Towards a Pósa-Seymour conjecture for hypergraphs

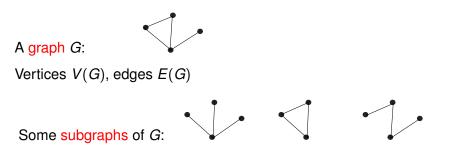
Maya Stein University of Chile

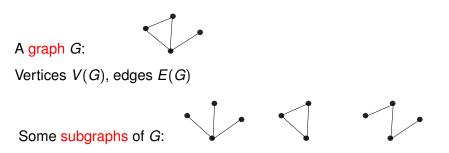
with Nicolás Sanhueza-Matamala (University of Concepción) and Matías Pavez-Signé (University of Birmingham)

> MSU Combinatorics and Graph Theory Seminar January 19, 2022

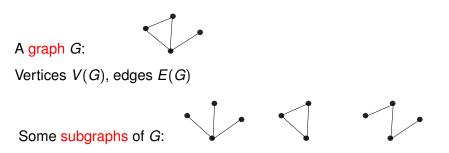
GRAPHS

Vertices V(G), edges E(G)



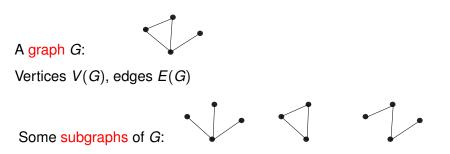


Degrees: Degree of vertex v = no. of edges at v



Degrees: Degree of vertex v = no. of edges at v

 $\delta(G) =$ minimum degree of G $\Delta(G) =$ maximum degree of G d(G) = average degree of G



Degrees: Degree of vertex v = no. of edges at v

 $\delta(G) =$ minimum degree of G $\Delta(G) =$ maximum degree of Gd(G) = average degree of G Example:

$$\checkmark$$

$$\delta(G) = 1, d(G) = 2, \Delta(G) = 3.$$

Basic Question:

Basic Question:

Given a graph *G* whose degree sequence satisfies certain conditions,

Basic Question:

Given a graph *G* whose degree sequence satisfies certain conditions, what subgraphs must appear in *G*?

An easy observation:

If $\delta(G) > \frac{1}{2}|V(G)|$, then *G* contains a triangle.

An easy observation:

If $\delta(G) > \frac{1}{2}|V(G)|$, then *G* contains a triangle.

Improvement:

Mantel's theorem (1907): If $d(G) > \frac{1}{2}|V(G)|$, then *G* contains a triangle.

Mantel's theorem (1907): If $d(G) > \frac{1}{2}|V(G)|$, then *G* contains a triangle.

Mantel's theorem (1907): If $d(G) > \frac{1}{2}|V(G)|$, then *G* contains a triangle.

Turán's theorem (1941): If $d(G) > \frac{r-1}{r} |V(G)|$, then *G* contains a K_{r+1} .

Mantel's theorem (1907): If $d(G) > \frac{1}{2}|V(G)|$, then *G* contains a triangle.

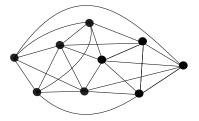
Turán's theorem (1941): If $d(G) > \frac{r-1}{r} |V(G)|$, then *G* contains a K_{r+1} .

Dirac's theorem (1952): If $\delta(G) \geq \frac{1}{2}|V(G)|$, then *G* has a Hamilton cycle.

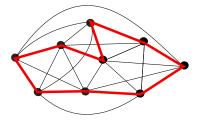
Hamilton cycle: Cycle going through all the vertices

Dirac's theorem (1952): If $\delta(G) \ge \frac{1}{2}|V(G)|$, then *G* has a Hamilton cycle.

Dirac's theorem (1952): If $\delta(G) \geq \frac{1}{2}|V(G)|$, then *G* has a Hamilton cycle.

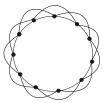


Dirac's theorem (1952): If $\delta(G) \geq \frac{1}{2}|V(G)|$, then *G* has a Hamilton cycle.

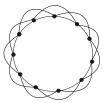


Square of a cycle: Cycle plus all 2-chords

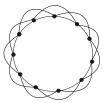
Square of a cycle: Cycle plus all 2-chords



Square of a cycle: Cycle plus all 2-chords

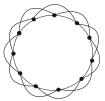


Square of a cycle: Cycle plus all 2-chords



*k*th power of a cycle: Cycle plus all *j*-chords, $2 \le j \le k$

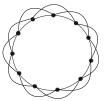
Square of a cycle: Cycle plus all 2-chords



*k*th power of a cycle: Cycle plus all *j*-chords, $2 \le j \le k$

square=2nd power

Square of a cycle: Cycle plus all 2-chords



*k*th power of a cycle: Cycle plus all *j*-chords, $2 \le j \le k$

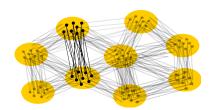
square=2nd power

Generalization by Seymour (1974): If $\delta(G) \ge \frac{r-1}{r} |V(G)|$, then *G* contains the (r-1)th power of a Hamilton cycle. Pósa-Seymour conjecture (1974): If $\delta(G) \ge \frac{r-1}{r} |V(G)|$, then *G* contains the (r-1)th power of a Hamilton cycle. Pósa-Seymour conjecture (1974): If $\delta(G) \ge \frac{r-1}{r} |V(G)|$, then *G* contains the (r-1)th power of a Hamilton cycle.

