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A(G) = maximum degree of G '<I/~

d(G) = average degree of G 5(G)=1,d(G) =2, A(G) = 3.
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Basic Question:

Given a graph G
whose degree sequence satisfies certain conditions,
what subgraphs must appear in G?



An easy observation:

If 5(G) > 3| V(G)|, then G contains a triangle.
e
Y N



An easy observation:

If 5(G) > %]V(G)L then G contains a triangle.

Improvement:

Mantel’'s theorem (1907):
If d(G) > 3|V(G)], then G contains a triangle.



Classical theorems:




Classical theorems:

Mantel’s theorem (1907):
If d(G) > 1|V(G)|, then G contains a triangle.



Classical theorems:

Mantel’'s theorem (1907):
If d(G) > 1|V(G)|, then G contains a triangle.

Turén’s theorem (1941):
If d(G) > =1 |V(G)|, then G contains a K 1.




Classical theorems:

Mantel’'s theorem (1907):
If d(G) > 1|V(G)|, then G contains a triangle.

Turén’s theorem (1941):
If d(G) > =1 |V(G)|, then G contains a K 1.

Dirac’s theorem (1952):
If 5(G) > 3| V(G)|, then G has a Hamilton cycle.

Hamilton cycle: Cycle going through all the vertices



Dirac’s theorem (1952):
If 6(G) > %| V(G)|, then G has a Hamilton cycle.



Dirac’s theorem (1952):
If 6(G) > %| V(G)|, then G has a Hamilton cycle.



Dirac’s theorem (1952):
If 6(G) > %| V(G)|, then G has a Hamilton cycle.



Square of a cycle: Cycle plus all 2-chords



Square of a cycle: Cycle plus all 2-chords



Square of a cycle: Cycle plus all 2-chords

Pdsa conjecture (1964):
If 5(G) > 5|V(G)|, then G contains the square of a Hamilton cycle.



Square of a cycle: Cycle plus all 2-chords

Pdsa conjecture (1964):
If 5(G) > 5|V(G)|, then G contains the square of a Hamilton cycle.

kth power of a cycle: Cycle plus all j-chords, 2 <j < k



Square of a cycle: Cycle plus all 2-chords

Pdsa conjecture (1964):
If 5(G) > £|V(G)|, then G contains the square of a Hamilton cycle.

kth power of a cycle: Cycle plus all j-chords, 2 <j < k

square=2nd power



Square of a cycle: Cycle plus all 2-chords

Pdsa conjecture (1964):
If 5(G) > 5|V(G)|, then G contains the square of a Hamilton cycle.

kth power of a cycle: Cycle plus all j-chords, 2 <j < k

square=2nd power

Generalization by Seymour (1974):
If0(G) > %| V(G)|, then G contains the (r — 1)th power of a
Hamilton cycle.
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Pésa-Seymour conjecture (1974):
If 5(G) > =1|V(G)|, then G contains the (r — 1)th power of a
Hamilton cycle.

Theorem Komlos, Sarkdzy, Szemerédi (1998):
True for all r > 3 and all large enough graphs (|V(G)| > ng(r)).

Tool for proof:

Regularity Lemma (Szemerédi 1978): Every large graph admits a
partition of its vertex set so that edges between classes are
random-like.
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DETOUR: Trees

Dirac: 6(G) > ‘V(zG” = @G has a Hamilton cycle (also Hamilton path)

Theorem Komlés, Sarkdzy, Szemerédi (1995):

Ve, A 3ng such that every graph G on n > ng vertices with

8(G) > (4 + ¢)n contains every tree T of order nand A(T) < A,
e Can be slightly improved

e Can drop condition on A(T) if we add additional conditions on G:

Thm Reed, St. (2019+): Each graph G on n vertices with §(G) > 4 and
A(G) > n— 1 contains every tree T of order n.
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An r-uniform hypergraph, or r-graph for short, h@d its
(hyper)edges are r-subsets of V.
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Codegrees:

dr—1(H) > k means every (r — 1)-tuple of vertices of H belongs to at
least k hyperedges.
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Dirac’s theorem (1952):
If G is a graph on n vertices and §(G) > g then G has a
Hamilton cycle.

Generalization to r-uniform hypergraphs:

Conjecture (Kostochka and Kierstead 1999):
If His an r-graph on n vertices and 6,_4(H) > 7, then H has
a Hamilton tight cycle.

