted Motzkin path

1

1− α0z −
β1z

2

1− α1z −
β2z

2

. . .

1− αnz −
βn+1z

2

. . .

where αn(·) has αn(1) = 2n + 1 and βn(·) has βn(1) = n2
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The Central Continued Fraction

For parameters a, b, c , d , f , g , h, `, p, r , s, t, u,w ∈ R, let

C(z) =
1

1− α0z −
β1z

2

1− α1z −
β2z

2

. . .

where

αn = u · wn + s [n]a,b + t [n]f ,g βn = p r [n]c,d [n]h,`

and [n]x ,y = xn−1 + xn−2y + · · ·+ xyn−2 + yn−1

statistics to Motzkin paths corresponding to C(z), using Flajolet’s
correspondence.
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The Central Continued Fraction

For parameters a, b, c , d , f , g , h, `, p, r , s, t, u,w ∈ R, let

C(z) =
1

1− α0z −
β1z

2

1− α1z −
β2z

2

. . .

where

αn = u · wn + s [n]a,b + t [n]f ,g βn = p r [n]c,d [n]h,`

The Plan: Find a bijection taking permutations, carrying lots of
statistics, to Motzkin paths corresponding to C(z), using Flajolet’s
general correspondence.
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Consider Motzkin paths labeled as follows, where 0 ≤ i < k

I Upsteps from height k − 1 to k have labels pc idk−1−i

I Downsteps from height k to k − 1 have labels rhi`k−1−i

I Level steps at height k have labels in

{u · w i} ∪ {s aibk−1−i} ∪ {t f igk−1−i}.

By Flajolet’s correspondence, C(z) is the generating function for
Motzkin paths thus labeled:

C(z) = 1

. . .

1− (u · wn + s [n]a,b + t [n]f ,g ) z −
p r [n + 1]c,d [n + 1]h,` z2

. . .
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Fourteen statistics on permutations σ(1)σ(2) . . . σ(n), based on
excedances and inversions:

σ(i): 5 9 7 1 2 6 8 4 3
i : 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Excedances red

Anti-excedances blue

Fixed points green
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5 9 7 1 2 6 8 4 3
1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

7 is a linked excedance: 8 = σ(7) > 7 > σ−1(7) = 3

4 is a linked anti-excedance: 1 = σ(4) < 4 < σ−1(4) = 9

9 · · · 6 is an inversion between excedance and fixed point
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1. # excedances as exc(σ) := #{i ∈ [n] | i < σ(i)},
2. # fixed points as fp(σ) := #{i ∈ [n] | i = σ(i)},
3. # anti-excedances as aexc(σ) := #{i ∈ [n] | i > σ(i)},
4. # linked excedances as le(σ) := #{i ∈ [n] | σ−1(i) < i < σ(i)},
5. # linked anti-excedances as lae(σ) := #{i ∈ [n] | σ−1(i) > i > σ(i)}.
6. # inversions between excedances: ie(σ) := #{i , j ∈ [n] | i < j < σ(j) < σ(i)}.
7. # inversions between excedances where the greater excedance is

linked:ile(σ) := #{i , j ∈ [n] | i < j < σ(j) < σ(i) and σ−1(j) < j}.
8. # restricted non-inversions between

excedances:nie(σ) := #{i , j ∈ [n] | i < j < σ(i) < σ(j)}.
9. # restricted non-inversions between excedances where the rightmost excedance

is linked: nile(σ) := #{i , j ∈ [n] | i < j < σ(i) < σ(j) and σ−1(j) < j}.
10. # inversions between anti-excedances:

iae(σ) := #{i , j ∈ [n] | j > i > σ(i) > σ(j)}.
11. # inversions between anti-excedances where the smaller anti-excedance is

linked: ilae(σ) := #{i , j ∈ [n] | j > i > σ(i) > σ(j) and σ−1(i) > i}.
12. # restricted non-inversions between anti-excedances:

niae(σ) := #{i , j ∈ [n] | j > i > σ(j) > σ(i)}.
13. # restricted non-inversions between anti-excedances where the smaller

anti-excedance is linked:
nilae(σ) := #{i , j ∈ [n] | j > i > σ(j) > σ(i) and σ−1(i) > i}.