Theorem Komlós, Sárközy, Szemerédi (1998): True for all $r \ge 3$ and all large enough graphs ($|V(G)| \ge n_0(r)$). Pósa-Seymour conjecture (1974): If $\delta(G) \ge \frac{r-1}{r} |V(G)|$, then *G* contains the (r-1)th power of a Hamilton cycle.

Theorem Komlós, Sárközy, Szemerédi (1998): True for all $r \ge 3$ and all large enough graphs ($|V(G)| \ge n_0(r)$).

Tool for proof:



Regularity Lemma (Szemerédi 1978): Every large graph admits a partition of its vertex set so that edges between classes are random-like.

Dirac: $\delta(G) \geq \frac{|V(G)|}{2} \Rightarrow G$ has a Hamilton cycle (also Hamilton path)

Dirac: $\delta(G) \ge \frac{|V(G)|}{2} \Rightarrow G$ has a Hamilton cycle (also Hamilton path)

Theorem Komlós, Sárközy, Szemerédi (1995): $\forall \varepsilon, \Delta \exists n_0$ such that every graph *G* on $n \ge n_0$ vertices with $\delta(G) \ge (\frac{1}{2} + \varepsilon)n$ contains every tree *T* of order *n* and $\Delta(T) \le \Delta$.

Dirac: $\delta(G) \ge \frac{|V(G)|}{2} \Rightarrow G$ has a Hamilton cycle (also Hamilton path)

Theorem Komlós, Sárközy, Szemerédi (1995): $\forall \varepsilon, \Delta \exists n_0$ such that every graph *G* on $n \ge n_0$ vertices with $\delta(G) \ge (\frac{1}{2} + \varepsilon)n$ contains every tree *T* of order *n* and $\Delta(T) \le \Delta$.

• Can be slightly improved

Dirac: $\delta(G) \ge \frac{|V(G)|}{2} \Rightarrow G$ has a Hamilton cycle (also Hamilton path)

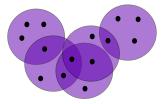
Theorem Komlós, Sárközy, Szemerédi (1995): $\forall \varepsilon, \Delta \exists n_0$ such that every graph *G* on $n \ge n_0$ vertices with $\delta(G) \ge (\frac{1}{2} + \varepsilon)n$ contains every tree *T* of order *n* and $\Delta(T) \le \Delta$.

- Can be slightly improved
- Can drop condition on $\Delta(T)$ if we add additional conditions on *G*:

Thm Reed, St. (2019+): Each graph *G* on *n* vertices with $\delta(G) \ge \frac{2n}{3}$ and $\Delta(G) \ge n - 1$ contains every tree *T* of order *n*.

HYPERGRAPHS

An *r*-uniform hypergraph, or *r*-graph for short, has vertex set V and its (hyper)edges are *r*-subsets of V.



Cycles in hypergraphs:

Cycles in hypergraphs:

Berge cycles, Loose cycles, Tight cycles

Codegrees:

 $\delta_{r-1}(H) \ge k$ means every (r-1)-tuple of vertices of H belongs to at least k hyperedges.

Dirac's theorem (1952):

If *G* is a graph on *n* vertices and $\delta(G) \ge \frac{n}{2}$, then *G* has a Hamilton cycle.

Dirac's theorem (1952): If *G* is a graph on *n* vertices and $\delta(G) \ge \frac{n}{2}$, then *G* has a Hamilton cycle.

Generalization to *r*-uniform hypergraphs:

Conjecture (Kostochka and Kierstead 1999): If *H* is an *r*-graph on *n* vertices and $\delta_{r-1}(H) \ge \frac{n}{2}$, then *H* has a Hamilton tight cycle.

Dirac's theorem (1952): If *G* is a graph on *n* vertices and $\delta(G) \ge \frac{n}{2}$, then *G* has a Hamilton cycle.

Generalization to *r*-uniform hypergraphs:

Conjecture (Kostochka and Kierstead 1999): If *H* is an *r*-graph on *n* vertices and $\delta_{r-1}(H) \ge \frac{n}{2}$, then *H* has a Hamilton tight cycle.

Theorem (Rödl, Ruciński and Szemerédi 2008): If *n* is large, *H* is an *r*-graph on *n* vertices and $\delta_{r-1}(H) \ge \frac{n}{2} + o(n)$, then *H* has a Hamilton tight cycle.

Dirac's theorem (1952): If *G* is a graph on *n* vertices and $\delta(G) \ge \frac{n}{2}$, then *G* has a Hamilton cycle.

Generalization to *r*-uniform hypergraphs:

Conjecture (Kostochka and Kierstead 1999): If *H* is an *r*-graph on *n* vertices and $\delta_{r-1}(H) \ge \frac{n}{2}$, then *H* has a Hamilton tight cycle.