Theorem (Roédl, Rucinski and Szemerédi 2008):
If nis large, H is an r-graph on n vertices and
6r—1(H) = 4 + o(n), then H has a Hamilton tight cycle.

Theorem (Rédl, Rucinski and Szemerédi 2011):
For r = 3 we can drop the o(n).
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For graphs:

Pdsa-Seymour conjecture (1974):
If G is a graph on n vertices and 6(G) > (1 — 1)n, then G contains
the (r — 1)th power of a Hamilton cycle.

For hypergraphs:

Definition: square of a k-uniform cycle = vy vovs...vpvy St in every
interval v;v;,1....vi,k all k-sets are edges.

Theorem (Bedenknecht and Reiher 2020):
If H is a 3-graph on n vertices and 6,(G) > 2n+ o(n), then H
contains the square of a tight Hamilton cycle.

Not much more known until now!
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s.t. in every interval v;v;4....vi.,_1 all k-sets are edges.

Theorem 1 (Pavez-Signé, Sanhueza-Matamala, St. 2021+):
Vr, k,e dng s.t. every k-graph H on n > ng vertices with

I
(1) + ()

contains the (r — k + 1)th power of a tight Hamilton cycle.

dk—1(H) > (1 - +¢)n

e For k = 2, arbitrary r: asymptotic P6sa-Seymour conjecture

e For k = 3, r = 4: Bedenknecht-Reiher result

Vn V1

e Corollary of our result: With §,_1(G) > (1 — 5z + £)n we get

squares of tight Hamilton cycles of arbitrary uniformity

e For r = k arbitrary: RddI-Rucinski-Szemerédi’s tight Hamilton cycle

result
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Theorem 2 (Pavez-Signé, Sanhueza-Matamala, St. 2020+):
Ve, A 3ng s.t. each r-graph H on n > ng vertices with
dr—1(H) > (% + e)n contains each r-tree T on n vertices with
A(T) < A.

Jjth degrees:

1) 6,—1(H) > k means every (r — 1)-tuple of vertices of H belongs to at
least k hyperedges.

2) A¢(T) < A means every vertex lies in at most A hyperedges.
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Theorem 3 (Pavez-Signé, Sanhueza-Matamala, St. 2021+):
Vr,k,A, e 3ny s.t. each k-graph H on n > ng vertices with
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contains every k-graph that admits a tree-decomposition of width < r
and max degree < A.

Sk—1(H) > (1 - +e)n

What is a tree-decomposition of a hypergraph?

Tree-decompositions for graphs:

Can be generalized to hypergraphs.
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Definition jth shadow (j < k): The jth shadow 0;(H) of k-graph H is the
Jj-graph on V(H) having a j-subsets of edges of H as edges.

For graphs G: Tree-width of G is smallest r such that there is an
(r+1)-tree T with G C 9(T).

For k-graphs H: Tree-width of H is smallest r such that there is an
(r+1)-tree T with G C 0k(T).

If Ay(T) = A, we say H has a tree-decomposition of width r and max
degree A.
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Theorem 3 (Pavez-Signé, Sanhueza-Matamala, St. 2021+):
vr,k, Ae dng s.t. each k-graph H on n > ng vertices with
ok—1(H)> (1 - = ) RG] + e)n contains every k-graph that admits a

tree-decomposmon of W|dth < r and max degree < A.

e Proof Idea: Work in the r-hypergraph K,(H) obtained from H by
considering each r-clique an edge.

e For r = k arbitrary we get Theorem 2.

e For r > k = 2: We recover an instance of the Bandwidth theorem
(Béttcher, Schacht, Taraz 2009)

e Thm 3 can be used to prove Thm 1:

Find the (r — k + 1)th power of a tight almost spanning path. Then
connect and absorb. Ol
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Lower bounds

Theorem 1 (Pavez-Signé, Sanhueza-Matamala, St. 2021+):
Vr, k,e dng s.t. every k-graph H on n > ng vertices with

B N
(i) + (23

contains the (r — k + 1)th power of a tight Hamilton cycle.

dk—1(H) > (1 - +e)n

— k fixed, r large: our bound is 1 — cr'—*
Lower bounds from Turan threshold: 1 — ¢/r'=klog r
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Thank you for your attention!