14. # inversions between excedances and fixed points:
iefp(σ) := #{i , j ∈ [n] | i < j = σ(j) < σ(i)}.
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5 9 7 1 2 6 8 4 3
1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

bijection

corresponding
Motzkin path

p

dp

cdp
g2t

`2r
w2u as

hr

r

wt: a · c · d2 · g2 · h · `2 · p3 · r3 · s · t · u · w2

Weight of labeled Motzkin path, wt(M): Product of its labels
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bijection

corresponding
Motzkin path

p

dp

cdp
g2t

`2r
w2u as

hr

r

wt: a · c · d2 · g2 · h · `2 · p3 · r3 · s · t · u · w2

Above wt is one term in [z9] C(z)
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The weight of a labeled Motzkin path M, wt(M), is the product of
its labels.

Theorem: There is a bijection η : Sn →Mn such that if
M = η(σ) then wt(M) equals

stat(σ) = aile(σ)bnile(σ)c ie(σ)−ile(σ)dnie(σ)−nile(σ)

× f ilae(σ)gnilae(σ)hiae(σ)−ilae(σ)`niae(σ)−nilae(σ)

× pexc(σ)−le(σ)raexc(σ)−lae(σ)s le(σ)t lae(σ)ufp(σ)w iefp(σ)

Corollary: C(z) =
∑
n≥0

∑
σ∈Sn

stat(σ)zn.

In short: Weight of Motzkin path goes to 14-parameter statistic on
corresponding permutation
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There are several related bijections in earlier literature by

Françon-Viennot 1979
Foata-Zeilberger 1990
Biane 1993
de Médicis-Viennot 1994

Simion-Stanton 1994
Clarke-Steingŕımsson-Zeng 1996
Randrianarivony 1998
Elizalde 2018

Our results generalize most of these, some modulo a bijection
interchanging excedances and descents.

In a contemporaneous (yet unpublished) paper, Sokal and Zeng
present a framework similar to ours, but with an additional four
statistics, including some originally defined by Corteel.

Of the above, only Biane, Elizalde and Sokal-Zeng separate fixed
points from anti-excedances, as we do. This leads to greater
symmetry in the continued fraction, and to results not otherwise
obtainable.
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The number sequences arising from C enumerate many different
combinatorial structures, such as permutations, perfect matchings
and set partitions.

These basic examples happen to be moment sequences of
important distributions from probability theory.
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Some refinements of these objects also have meaning in probability
theory.

Which structures give something probabilistically meaningful?
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Moment sequences

A sequence a0, a1, a2, . . . is a moment sequence of a positive
measure on the real line if and only if all principal minors of

a0 a1 · · · an
a1 a2 · · · an+1

...
an an+1 · · · a2n


are non-negative for any n. (Hamburger, a 100 years ago)

In particular, (an)n≥0 is then log-convex
(
an−1an+1 ≥ a2

n

)
.

Can get strong lower bounds on growth rates of moment sequences

(Haagerup–Haagerup–Ramirez Solano,
Elvey Price, Clisby–Conway–Guttmann)
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Moment sequences

∑
n≥0

mnz
n = C(z) =

1

1− α0z −
β1z

2

1− α1z −
β2z

2

. . .

αn = u · wn + s [n]a,b + t [n]f ,g βn = p r [n]c,d [n]h,`

Theorem: For a, b, c , d , f , g , h, `, p, r , s, t, u,w ∈ R with pr > 0
and c , d , h, ` satisfying

c = −d or h = −` or

(c > −d and h > −`) or (c < −d and h < −`),

the sequence (mn) is the moment sequence of some probability
measure on R. In particular if all non-negative and pr > 0.
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Moment sequences

∑
n≥0

mnz
n = C(z) =

1

1− α0z −
β1z

2

1− α1z −
β2z

2

. . .

αn = u · wn + s [n]a,b + t [n]f ,g βn = p r [n]c,d [n]h,`

With mild conditions on the parameters of C(z), which are easy to
check, we get moment sequences.

All sequences mentioned from now on are moment sequences
arising from C(z).
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C(z) = 1

. . .

1− (u · wn + s [n]a,b + t [n]f ,g ) z −
p r [n + 1]c,d [n + 1]h,` z2

. . .