Theorem (Rödl, Ruciński and Szemerédi 2008): If *n* is large, *H* is an *r*-graph on *n* vertices and $\delta_{r-1}(H) \ge \frac{n}{2} + o(n)$, then *H* has a Hamilton tight cycle.

Theorem (Rödl, Ruciński and Szemerédi 2011): For r = 3 we can drop the o(n).

Dirac's theorem (1952): If *G* is a graph on *n* vertices and $\delta(G) \ge \frac{n}{2}$, then *G* has a Hamilton cycle.

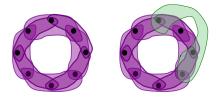
Generalization to *r*-uniform hypergraphs:

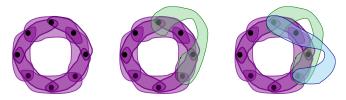
Conjecture (Kostochka and Kierstead 1999): If *H* is an *r*-graph on *n* vertices and $\delta_{r-1}(H) \ge \frac{n}{2}$, then *H* has a Hamilton tight cycle.

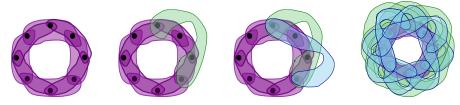
Theorem (Rödl, Ruciński and Szemerédi 2008): If *n* is large, *H* is an *r*-graph on *n* vertices and $\delta_{r-1}(H) \ge \frac{n}{2} + o(n)$, then *H* has a Hamilton tight cycle.

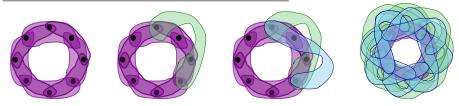
Theorem (Rödl, Ruciński and Szemerédi 2011): For r = 3 we can drop the o(n).

How about squares/powers of Hamilton cycles?

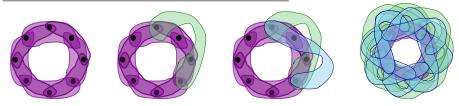






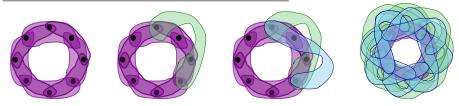


Definition: square of a *k*-uniform cycle = $v_1 v_2 v_3 ... v_n v_1$ s.t. in every interval $v_i v_{i+1} ... v_{i+k}$ all *k*-sets are edges



Definition: square of a *k*-uniform cycle = $v_1 v_2 v_3 ... v_n v_1$ s.t. in every interval $v_i v_{i+1} ... v_{i+k}$ all *k*-sets are edges

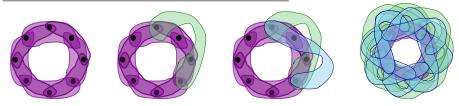
Powers of cycles in *r*-uniform hypergraphs?



Definition: square of a *k*-uniform cycle = $v_1 v_2 v_3 ... v_n v_1$ s.t. in every interval $v_i v_{i+1} ... v_{i+k}$ all *k*-sets are edges

Powers of cycles in *r*-uniform hypergraphs?

Definition: (r - k + 1)th power of a *k*-uniform cycle = $v_1v_2v_3...v_nv_1$ s.t. in every interval $v_iv_{i+1}...v_{i+r-1}$ all *k*-sets are edges



Definition: square of a *k*-uniform cycle = $v_1 v_2 v_3 ... v_n v_1$ s.t. in every interval $v_i v_{i+1} ... v_{i+k}$ all *k*-sets are edges

Powers of cycles in *r*-uniform hypergraphs?

Definition: (r - k + 1)th power of a *k*-uniform cycle = $v_1v_2v_3...v_nv_1$ s.t. in every interval $v_iv_{i+1}...v_{i+r-1}$ all *k*-sets are edges

Pósa-Seymour conjecture (1974):

If *G* is a graph on *n* vertices and $\delta(G) \ge (1 - \frac{1}{r})n$, then *G* contains the (r - 1)th power of a Hamilton cycle.

Pósa-Seymour conjecture (1974): If *G* is a graph on *n* vertices and $\delta(G) \ge (1 - \frac{1}{r})n$, then *G* contains the (r - 1)th power of a Hamilton cycle.

For hypergraphs:

Pósa-Seymour conjecture (1974): If *G* is a graph on *n* vertices and $\delta(G) \ge (1 - \frac{1}{r})n$, then *G* contains the (r - 1)th power of a Hamilton cycle.

For hypergraphs:

Definition: square of a *k*-uniform cycle = $v_1 v_2 v_3 ... v_n v_1$ s.t. in every interval $v_i v_{i+1} ... v_{i+k}$ all *k*-sets are edges.

Pósa-Seymour conjecture (1974): If *G* is a graph on *n* vertices and $\delta(G) \ge (1 - \frac{1}{r})n$, then *G* contains the (r - 1)th power of a Hamilton cycle.

For hypergraphs:

Definition: square of a *k*-uniform cycle = $v_1 v_2 v_3 ... v_n v_1$ s.t. in every interval $v_i v_{i+1} ... v_{i+k}$ all *k*-sets are edges.

Theorem (Bedenknecht and Reiher 2020): If *H* is a 3-graph on *n* vertices and $\delta_2(G) \ge \frac{4}{5}n + o(n)$, then *H* contains the square of a tight Hamilton cycle.

