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GRAPHS



A graph G:

Vertices V (G), edges E(G)

Some subgraphs of G:

Degrees: Degree of vertex v = no. of edges at v

δ(G) = minimum degree of G
∆(G) = maximum degree of G
d(G) = average degree of G

Example:

δ(G) = 1, d(G) = 2, ∆(G) = 3.
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Basic Question:
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whose degree sequence satisfies certain conditions,
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An easy observation:

If δ(G) > 1
2 |V (G)|, then G contains a triangle.

Improvement:

Mantel’s theorem (1907):
If d(G) > 1

2 |V (G)|, then G contains a triangle.
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Square of a cycle: Cycle plus all 2-chords

k th power of a cycle: Cycle plus all j-chords, 2 ≤ j ≤ k

square=2nd power

Generalization by Seymour (1964):
If δ(G) ≥ 2

3 |V (G)|, then G contains the square of a Hamilton cycle.
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Pósa-Seymour conjecture (1974):
If δ(G) ≥ r−1

r |V (G)|, then G contains the (r − 1)th power of a
Hamilton cycle.

Theorem Komlós, Sárközy, Szemerédi (1998):
True for all r ≥ 3 and all large enough graphs (|V (G)| ≥ n0(r)).

Tool for proof:

Regularity Lemma (Szemerédi 1978): Every large graph admits a
partition of its vertex set so that edges between classes are
random-like.
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DETOUR: Trees

Dirac: δ(G) ≥ |V (G)|
2 ⇒ G has a Hamilton cycle (also Hamilton path)

Theorem Komlós, Sárközy, Szemerédi (1995):
∀ε,∆ ∃n0 such that every graph G on n ≥ n0 vertices with
δ(G) ≥ (1

2 + ε)n contains every tree T of order n and ∆(T ) ≤ ∆.

• Can be slightly improved

• Can drop condition on ∆(T ) if we add additional conditions on G:

Thm Reed, St. (2019+): Each graph G on n vertices with δ(G) ≥ 2n
3 and

∆(G) ≥ n − 1 contains every tree T of order n.
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HYPERGRAPHS



An r -uniform hypergraph, or r -graph for short, has vertex set V and its
(hyper)edges are r -subsets of V . o
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Codegrees:

δr−1(H) ≥ k means every (r − 1)-tuple of vertices of H belongs to at
least k hyperedges.



Result for graphs:

Dirac’s theorem (1952):
If G is a graph on n vertices and δ(G) ≥ n

2 , then G has a
Hamilton cycle.

Generalization to r -uniform hypergraphs:

Conjecture (Kostochka and Kierstead 1999):
If H is an r -graph on n vertices and δr−1(H) ≥ n

2 , then H has
a Hamilton tight cycle.

Theorem (Rödl, Ruciński and Szemerédi 2008):
If n is large, H is an r -graph on n vertices and
δr−1(H) ≥ n

2 + o(n), then H has a Hamilton tight cycle.

Theorem (Rödl, Ruciński and Szemerédi 2011):
For r = 3 we can drop the o(n).

How about squares/powers of Hamilton cycles?
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Squares of cycles in r -uniform hypergraphs?

Definition: square of a k -uniform cycle = v1v2v3...vnv1 s.t. in every
interval vivi+1....vi+k all k -sets are edges

Powers of cycles in r -uniform hypergraphs?

Definition: (r − k + 1)th power of a k -uniform cycle = v1v2v3...vnv1
s.t. in every interval vivi+1....vi+r−1 all k -sets are edges
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For graphs:

Pósa-Seymour conjecture (1974):
If G is a graph on n vertices and δ(G) ≥ (1 − 1

r )n, then G contains
the (r − 1)th power of a Hamilton cycle.

For hypergraphs:
Definition: square of a k -uniform cycle = v1v2v3...vnv1 s.t. in every
interval vivi+1....vi+k all k -sets are edges.

Theorem (Bedenknecht and Reiher 2020):
If H is a 3-graph on n vertices and δ2(G) ≥ 4

5n + o(n), then H
contains the square of a tight Hamilton cycle.