With s = qx , p = x , all other parameters = 1, we get

C(z) =
∑
n≥0

∑
σ∈Sn

xdes(σ)qocc321(σ)zn,

where occ321 is #occurrences of the consecutive pattern 321

occurrence: 356412 not consecutive: 356412

First shown by Elizalde 2018, using a different continued fraction.
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With s = 0, all other parameters = 1, we get

C(z) =
∑
n≥0

Av321(n)zn,

Av321(n) = # n-permutations avoiding consecutive pattern 321

If b, d , g , ` = q, s = xq, p, u = x , others = 1:

C(z) =
∑
n≥0

∑
σ∈Sn

xdes(σ)+1qocc2 31(σ)zn.

where occ2 31 is #occurrences of the vincular pattern 2 31

2 31 occurrence: 416523 62 not adjacent: 416523

Two more cases: Catalan and Bell numbers
1 2 3 1 23
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The only 3-pattern whose avoiders don’t give a moment sequence
is the consecutive pattern 132 (equivalently 213, 231, 312).

This is the only 3-pattern whose avoidance is not captured in C(z).

Theorem: The sequence of numbers of avoiders of a pattern of
length 3 is a moment sequence iff it is a special case of C(z).

Of the three sequences for classical patterns of length 4, two are
known to be moment sequences. Elvey Price conjectures the same
is true of the third, the enigmatic 1324.

Clisby-Conway-Guttmann conjecture that the same is true for all
16 Wilf classes of length 5, and prove this in the case of 12345.

Why are some combinatorial sequences moment sequences?

What tools from probability/analysis would it let us use?
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Specializations of C(z) also capture a large part of the q-Askey
scheme of orthogonal polynomials, here interpreted in terms of the
simple concepts of excedances and inversions in permutations.

Corteel and Williams have a combinatorial interpretation with
statistics on different objects (staircase tableaux) for all
polynomials that specialize from the Askey-Wilson family.

22 / 34



Specializations of C(z) also capture a large part of the q-Askey
scheme of orthogonal polynomials, here interpreted in terms of the
simple concepts of excedances and inversions in permutations.

Corteel and Williams have a combinatorial interpretation with
statistics on different objects (staircase tableaux) for all
polynomials that specialize from the Askey-Wilson family.

22 / 34



ab = q
bc = - q
cd = q

a = 0 α = 1 a = 0

ab = q a =   √q a = 1

b = -1

b = c = 1

α = 1
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Generalizations

Via simple substitutions of parameters, many of the permutation
statistics carried by C(z) generalize to the k-colored permutations
Skn — each letter gets one of k colors — in particular the signed
permutations of the type B Coxeter groups.

312462425013

312462425013

Let ci be the color of the i-th letter.

An excedance in a colored permutation a1a2 . . . an is an i such that

ai > i OR (ai = i AND ci > 0)

A fixed point is an i such that ai = i AND ci = 0

An anti-excedance is an i such that ai < i
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• An excedance in a colored permutation is an i such that

ai > i OR (ai = i AND ci > 0)

• A fixed point is an i such that ai = i AND ci = 0

• An anti-excedance is an i such that ai < i

Proposition: With s, p = kx , t, r = ky , u = (k − 1)x + q, and
all other parameters set to 1, we get

C(z) =
∑
n≥0

∑
σ∈Skn

xexc(σ)yaexc(σ)qfix(σ)zn.

Easy to refine this to distinguish linked/unlinked (anti-)excedances,
because the colors embed naturally in C(z).
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• An inversion is a pair (i , j) where i < j and

ci > cj OR (ci = cj AND ai > aj)
With

a, c , h, r = q, b, f , d , `, t = q2, g ,w = 0, p, u = 1, s = 2q,

we get the distribution of inversions over Sn from C:

C(z) =
∑
n≥0

∑
π∈Sn

qinv(π)zn.

If we replace z by z((k − 1)q + 1) above, we get the distribution of
inversions over the k-colored permutations Skn for k > 1.

Further, setting p = x , s = (1 + x)q, we get

C(z) =
∑
n≥0

∑
π∈Sn

xexc(π)qinv πzn.