Pósa-Seymour conjecture (1974): If *G* is a graph on *n* vertices and $\delta(G) \ge (1 - \frac{1}{r})n$, then *G* contains the (r - 1)th power of a Hamilton cycle.

For hypergraphs:

Definition: square of a *k*-uniform cycle = $v_1 v_2 v_3 ... v_n v_1$ s.t. in every interval $v_i v_{i+1} ... v_{i+k}$ all *k*-sets are edges.

Theorem (Bedenknecht and Reiher 2020): If *H* is a 3-graph on *n* vertices and $\delta_2(G) \ge \frac{4}{5}n + o(n)$, then *H* contains the square of a tight Hamilton cycle.

Pósa-Seymour conjecture (1974): If *G* is a graph on *n* vertices and $\delta(G) \ge (1 - \frac{1}{r})n$, then *G* contains the (r - 1)th power of a Hamilton cycle.

For hypergraphs:

Definition: square of a *k*-uniform cycle = $v_1 v_2 v_3 ... v_n v_1$ s.t. in every interval $v_i v_{i+1} ... v_{i+k}$ all *k*-sets are edges.

Theorem (Bedenknecht and Reiher 2020): If *H* is a 3-graph on *n* vertices and $\delta_2(G) \ge \frac{4}{5}n + o(n)$, then *H* contains the square of a tight Hamilton cycle.

Not much more known

Pósa-Seymour conjecture (1974): If *G* is a graph on *n* vertices and $\delta(G) \ge (1 - \frac{1}{r})n$, then *G* contains the (r - 1)th power of a Hamilton cycle.

For hypergraphs:

Definition: square of a *k*-uniform cycle = $v_1 v_2 v_3 ... v_n v_1$ s.t. in every interval $v_i v_{i+1} ... v_{i+k}$ all *k*-sets are edges.

Theorem (Bedenknecht and Reiher 2020): If *H* is a 3-graph on *n* vertices and $\delta_2(G) \ge \frac{4}{5}n + o(n)$, then *H* contains the square of a tight Hamilton cycle.

Not much more known until now!

Theorem 1 (Pavez-Signé, Sanhueza-Matamala, St. 2021+): $\forall r, k, \varepsilon \exists n_0 \text{ s.t. every } k \text{-graph } H \text{ on } n \geq n_0 \text{ vertices with}$

$$\delta_{k-1}(H) \ge (1 - \frac{1}{\binom{r-1}{k-1} + \binom{r-2}{k-2}} + \varepsilon)n$$

Theorem 1 (Pavez-Signé, Sanhueza-Matamala, St. 2021+): $\forall r, k, \varepsilon \exists n_0 \text{ s.t. every } k \text{-graph } H \text{ on } n \geq n_0 \text{ vertices with}$

$$\delta_{k-1}(H) \ge (1 - \frac{1}{\binom{r-1}{k-1} + \binom{r-2}{k-2}} + \varepsilon)n$$

contains the (r - k + 1)th power of a tight Hamilton cycle.

• For *k* = 2, arbitrary *r*: asymptotic Pósa-Seymour conjecture

Theorem 1 (Pavez-Signé, Sanhueza-Matamala, St. 2021+): $\forall r, k, \varepsilon \exists n_0 \text{ s.t. every } k \text{-graph } H \text{ on } n \geq n_0 \text{ vertices with}$

$$\delta_{k-1}(H) \ge (1 - \frac{1}{\binom{r-1}{k-1} + \binom{r-2}{k-2}} + \varepsilon)n$$

- For k = 2, arbitrary r: asymptotic Pósa-Seymour conjecture
- For k = 3, r = 4: Bedenknecht-Reiher result

Theorem 1 (Pavez-Signé, Sanhueza-Matamala, St. 2021+): $\forall r, k, \varepsilon \exists n_0 \text{ s.t. every } k \text{-graph } H \text{ on } n \geq n_0 \text{ vertices with}$

$$\delta_{k-1}(H) \ge (1 - \frac{1}{\binom{r-1}{k-1} + \binom{r-2}{k-2}} + \varepsilon)n$$

- For *k* = 2, arbitrary *r*: asymptotic Pósa-Seymour conjecture
- For k = 3, r = 4: Bedenknecht-Reiher result
- Corollary of our result: With $\delta_{k-1}(G) \ge (1 \frac{1}{2k-1} + \varepsilon)n$ we get squares of tight Hamilton cycles of arbitrary uniformity

Theorem 1 (Pavez-Signé, Sanhueza-Matamala, St. 2021+): $\forall r, k, \varepsilon \exists n_0 \text{ s.t. every } k \text{-graph } H \text{ on } n \geq n_0 \text{ vertices with}$

$$\delta_{k-1}(H) \ge (1 - \frac{1}{\binom{r-1}{k-1} + \binom{r-2}{k-2}} + \varepsilon)n$$

- For *k* = 2, arbitrary *r*: asymptotic Pósa-Seymour conjecture
- For k = 3, r = 4: Bedenknecht-Reiher result
- Corollary of our result: With $\delta_{k-1}(G) \ge (1 \frac{1}{2k-1} + \varepsilon)n$ we get squares of tight Hamilton cycles of arbitrary uniformity
- For r = k arbitrary: Rödl-Ruciński-Szemerédi's tight Hamilton cycle result

We also have a generalization of:

Theorem (Komlós, Sárközy, Szemerédi 1995) $\forall \varepsilon, \Delta \exists n_0 \text{ s.t. each}$ graph *G* on $n \ge n_0$ vertices with $\delta(G) \ge (\frac{1}{2} + \varepsilon)n$ contains every tree *T* of order *n* and $\Delta(T) \le \Delta$.