Not much more known until now!
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Definition: (r − k + 1)th power of a k -uniform cycle = v1v2v3...vnv1
s.t. in every interval vivi+1....vi+r−1 all k -sets are edges.

Theorem 1 (Pavez-Signé, Sanhueza-Matamala, St. 2021+):
∀r , k , ε ∃n0 s.t. every k -graph H on n ≥ n0 vertices with

δk−1(H) ≥ (1 − 1
(r−1

k−1
)
+

(r−2
k−2

) + ε)n

contains the (r − k + 1)th power of a tight Hamilton cycle.

• For k = 2, arbitrary r : asymptotic Pósa-Seymour conjecture

• For k = 3, r = 4: Bedenknecht-Reiher result

• Corollary of our result: With δk−1(G) ≥
(
1 − 1

2k−1 + ε
)
n we get

squares of tight Hamilton cycles of arbitrary uniformity

• For r = k arbitrary: Rödl-Ruciński-Szemerédi’s tight Hamilton cycle
result
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δk−1(H) ≥ (1 − 1
(r−1

k−1
)
+

(r−2
k−2

) + ε)n

contains the (r − k + 1)th power of a tight Hamilton cycle.

• For k = 2, arbitrary r : asymptotic Pósa-Seymour conjecture

• For k = 3, r = 4: Bedenknecht-Reiher result

• Corollary of our result: With δk−1(G) ≥
(
1 − 1

2k−1 + ε
)
n we get

squares of tight Hamilton cycles of arbitrary uniformity

• For r = k arbitrary: Rödl-Ruciński-Szemerédi’s tight Hamilton cycle
result
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the first) intersects some previous edge in r − 1 vertices but its r th
vertex is ‘new’.
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Theorem Komlós, Sárközy, Szemerédi 1995)
∀ε,∆ ∃n0 s.t. each graph G on n ≥ n0 vertices with δ(G) ≥ (1

2 + ε)n
contains every tree T of order n and ∆(T ) ≤ ∆.

Theorem 2 (Pavez-Signé, Sanhueza-Matamala, St. 2020+):
∀ε,∆ ∃n0 s.t. each r -graph H on n ≥ n0 vertices with
δr−1(H) ≥ (1

2 + ε)n contains each r -tree T on n vertices with
∆1(T ) ≤ ∆.

j th degrees:
1) δr−1(H) ≥ k means every (r − 1)-tuple of vertices of H belongs to at
least k hyperedges.
2) ∆1(T ) ≤ ∆ means every vertex lies in at most ∆ hyperedges.
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• Weak hypergraph regularity, Matching, Connections
• Absorption



Proof of Theorem 2

Theorem 2 (Pavez-Signé, Sanhueza-Matamala, St. 2020+):
∀ε,∆ ∃n0 s.t. each r -graph H on n ≥ n0 vertices with
δr−1(H) ≥ (1

2 + ε)n contains each r -tree T on n vertices with
∆1(T ) ≤ ∆.

Proof ingredients:
• Cutting the hypertree into small pieces

• Weak hypergraph regularity, Matching, Connections
• Absorption



Proof of Theorem 2

Proof ingredient 1: Cutting the hypertree into small pieces:

This is what this looks like in a graph:

A constant number of cutvertices, and components of size < βn



Proof of Theorem 2

Proof ingredient 1: Cutting the hypertree into small pieces:

This is what this looks like in a graph:

A constant number of cutvertices, and components of size < βn



Proof of Theorem 2

Proof ingredient 1: Cutting the hypertree into small pieces:

This is what this looks like in a hypergraph:

A constant number of cutsets of size r − 1, and comp’s of size < βn



Proof of Theorem 2

Proof ingredient 1: Cutting the hypertree into small pieces:

This is what this looks like in a hypergraph:

A constant number of cutsets of size r − 1, and comp’s of size < βn



Proof of Theorem 2

Theorem 2 (Pavez-Signé, Sanhueza-Matamala, St. 2020+):
∀ε,∆ ∃n0 s.t. each r -graph H on n ≥ n0 vertices with
δr−1(H) ≥ (1

2 + ε)n contains each r -tree T on n vertices with
∆1(T ) ≤ ∆.