Unclear whether that can be extended to Skn via C and whether
other Euler-Mahonian pairs can be obtained from C.
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Coloring only fixed points

Because fixed points live independently in C(z), the following
generalization is obvious:

k-arrangements: Permutations with k-colored fixed points

I 0-arrangements are derangements (no fixed points)

I 1-arrangements are permutations

I 2-arrangements were called just arrangements by Comtet, and
coincide with Postnikov’s decorated permutations, which are
in bijection with ‘certain non-negative Grassmann cells’.

For k > 2 the k-arrangements do not seem to have been studied.

But they have many nice properties, and doubtless many more to
be discovered.
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Proposition: Let Ak(n) be the number of k-arrangements of [n].
Then

• Ak(0) = 1. For n > 0: Ak(n) = n · Ak(n − 1) + (k − 1)n

•
∑
n≥0

Ak(n)
xn

n!
=

e(k−1)x

(1− x)

• Ak(n) =
∑
i≥0

(
n

i

)
Ak−1(i) (successive binomial transforms)

• Ak(n) equals the permanent of the n × n matrix with k on the
diagonal and 1s elsewhere.

All of this holds for k < 0. Seems that Ak(n) > 0 for n >> 0.

What does that count?
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In a colored permutation, let ci be the color of the letter in place i .

312562425013

• An excedance in a colored permutation π is an i such that

ai > i OR (ai = i AND ci > 0)

• An inversion is a pair (i , j) where i < j and

ci > cj OR (ci = cj AND ai > aj)

• A descent i : ci > ci+1 OR (ci = ci+1 AND ai > ai+1)

• The major index of π is the sum of its descents

29 / 34



In a colored permutation, let ci be the color of the letter in place i .

312562425013

• An excedance in a colored permutation π is an i such that

ai > i OR (ai = i AND ci > 0)

• An inversion is a pair (i , j) where i < j and

ci > cj OR (ci = cj AND ai > aj)

• A descent i : ci > ci+1 OR (ci = ci+1 AND ai > ai+1)

• The major index of π is the sum of its descents

29 / 34



In a colored permutation, let ci be the color of the letter in place i .

312562425013

• An excedance in a colored permutation π is an i such that

ai > i OR (ai = i AND ci > 0)

• An inversion is a pair (i , j) where i < j and

ci > cj OR (ci = cj AND ai > aj)

• A descent i : ci > ci+1 OR (ci = ci+1 AND ai > ai+1)

• The major index of π is the sum of its descents

29 / 34



In a colored permutation, let ci be the color of the letter in place i .

312562425013

• An excedance in a colored permutation π is an i such that

ai > i OR (ai = i AND ci > 0)

• An inversion is a pair (i , j) where i < j and

ci > cj OR (ci = cj AND ai > aj)

• A descent i : ci > ci+1 OR (ci = ci+1 AND ai > ai+1)

• The major index of π is the sum of its descents

29 / 34



Encoding k-arrangements

Replacing fixed points colored i (resp. i < k) by −i gives the
derangement (resp. permutation) form of a k-arrangement.

Conjecture: des has the same distribution on the derangement
and permutation forms for k-arrangements of [n].

Conjecture: The number of 3-arrangements of [n] whose
permutation form avoids any given classical pattern of length 3 is
C (n + 2)− 2n.

Also for 2-arrangements avoiding 123/132, by number of descents.

Proved by Fu-Han-Lin. Surprisingly non-trivial.
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Another encoding of k-arrangements

Given a k-arrangement as a permutation π with fixed points
colored with {1, 2, . . . , k}, let its non-fixed points have color 0 and
regard π as a k-colored permutation in Skn .

Conjecture: In this encoding inv and maj are equidistributed.
Also, des has the same distribution as it does on the permutation
or derangement form.

Problem: There is a modification C′ of the continued fraction C
that captures the distributions of statistics on the colored
permutations. Is there a restriction of C′ that carries the
corresponding statistics on k-arrangements?
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A very open problem

Sokal and Zeng have a continued fraction with another four
parameters, carrying statistics on alignments and crossings in
permutations, first defined by Corteel.

Is it possible to add further parameters carrying even more
permutation statistics?

In particular, is it possible to expand these continued fractions to
encompass all of the q-Askey scheme?
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Thanks!

33 / 34
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