We also have a generalization of:

Theorem (Komlós, Sárközy, Szemerédi 1995) $\forall \varepsilon, \Delta \exists n_0 \text{ s.t. each}$ graph *G* on $n \ge n_0$ vertices with $\delta(G) \ge (\frac{1}{2} + \varepsilon)n$ contains every tree *T* of order *n* and $\Delta(T) \le \Delta$.

We also have a generalization of:

Theorem (Komlós, Sárközy, Szemerédi 1995) $\forall \varepsilon, \Delta \exists n_0 \text{ s.t. each}$ graph *G* on $n \ge n_0$ vertices with $\delta(G) \ge (\frac{1}{2} + \varepsilon)n$ contains every tree *T* of order *n* and $\Delta(T) \le \Delta$.

But what is a hypertree?

A tree (uniformity 2) can be described as follows:

A tree (uniformity 2) can be described as follows:

Start with an edge, and at each step add a new edge connecting some vertex that is 'already there' with a 'new' vertex.

A tree (uniformity 2) can be described as follows:

Start with an edge, and at each step add a new edge connecting some vertex that is 'already there' with a 'new' vertex.

A tree (uniformity 2) can be described as follows:

Start with an edge, and at each step add a new edge connecting some vertex that is 'already there' with a 'new' vertex.

A tree (uniformity 2) can be described as follows:

Start with an edge, and at each step add a new edge connecting some vertex that is 'already there' with a 'new' vertex.

A tree (uniformity 2) can be described as follows:

Start with an edge, and at each step add a new edge connecting some vertex that is 'already there' with a 'new' vertex.

A tree (uniformity 2) can be described as follows:

Start with an edge, and at each step add a new edge connecting some vertex that is 'already there' with a 'new' vertex.

A tree (uniformity 2) can be described as follows:

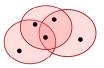
Start with an edge, and at each step add a new edge connecting some vertex that is 'already there' with a 'new' vertex.

A tree (uniformity 2) can be described as follows:

Start with an edge, and at each step add a new edge connecting some vertex that is 'already there' with a 'new' vertex.

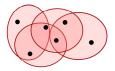
A tree (uniformity 2) can be described as follows:

Start with an edge, and at each step add a new edge connecting some vertex that is 'already there' with a 'new' vertex.



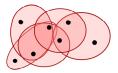
A tree (uniformity 2) can be described as follows:

Start with an edge, and at each step add a new edge connecting some vertex that is 'already there' with a 'new' vertex.



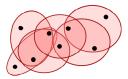
A tree (uniformity 2) can be described as follows:

Start with an edge, and at each step add a new edge connecting some vertex that is 'already there' with a 'new' vertex.



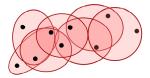
A tree (uniformity 2) can be described as follows:

Start with an edge, and at each step add a new edge connecting some vertex that is 'already there' with a 'new' vertex.



A tree (uniformity 2) can be described as follows:

Start with an edge, and at each step add a new edge connecting some vertex that is 'already there' with a 'new' vertex.



Theorem 2 (Pavez-Signé, Sanhueza-Matamala, St. 2020+): $\forall \varepsilon, \Delta \exists n_0 \text{ s.t. each } r\text{-graph } H \text{ on } n \ge n_0 \text{ vertices with} \\ \delta_{r-1}(H) \ge (\frac{1}{2} + \varepsilon)n \text{ contains each } r\text{-tree } T \text{ on } n \text{ vertices with} \\ \Delta_1(T) \le \Delta.$

Theorem 2 (Pavez-Signé, Sanhueza-Matamala, St. 2020+): $\forall \varepsilon, \Delta \exists n_0 \text{ s.t. each } r\text{-graph } H \text{ on } n \ge n_0 \text{ vertices with} \\ \delta_{r-1}(H) \ge (\frac{1}{2} + \varepsilon)n \text{ contains each } r\text{-tree } T \text{ on } n \text{ vertices with} \\ \Delta_1(T) \le \Delta.$

*i*th degrees:

1) $\delta_{r-1}(H) \ge k$ means every (r-1)-tuple of vertices of H belongs to at least k hyperedges.

Theorem 2 (Pavez-Signé, Sanhueza-Matamala, St. 2020+): $\forall \varepsilon, \Delta \exists n_0 \text{ s.t. each } r\text{-graph } H \text{ on } n \ge n_0 \text{ vertices with} \\ \delta_{r-1}(H) \ge (\frac{1}{2} + \varepsilon)n \text{ contains each } r\text{-tree } T \text{ on } n \text{ vertices with} \\ \Delta_1(T) \le \Delta.$

*j*th degrees:

1) $\delta_{r-1}(H) \ge k$ means every (r-1)-tuple of vertices of H belongs to at least k hyperedges.