Proof ingredients:
• Cutting the hypertree into small pieces
• Weak hypergraph regularity, Matching, Connections
• Absorption



Proof of Theorem 2

Theorem 2 (Pavez-Signé, Sanhueza-Matamala, St. 2020+):
∀ε,∆ ∃n0 s.t. each r -graph H on n ≥ n0 vertices with
δr−1(H) ≥ (1

2 + ε)n contains each r -tree T on n vertices with
∆1(T ) ≤ ∆.

Proof ingredients:
• Cutting the hypertree into small pieces
• Weak hypergraph regularity, Matching, Connections
• Absorption



A generalization of Theorem 2:

Theorem 3 (Pavez-Signé, Sanhueza-Matamala, St. 2021+):
∀r , k ,∆, ε ∃n0 s.t. each k -graph H on n ≥ n0 vertices with

δk−1(H) ≥
(
1 − 1

(r−1
k−1

)
+

(r−2
k−2

) + ε
)
n

contains every k -graph that admits a tree-decomposition of width ≤ r
and max degree ≤ ∆.

What is a tree-decomposition of a hypergraph?

Tree-decompositions for graphs:

Can be generalized to hypergraphs.
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Hypertree-decompositions

Definition j th shadow (j ≤ k): The j th shadow ∂j(H) of k -graph H is the
j-graph on V (H) having a j-subsets of edges of H as edges.

For graphs G: Tree-width of G is smallest r such that there is an
(r + 1)-tree T with G ⊆ ∂2(T ).

For k -graphs H: Tree-width of H is smallest r such that there is an
(r + 1)-tree T with G ⊆ ∂k (T ).

If ∆1(T ) = ∆, we say H has a tree-decomposition of width r and max
degree ∆.
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Theorem 3 (Pavez-Signé, Sanhueza-Matamala, St. 2021+):
∀r , k ,∆ε ∃n0 s.t. each k -graph H on n ≥ n0 vertices with
δk−1(H) ≥ (1 − 1

(r−1
k−1)+(

r−2
k−2)

+ ε)n contains every k -graph that admits a

tree-decomposition of width ≤ r and max degree ≤ ∆.

• Proof Idea: Work in the r -hypergraph Kr (H) obtained from H by
considering each r -clique an edge.
• For r = k arbitrary we get Theorem 2.
• For r ≥ k = 2: We recover an instance of the Bandwidth theorem
(Böttcher, Schacht, Taraz 2009)
• Thm 3 can be used to prove Thm 1:
Find the (r − k + 1)th power of a tight almost spanning path. Then
connect and absorb.
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Lower bounds

Theorem (Rödl, Ruciński and Szemerédi 2008):
If n is large, H is an r -graph on n vertices and
δr−1(H) ≥ n

2 + o(n), then H has a Hamilton tight cycle.

Asymptotically best possible.

Theorem (Bedenknecht and Reiher 2021):
If H is a 3-graph on n vertices and δ2(G) ≥ 4

5n + o(n), then
H contains the square of a tight Hamilton cycle.

Lower bounds from clique tilings:
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H contains the square of a tight Hamilton cycle.

Lower bounds from clique tilings:
Results of Pikkurkho ⇒ 4

5 cannot be replaced by something below 3
4



Lower bounds

Theorem 1 (Pavez-Signé, Sanhueza-Matamala, St. 2021+):
∀r , k , ε ∃n0 s.t. every k -graph H on n ≥ n0 vertices with

δk−1(H) ≥ (1 − 1
(r−1

k−1
)
+

(r−2
k−2

) + ε)n

contains the (r − k + 1)th power of a tight Hamilton cycle.

→ k fixed, r large: our bound is 1 − cr1−k

Lower bounds from Turán threshold: 1 − c′r1−k log r
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Final remarks:

• Is our codegree bound in Theorems 1 and 3 tight?

• Degree variations

• Better bounds on ∆(T ) in Theorem 2?

• Future direction: Version of the 2/3 theorem for hypergraphs
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Thank you for your attention!