2) $\Delta_1(T) \leq \Delta$ means every vertex lies in at most Δ hyperedges.

Theorem 2 (Pavez-Signé, Sanhueza-Matamala, St. 2020+): $\forall \varepsilon, \Delta \exists n_0 \text{ s.t. each } r\text{-graph } H \text{ on } n \geq n_0 \text{ vertices with}$ $\delta_{r-1}(H) \geq (\frac{1}{2} + \varepsilon)n \text{ contains each } r\text{-tree } T \text{ on } n \text{ vertices with}$ $\Delta_1(T) \leq \Delta.$

Proof ingredients:

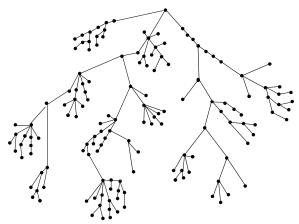
Theorem 2 (Pavez-Signé, Sanhueza-Matamala, St. 2020+): $\forall \varepsilon, \Delta \exists n_0 \text{ s.t. each } r\text{-graph } H \text{ on } n \geq n_0 \text{ vertices with}$ $\delta_{r-1}(H) \geq (\frac{1}{2} + \varepsilon)n \text{ contains each } r\text{-tree } T \text{ on } n \text{ vertices with}$ $\Delta_1(T) \leq \Delta.$

Proof ingredients:

• Cutting the hypertree into small pieces

Proof ingredient 1: Cutting the hypertree into small pieces:

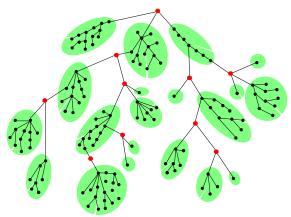
This is what this looks like in a graph:



A constant number of cutvertices, and components of size $< \beta n$

Proof ingredient 1: Cutting the hypertree into small pieces:

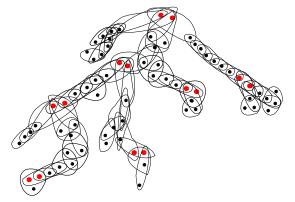
This is what this looks like in a graph:



A constant number of cutvertices, and components of size $< \beta n$

Proof ingredient 1: Cutting the hypertree into small pieces:

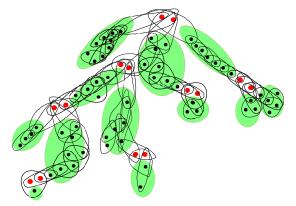
This is what this looks like in a hypergraph:



A constant number of cutsets of size r - 1, and comp's of size $< \beta n$

Proof ingredient 1: Cutting the hypertree into small pieces:

This is what this looks like in a hypergraph:



A constant number of cutsets of size r - 1, and comp's of size $< \beta n$

Theorem 2 (Pavez-Signé, Sanhueza-Matamala, St. 2020+): $\forall \varepsilon, \Delta \exists n_0 \text{ s.t. each } r\text{-graph } H \text{ on } n \geq n_0 \text{ vertices with}$ $\delta_{r-1}(H) \geq (\frac{1}{2} + \varepsilon)n \text{ contains each } r\text{-tree } T \text{ on } n \text{ vertices with}$ $\Delta_1(T) \leq \Delta.$

Proof ingredients:

- Cutting the hypertree into small pieces
- Weak hypergraph regularity, Matching, Connections
- Absorption

Theorem 2 (Pavez-Signé, Sanhueza-Matamala, St. 2020+): $\forall \varepsilon, \Delta \exists n_0 \text{ s.t. each } r\text{-graph } H \text{ on } n \geq n_0 \text{ vertices with}$ $\delta_{r-1}(H) \geq (\frac{1}{2} + \varepsilon)n \text{ contains each } r\text{-tree } T \text{ on } n \text{ vertices with}$ $\Delta_1(T) \leq \Delta.$

Proof ingredients:

- Cutting the hypertree into small pieces
- Weak hypergraph regularity, Matching, Connections
- Absorption

A generalization of Theorem 2:

Theorem 3 (Pavez-Signé, Sanhueza-Matamala, St. 2021+): $\forall r, k, \Delta, \varepsilon \exists n_0 \text{ s.t. each } k \text{-graph } H \text{ on } n \ge n_0 \text{ vertices with}$

$$\delta_{k-1}(H) \ge \left(1 - \frac{1}{\binom{r-1}{k-1} + \binom{r-2}{k-2}} + \varepsilon\right)n$$

contains every *k*-graph that admits a tree-decomposition of width $\leq r$ and max degree $\leq \Delta$.

A generalization of Theorem 2:

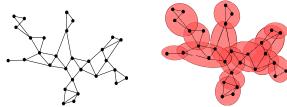
Theorem 3 (Pavez-Signé, Sanhueza-Matamala, St. 2021+): $\forall r, k, \Delta, \varepsilon \exists n_0 \text{ s.t. each } k \text{-graph } H \text{ on } n \geq n_0 \text{ vertices with}$

$$\delta_{k-1}(H) \ge \left(1 - \frac{1}{\binom{r-1}{k-1} + \binom{r-2}{k-2}} + \varepsilon\right)n$$

contains every *k*-graph that admits a tree-decomposition of width $\leq r$ and max degree $\leq \Delta$.

What is a tree-decomposition of a hypergraph?

Tree-decompositions for graphs:



A generalization of Theorem 2:

Theorem 3 (Pavez-Signé, Sanhueza-Matamala, St. 2021+): $\forall r, k, \Delta, \varepsilon \exists n_0 \text{ s.t. each } k \text{-graph } H \text{ on } n \geq n_0 \text{ vertices with}$

$$\delta_{k-1}(H) \ge \left(1 - \frac{1}{\binom{r-1}{k-1} + \binom{r-2}{k-2}} + \varepsilon\right)n$$

contains every *k*-graph that admits a tree-decomposition of width $\leq r$ and max degree $\leq \Delta$.

What is a tree-decomposition of a hypergraph?

Tree-decompositions for graphs:

Can be generalized to hypergraphs.

Definition *jth shadow* ($j \le k$): The *j*th shadow $\partial_j(H)$ of *k*-graph *H* is the *j*-graph on V(H) having a *j*-subsets of edges of *H* as edges.

Definition *jth shadow* ($j \le k$): The *j*th shadow $\partial_j(H)$ of *k*-graph *H* is the *j*-graph on *V*(*H*) having a *j*-subsets of edges of *H* as edges.

For graphs *G*: *Tree-width of G* is smallest *r* such that there is an (r + 1)-tree *T* with $G \subseteq \partial_2(T)$.

Definition *jth shadow* ($j \le k$): The *j*th shadow $\partial_j(H)$ of *k*-graph *H* is the *j*-graph on V(H) having a *j*-subsets of edges of *H* as edges.

For graphs *G*: *Tree-width of G* is smallest *r* such that there is an (r + 1)-tree *T* with $G \subseteq \partial_2(T)$.

For *k*-graphs *H*: *Tree-width of H* is smallest *r* such that there is an (r + 1)-tree *T* with $G \subseteq \partial_k(T)$.

Definition *jth shadow* ($j \le k$): The *j*th shadow $\partial_j(H)$ of *k*-graph *H* is the *j*-graph on V(H) having a *j*-subsets of edges of *H* as edges.

For graphs *G*: *Tree-width of G* is smallest *r* such that there is an (r + 1)-tree *T* with $G \subseteq \partial_2(T)$.

For *k*-graphs *H*: *Tree-width of H* is smallest *r* such that there is an (r + 1)-tree *T* with $G \subseteq \partial_k(T)$.

If $\Delta_1(T) = \Delta$, we say *H* has a tree-decomposition of width *r* and max degree Δ .

• Proof Idea: Work in the *r*-hypergraph $K_r(H)$ obtained from *H* by considering each *r*-clique an edge.

- Proof Idea: Work in the *r*-hypergraph $K_r(H)$ obtained from *H* by considering each *r*-clique an edge.
- For r = k arbitrary we get Theorem 2.

- Proof Idea: Work in the *r*-hypergraph $K_r(H)$ obtained from *H* by considering each *r*-clique an edge.
- For r = k arbitrary we get Theorem 2.
- For $r \ge k = 2$: We recover an instance of the Bandwidth theorem (Böttcher, Schacht, Taraz 2009)

- Proof Idea: Work in the *r*-hypergraph $K_r(H)$ obtained from *H* by considering each *r*-clique an edge.
- For r = k arbitrary we get Theorem 2.
- For $r \ge k = 2$: We recover an instance of the Bandwidth theorem (Böttcher, Schacht, Taraz 2009)
- Thm 3 can be used to prove Thm 1:

- Proof Idea: Work in the *r*-hypergraph $K_r(H)$ obtained from *H* by considering each *r*-clique an edge.
- For r = k arbitrary we get Theorem 2.
- For $r \ge k = 2$: We recover an instance of the Bandwidth theorem (Böttcher, Schacht, Taraz 2009)

• Thm 3 can be used to prove Thm 1: Find the (r - k + 1)th power of a tight almost spanning path. **Theorem 3** (Pavez-Signé, Sanhueza-Matamala, St. 2021+): $\forall r, k, \Delta \varepsilon \exists n_0 \text{ s.t. each } k\text{-graph } H \text{ on } n \geq n_0 \text{ vertices with}$ $\delta_{k-1}(H) \geq (1 - \frac{1}{\binom{r-1}{k-2}} + \varepsilon)n \text{ contains every } k\text{-graph that admits a}$ tree-decomposition of width $\leq r$ and max degree $\leq \Delta$.

• Proof Idea: Work in the *r*-hypergraph $K_r(H)$ obtained from *H* by considering each *r*-clique an edge.

- For r = k arbitrary we get Theorem 2.
- For $r \ge k = 2$: We recover an instance of the Bandwidth theorem (Böttcher, Schacht, Taraz 2009)

• Thm 3 can be used to prove Thm 1: Find the (r - k + 1)th power of a tight almost spanning path. Then connect and absorb.

Lower bounds

Asymptotically best possible.

Asymptotically best possible.

Theorem (Bedenknecht and Reiher 2021): If *H* is a 3-graph on *n* vertices and $\delta_2(G) \ge \frac{4}{5}n + o(n)$, then *H* contains the square of a tight Hamilton cycle.

Asymptotically best possible.

Theorem (Bedenknecht and Reiher 2021): If *H* is a 3-graph on *n* vertices and $\delta_2(G) \ge \frac{4}{5}n + o(n)$, then *H* contains the square of a tight Hamilton cycle.

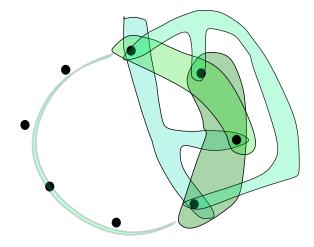
Lower bounds from clique tilings:

Asymptotically best possible.

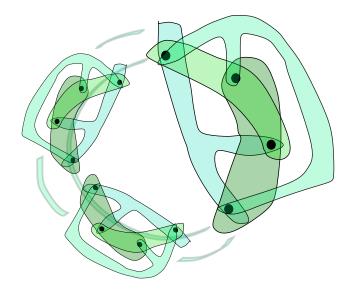
Theorem (Bedenknecht and Reiher 2021): If *H* is a 3-graph on *n* vertices and $\delta_2(G) \ge \frac{4}{5}n + o(n)$, then *H* contains the square of a tight Hamilton cycle.

Lower bounds from clique tilings:

Lower bounds from clique tilings



Lower bounds from clique tilings



Asymptotically best possible.

Theorem (Bedenknecht and Reiher 2021): If *H* is a 3-graph on *n* vertices and $\delta_2(G) \ge \frac{4}{5}n + o(n)$, then *H* contains the square of a tight Hamilton cycle.

Lower bounds from clique tilings:

Asymptotically best possible.

Theorem (Bedenknecht and Reiher 2021): If *H* is a 3-graph on *n* vertices and $\delta_2(G) \ge \frac{4}{5}n + o(n)$, then *H* contains the square of a tight Hamilton cycle.

Lower bounds from clique tilings:

Results of Pikkurkho $\Rightarrow \frac{4}{5}$ cannot be replaced by something below $\frac{3}{4}$

Asymptotically best possible.

Theorem (Bedenknecht and Reiher 2021): If *H* is a 3-graph on *n* vertices and $\delta_2(G) \ge \frac{4}{5}n + o(n)$, then *H* contains the square of a tight Hamilton cycle.

Lower bounds from clique tilings:

Results of Pikkurkho $\Rightarrow \frac{4}{5}$ cannot be replaced by something below $\frac{3}{4}$

Theorem 1 (Pavez-Signé, Sanhueza-Matamala, St. 2021+): $\forall r, k, \varepsilon \exists n_0 \text{ s.t. every } k \text{-graph } H \text{ on } n \ge n_0 \text{ vertices with}$

$$\delta_{k-1}(H) \ge (1 - \frac{1}{\binom{r-1}{k-1} + \binom{r-2}{k-2}} + \varepsilon)n$$

contains the (r - k + 1)th power of a tight Hamilton cycle.

Theorem 1 (Pavez-Signé, Sanhueza-Matamala, St. 2021+): $\forall r, k, \varepsilon \exists n_0 \text{ s.t. every } k \text{-graph } H \text{ on } n \ge n_0 \text{ vertices with}$

$$\delta_{k-1}(H) \ge (1 - \frac{1}{\binom{r-1}{k-1} + \binom{r-2}{k-2}} + \varepsilon)n$$

contains the (r - k + 1)th power of a tight Hamilton cycle.

 \rightarrow k fixed, r large: our bound is $1 - cr^{1-k}$

Theorem 1 (Pavez-Signé, Sanhueza-Matamala, St. 2021+): $\forall r, k, \varepsilon \exists n_0 \text{ s.t. every } k \text{-graph } H \text{ on } n \ge n_0 \text{ vertices with}$

$$\delta_{k-1}(H) \ge (1 - \frac{1}{\binom{r-1}{k-1} + \binom{r-2}{k-2}} + \varepsilon)n$$

contains the (r - k + 1)th power of a tight Hamilton cycle.

 $\rightarrow k$ fixed, *r* large: our bound is $1 - cr^{1-k}$ Lower bounds from Turán threshold: $1 - c'r^{1-k}\log r$

• Is our codegree bound in Theorems 1 and 3 tight?

- Is our codegree bound in Theorems 1 and 3 tight?
- Degree variations

- Is our codegree bound in Theorems 1 and 3 tight?
- Degree variations
- Better bounds on $\Delta(T)$ in Theorem 2?

- Is our codegree bound in Theorems 1 and 3 tight?
- Degree variations
- Better bounds on $\Delta(T)$ in Theorem 2?
- Future direction: Version of the 2/3 theorem for hypergraphs

- Is our codegree bound in Theorems 1 and 3 tight?
- Degree variations
- Better bounds on $\Delta(T)$ in Theorem 2?
- Future direction: Version of the 2/3 theorem for hypergraphs

